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Abstract
Histone-modifying enzymes play a critical role in chromatin remodeling and are
essential for influencing several genome processes such as gene expression
and DNA repair, replication, and recombination. The discovery of
lysine-specific demethylase 1 (LSD1), the first identified histone demethylase,
dramatically revolutionized research in the field of epigenetics. LSD1 plays a
pivotal role in a wide range of biological operations, including development,
cellular differentiation, embryonic pluripotency, and disease (for example,
cancer). This mini-review focuses on the role of LSD1 in chromatin regulatory
complexes, its involvement in epigenetic changes throughout development,
and its importance in physiological and pathological processes.
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Introduction
Within the nuclei of all eukaryotic cells, DNA is highly compacted 
via interactions with histones and numerous other proteins to form 
chromatin. Histones are involved with supercoiling of DNA and 
are subjected to post-translation modifications (PTMs)1. Diverse  
covalent modifications to histones control the structure and dynam-
ics of chromatin and regulate access to DNA, ultimately altering 
gene expression. Multiple biochemical moieties can be covalently 
added to specific amino acids on the N-terminus of the histone, 
or “histone tail”1,2. The sequence of histone tail modifications, or  
“histone code”, influences transcription and other processes,  
including DNA repair, replication, and recombination3.

Histone PTMs were historically thought to be irreversible until 
the discovery of enzymes catalyzing the addition and removal of 
methyl groups to lysine and arginine residues on histone tails4. 
Two evolutionarily conserved families of histone demethylases that  
recognize H3K4me as a substrate have been identified: lysine- 
specific demethylases (LSDs) and Jumonji C demethylases 
(JMJCs)5–7. LSD enzymes demethylate mono- and di-methyl groups 
of lysine residues and some non-histone targets. JMJCs belong to 
the dioxygenase superfamily involved in deoxygenation reactions 
dependent on ferrous iron and α-ketoglutarate allowing demeth-
ylation of trimethylated lysine residues6,7. Lysine-specific histone 
demethylase I (LSD1) was first described in 2004, inspiring the 
hypothesis that histone modification is a highly dynamic process8.

This review focuses on LSD1 (also known as KDM1a) and its role 
in various physiological and pathological processes. LSD1 acts 
on histone H3 as a transcription co-repressor through demethyla-
tion of lysine 4 (H3K4) or as a transcription co-activator through 
demethylation of lysine 9 (H3K9)7,9–11. The enzyme is essential 
in the control of wide-ranging biological processes, including 
cell proliferation12, chromosome segregation13, hematopoiesis14,  
spermatogenesis15, adipogenesis16, stem cell pluripotency17, and 
embryonic development18. LSD1 can act as an oncogene, and its 
overexpression promotes cancer cell proliferation, migration, and 
invasion10,11.

LSD1 complex with regulatory proteins to facilitate 
histone demethylation
LSD1 consists of three structural domains: N-terminal SWIRM 
domain, C-terminal flavin adenine dinucleotide (FAD)-binding  
amine oxidase domain, and the tower domain. The SWIRM  
domain consists of proteins Swi3, Rsc8, and Moira. Through 
hydrophobic interactions, the FAD domain closely associated  
with SWIRM, forming a spherical core. Extending from the core 
is the tower domain forming an elongated helix-turn-helix motif.

Frequently, LSD1 is found to be associated with a transcriptional 
co-repressor protein (CoREST) and histone deacetylase (HDAC) 
1/2 to form a complex. Interaction with CoREST is necessary for 
LSD1 H3K4 demethylation19–22. Association of the FAD domain 
with CoREST-histone ternary complex results in conformational 
change, permitting association with the N-terminal H3 tail23,24. With 
H3K4 in close propinquity to the FAD domain, oxidative demeth-
ylation results in increased affinity for LSD123,25–27. LSD1 requires 
the first 20 N-terminal amino acids of the histone tail for substrate 

recognition and interaction28,29. The specific amino-acid sequence 
allows LSD1 to sense the epigenetic messages encoded within  
histone tail and efficiently carry out demethylation. The presence  
of other epigenetic marks on H3 has the potential to affect the 
enzymatic activity of LSD1, suggesting a regulatory role for the 
H3 tail bereft of all other epigenetic modifications upon LSD1  
activity29,30.

