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Latest research shows that
SERPINE1 overexpression has an
important role in Coronavirus 2019
(COVID-19)-associated coagulopa-
thy leading to acute respiratory dis-
tress syndrome (ARDS). However,
ways to target this protein remain
elusive. In this forum, we discuss
recent evidence linking SERPINE1
with COVID-19-related ARDS and
summarize the available data on in-
hibitors of this target.

SERPINE1 Structure and Function
Plasminogen activator inhibitor-1 (PAI-1,
aka SERPINE1) is a typical member of
the Serpin family of proteins, with a molec-
ular weight of 45 kDa, nine α-helices and
three β-sheets [1]. SERPINE1 acts as a
‘suicide inhibitor’ under physiological con-
ditions, binding both tissue type and uroki-
nase plasminogen activator (tPA and uPA)
and is regulated by human neutrophil elas-
tase [2–4]. As such, SERPINE1 prevents
the formation of plasmin and inhibits fibri-
nolysis and blood clot dissolution. It is syn-
thesized in the active form [with the
reactive center loop (RCL) in the position
showed in Figure 1A]. This form has a
half-life of 1–2 h in the physiological envi-
ronment, which can increase severalfold
when bound to vitronectin (VN). This mod-
ulation has attracted attention due to its
important role in two vital pathways: a
protumorigenic role in cancer due to the
proangiogenic and antiapoptotic effects
[3]; and a crucial role in maintaining the
balance between rates of plasminogen ac-
tivation and fibrin degradation [4]. It is in
this second role as a primary regulator of
fibrinolysis in plasma that SERPINE1 is im-
plicated in the symptoms of COVID-19
(Figure 1B).

SERPINE1 Overexpression in
COVID-19
The first evidence that high levels of
SERPINE1 in the circulatory system are
associated with coronavirus infection
started emerging during the Severe
Acute Respiratory Syndrome (SARS) epi-
demic in 2003. A brief article by Wu et al.
highlighted that the plasma levels of
SERPINE1 in patients with SARS were
elevated (355 ng/ml) compared with
patients with infectious pneumonias of
other causes (88 ng/ml) or healthy controls
(61 ng/ml). VN levels in blood plasma were
also elevated compared with healthy con-
trols (1538 mg/l versus 310 mg/l) [5]. As a
consequence, SERPINE1 is in its active
state for longer.

A similar picture is painted for the SARS-
coronavirus 2 (Cov2) (COVID-19) pan-
demic. In a recent single-center study,
exploratory analyses of hemostatic factors
were performed on 68 patients with
COVID-19. There were near-universal ele-
vations in SERPINE1 levels among critically
and noncritically ill patients. This is an-
other indication that normal fibrinolysis is
prevented in COVID-19-associated co-
agulopathy [6]. Another study of the fibri-
nolytic parameters of 78 patients with
COVID-19 showed that the observed
hypofibrinolysis was immediately related
to increased SERPINE1 presence. The
level of the protein in patients in intensive
care units (ICU) was 96 ng/ml, while for
non-ICU patients, the concentration was
77 ng/ml. Both values were elevated com-
pared with its normal range (4-43 ng/ml).
A similar increase was observed for tPA
[24 ng/ml versus 2–12 ng/ml (normal
range)]. The presence of fibrin deposition
in the lung parenchyma of patients with
Trends in
COVID-19 suggests that, even though the
amount of tPA is elevated, high SERPINE1
levels can overcome local tPA release [7].
This observation is further strengthened
by recent work by Cugno et al., who
found increased tPA and PAI-1 levels in all
patients with COVID-19 regardless of
disease severity [8]. The evidence suggests
that lethal SARS-Cov2 infection hijacks
normal profibrinolytic signaling and leads
to overall dysfunction in the system, includ-
ing increased SERPINE1 expression and
severe lung disease [9]. This was further
validated by a study that reported that
high levels of tPA (in particular) and PAI-1
were associated with mortality and a signif-
icant enhancement in spontaneous ex vivo
clot lysis [10]. While all this evidence makes
a compelling case for the importance of
SERPINE1 in the symptoms of COVID-19,
the available publications and data on ele-
vated SERPINE1 levels in COVID-19 do
not distinguish between active and latent
forms.