Within the aforementioned complex, LSD1 demethylates mono- 
and di-methylated H3K47,25,30,31. Earlier studies identified REST 
as a long-term repressor of neuronal genes in non-neuronal  
cells19,32–34. This was determined to be mediated through the 
recruitment of the LSD1-CoREST-HDAC complex, thus allowing 
lysine deacetylation of H3 and H4 in addition to demethylation of  
H3K435. In other investigations, RNA interference (RNAi)- 
mediated knockdown of LSD1 resulted in H3K4 methylation mark 
recurrence in proximity to REST target promoters, confirming 
this regulatory function30. While methylation of H3K4 activates  
transcription, demethylation by LSD1 confers transcriptional 
repression32. LSD1 also serves as a transcriptional activator. For 
example, androgen receptor (AR) activation of its target genes is 
dependent upon LSD1-mediated H3K9 demethylation21. Follow-
ing hormone treatment, AR and LSD1 co-localize to promoters, 
resulting in H3K9 demethylation without changing H3K4 meth-
ylation status9. As expected, LSD1 knockdown resulted in reduced  
activation of AR-responsive promoters7,35. Taken together, the 
above findings showed the potential of LSD1 as a transcriptional  
repressor or activator through dynamic and selective H3K4  
demethylation and H3K9 demethylation, respectively (Figure 1).

LSD1 contributes to broad, dynamic gene regulation 
through histone demethylation
Under physiological conditions, LSD1 has been found to have  
several functions ranging from regulation of hormone receptor–
mediated transcription, appropriate hematopoietic stem cell differ-
entiation, and cell cycle control. Estrogen receptor (ER)-mediated 
transcription is driven by LSD1-mediated H3K9 demethylation at 
both the gene promoter and an upstream enhancer site. ER then 
takes part in bending chromatin to interact with RNA polymer-
ase to promote transcription. LSD1 co-localizes to this DNA 
loop, and the process of demethylation results in formation of  
hydrogen peroxide, inducing local oxidative DNA damage, recruit-
ing 8-oxoguanine-DNA glycosylase 1 and topoisomerase IIβ. 
These enzymes induce DNA conformational changes necessary 
for efficient promotion of gene expression36,37. Thus, LSD1 plays 
an important role in hormone receptor–mediated gene expression 
via histone demethylation and through DNA damage–induced  
chromatin remodeling.

In addition to driving hormone receptor–mediated gene expression, 
LSD1 plays a critical role in hematopoiesis. LSD1 is dynamically 
involved in hematopoietic differentiation through cooperation with 
growth factor–independent (GFI) proteins. GFI proteins promote 
expression of lineage-specific genes, and LSD1 specifically inter-
acts with GFI1B binding sites. In mouse models, RNAi depletion of 
LSD1 impairs both erythrocyte and megakaryocyte differentiation 
but activated spontaneous granulocyte differentiation. Therefore, 
actions of LSD1 may be lineage-specific38. However, alternative 
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Figure 1. LSD1, through histone 3 demethylation, has dual functions as both a transcriptional activator and repressor. As an illustration 
of this, LSD1 (lysine-specific demethylase 1) can be associated with activated estrogen receptors (ERs) or androgen receptors (ARs) and 
promote demethylation at lysine 9 (K9) of the histone tail. This confers opening of heterochromatin, promoting transcriptional activation. 
Alternatively, LSD1 can complex with CoREST and histone deacetylase 1/2 (HDAC1/2). This association confers more specificity for methylated 
lysine 4 (K4), resulting in its demethylation. This promotes heterochromatin formation and transcriptional repression.

models have revealed competing findings that LSD1 is neces-
sary for terminal differentiation of erythroid, megakaryocytic, and  
granulocytic lineages38–40. Although its specific role is not fully 
characterized, LSD1 was found to regulate promoters and enhanc-
ers of genes associated with hematopoietic stem cells and was  
critical for terminal differentiation of mature hematopoietic cells  
as LSD1 knockout resulted in severe pancytopenia41.

Finally, LSD1 biological functions are associated with the regu-
lation of the methylation status of non-histone proteins. Studies  
demonstrate the relationship between retinoblastoma gene (RB1) 
and LSD1 in cell cycle control. Overexpression of RB1, the first 
identified tumor suppressor, causes cells to undergo arrest in the G

1
 

phase of the cell cycle, and, as expected, abrogation of RB1 acceler-
ates G

1
 transition42,43. Phosphorylation is a key mechanism by which 

RB1 is regulated. Dephosphorylation is mediated by myosin phos-
phatase, which promotes cell cycle arrest44. Interestingly, myosin 
phosphatase target subunit 1 (MYPT1) was identified as a novel 
substrate of LSD1. Methylation of MYPT1 is mediated by LSD1, 
preventing dephosphorylation of RB1 and ultimately promoting 
cell cycle progression12. Given these diverse functions, one can  

see how altered LSD1 activity could contribute significantly to  
normal homeostasis and pathology such as malignancy.

Aberrant LSD1 activity suppresses cell cycle 
regulators and promotes tumor growth
Given the aforementioned role of LSD1 in cell cycle regula-
tion, one may hypothesize that it could serve as an oncogene in 
the context of malignant transformation. LSD1 was first found 
to be overexpressed in neuroblastoma, correlating with poor  
differentiation45. Overexpression of LSD1 has been documented in 
many solid tumors and is correlated with aggressive clinicopatho-
logical features and poor patient outcomes11,46–49. Both in vitro and  
in vivo models have demonstrated overexpression of LSD1  
correlating with significant chromatin modifications and malig-
nant transformation50,51. Both pharmacological inhibition and 
genetic depletion of LSD1 have been shown to inhibit cancer cell  
proliferation, differentiation, invasion, and metastasis in animal 
models7,40,52. Thus, LSD1 has been confirmed to be an important 
oncogenic driver, a potential biomarker indicative of poor progno-
sis, and a potential therapeutic target. There are several forms of 
malignancy that have been shown to have aberrant LSD1 activity.
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First, LSD1 is critical in the process of terminal differentiation 
in hematopoiesis, and abnormal LSD1 activity is correlated with  
a variety of myeloproliferative disorders11,50,51,53. Many studies 
propose LSD1 as a prospective treatment target for acute myeloid 
leukemia (AML). AML is a heterogenous hematopoietic malig-
nancy characterized by the accumulation of incompletely dif-
ferentiated progenitor cells (blasts) in the bone marrow, causing  
suppression of normal hematopoiesis41. LSD1 is a required con-
stituent of a mixed-lineage leukemia (MLL) super complex  
associated with active transcription sites54. Abrogation of LSD1 
results in heightened rates of apoptosis and impaired leuke-
mogenicity in an MLL-AF9 mouse model55. In acute promyelocytic  
leukemia, all-trans retinoic acid can induce differentiation of leuke-
mic cells whereas AML is not responsive. However, inhibition of 
LSD1 activity in AML models results in increased H3K4me2 at 
myeloid differentiation–associated genes, resulting in increased 
responsiveness to all-trans retinoic acid40. These data support  
the importance of LSD1-mediated alteration of the leukemic  
epigenome in pathogenesis and demonstrate how the enzyme  
could serve as a therapeutic target in AML.