Inhibition of SERPINE1
Nebulized fibrinolytic agents, such as
monoclonal antibodies or small-molecule
inhibitors, targeting SERPINE1 consider-
ably enhance the bronchoalveolar fibrino-
lytic system as well as easing the
symptoms of ARDS by elevating the levels
of plasmin that effectively removes fi-
brin [11]. Many inhibitors of SERPINE1
have been developed, both antibodies/
nanobodies and small-molecule inhibitors.
Nanobodies have been used to both sta-
bilize SERPINE1 and modulate its activity.
Recently, VHH-s-a93 was shown to be a
potent inhibitor of SERPINE1, with an
IC50 of 7 nM [12]. Given that the nanobody
binds to the reactive center loop, it also
acts independently from the binding of
VN to the serpin. MEDI-579 is another an-
tibody that binds to the RCL indepen-
dently of VN and was found to treat
normal human lung fibroblasts with a
pIC50 = 9.8 ± 0.14 (10.5 nM) [13]. Small-
molecule inhibitors, such as tiplaxtinin
and aleplasinin, were the first orally
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Figure 1. SERPINE1 Structure, Inhibitors, and its Role in Fibrinolysis. (A) SERPINE1 structure and its inhibitors. Tiplaxtinin and aleplasinin are vitronectin (VN)
dependent, whereas CDE-096, TM5614, and MDI-2268 are not. However, precise binding pockets for these inhibitors have not yet been identified. (B) Fibrinolysis in
Coronavirus 2019 (COVID-19). Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (AngII) to angiotensin 1–7 (Ang1–7) under normal circumstances.
When ACE-2 is hindered by Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-Cov2), this pathway is affected, increasing the levels of Ang2 in the blood.
AngII and AngII receptor 1 (AT1) enhance the release of SERPINE1 (PAI-1) by endothelial cells. Most SERPINE1 is likely to be bound to VN, given the high
concentration of the latter. SERPINE1 inhibits tPA, limiting the conversion of plasminogen to plasmin and leading to hypofibrinolysis.
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efficacious inhibitors of SERPINE1, devel-
oped byWyeth. Theywere used extensively
in clinical trials on subjects with Alzheimer's
disease. The activity of both these drugs
depends on whether SERPINE1 is bound
to VN, suggesting overlapping binding
sites. Given that VN levels are highly ele-
vated during ARDS, this type of inhibitor is
unlikely to treat hypofibrinolysis in the
lungs efficiently. By contrast, small mole-
cules, such as MDI-2268, CDE-096, and
TM5614, are VN-independent inhibitors
(Figure 1A) [14,15]. Although preclinical
and clinical trials (for indications other than
ARDS) are ongoing for these compounds
and show promising activity, none of them
are yet in advance stages, leaving plenty of
room for improvement. Common adverse
effects, such as localized uncontrolled
bleeding, confirms increased fibrinolysis
upon SERPINE1 inhibition. An important
aspect to the further development of such
compounds would be combining the
432 Trends in Pharmacological Sciences, June 2021, Vol. 4
feasibility of direct administration to the re-
spiratory tract with good permeability to
the bloodstream.

One further indication that regulated
SERPINE1 production is beneficiary to
patients with COVID-19 was shown by
Kang et al. [16]. In their study, seven
patients with severe COVID-19 exhibited
decreased serumSERPINE1 levels and im-
proved clinical features (including lower C-
reactive protein levels) after treatment with
tocilizumab, an arthritis drug repurposed
for SARS-Cov2 [17].

While a procoagulant shift has been ob-
served when the symptoms of COVID-19
becomemore serious in later stages, plas-
min can also promote viral infection by
cleaving proteins that play an important
part in cell infection, mainly during the ear-
lier stages of the disease. In a recent study
by Metcalf et al., it was suggested that the
2, No. 6
need for enhancement of fibrinolytic activ-
ity mainly occurs in stage 3 of the course of
COVID-19 [18]. This would mean that the
use of SERPINE1 modulators could have
a beneficial effect on the later andmore se-
rious symptoms of coronavirus infection.
However, this point remains controversial
because another observational study em-
phasized that earlier administration of tPA
to patients with COVID-19 yielded better
results [19].

Concluding Remarks
One of the consequences of SARS-Cov2
interfering with angiotensin-converting en-
zyme 2 is hypofibrinolysis. Even the
smallest blood clots within lungs can
cause lasting damage and it is important
to bring this COVID-19 symptom under
control. In this forum, we have summa-
rized available data indicating SERPINE1
as a promising target for treating severe
cases of COVID-19. We have also

Image of Figure 1
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reviewed the range of SERPINE1 inhibitors
available to date and stressed, despite
promising results, the need for further de-
velopment for some existing therapeutics.
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