LSD1 is also dysregulated in solid tumors, including colorec-
tal carcinoma. Increased activity in colon cancer is associated 
with increased metastatic potential56. Higher expression of LSD1 
and low expression of CDH-1 (E-cadherin) in colorectal cancer 
were associated with higher tumor-node-metastasis staging and 
thus poorer prognosis57. Knockdown of LSD1 results in CDH-1 
upregulation and confers reduced invasiveness. LSD1 regulates 
the CDH-1 promoter and demethylation of H3K4me2 causes  
downregulation of CDH-1 expression58.

Squamous cell carcinoma (SCC) is also associated with elevated 
LSD1 activity. The most common genetic aberration in SCC of 
the lung, esophagus, and oral cavity is amplification of Sox259–61.  
Sox2 encodes a transcription factor important in embryonic stem 
cells with the ability to reprogram somatic cells into induced 
pluripotent stem cells. Elevated LSD1 levels are associated 
with amplified Sox2 expression in lung cancer. Cells from these  
patients are particularly sensitive to the LSD1 inhibitor, CBB1007, 
whereas Sox2-negative cells are not62. Subsequent chromatin immu-
noprecipitation (ChIP) sequencing revealed that LSD1 binds to the 
Sox2 gene and is enriched in the transcriptional regulator region, 
a known distant enhancer for Sox2 expression in breast cancer.  
LSD1 inhibition revealed that its activity is required for Sox2 
expression. Inactivation results in increased global H3K9me1/me2 
and H3K27me3 with formation of bivalent chromatin domains 
within the regulatory regions of Sox2 and cell cycle regulatory 
genes, leading to suppression of gene expression63.

ER-negative breast cancer is a subtype of the common malignancy 
with relatively more rapid growth, loss of differentiation, and 
increased propensity for metastasis. Interestingly, LSD1 tends to be 
highly expressed in this form of breast cancer64. LSD1 and HDAC 
closely interact and control the growth of breast cancer through 
aberrant gene silencing65.

Upregulation of LSD1 promotes epithelial-to-
mesenchymal transition
Aberrant LSD1 activity is extensively characterized in multiple  
cancers, but the mechanism by which it promotes cancer  

progression extends beyond suppression of cell cycle regula-
tors. For example, through PTM of a notable non-histone protein, 
p53, LSD1 represses apoptosis. This is achieved through demeth-
ylation of K370me2. Whereas methylation at this site promotes 
association of p53 with co-activator 53BP1, LSD1 inhibits this 
interaction66. A more thoroughly studied role of LSD1 is in the 
epithelial-to-mesenchymal transition, a critical process in can-
cer progression. Snail and Slug are key molecular mediators of  
epithelial-to-mesenchymal transition through direct repression of 
epithelial markers such as CDH-1. This is achieved through the 
SNAG domain of Snail, structurally resembling the histone H3 
tail, recruiting LSD1 to epithelial gene promoters with formation 
of the Snail-LSD1-CoREST complex with subsequent demeth-
ylation of H3K4me267,68. In the specific case of neuroblastoma, 
MYCN has been correlated with poor prognosis. This is related 
to the co-localization of LSD1 and MYCN at the promoter of a 
key suppressor of metastasis, N-Myc downstream-regulated  
gene 1 (NDRG1), inhibiting its expression. Thus, elevated  
LSD1 is associated with lower NDRG1 expression and poor  
prognosis69. Inhibition of enzymatic activity or abrogation of 
the SNAG-LSD1 interaction suppresses mesenchymal mark-
ers, decreasing cancer invasiveness70,71. Promoting transition to  
a mesenchymal phenotype is opposed by acetylation of LSD1  
by males absent on the first (MOF). In fact, MOF expression  
correlates with favorable prognosis in cancer72.

In summary, there is an abundance of evidence for a role of LSD1 
in the pathogenicity of a wide array of malignancies. Cancer is the 
consequence of complex and heterogeneous genetic alterations, 
and aberrant LSD1 activity can contribute to a malignant pheno-
type through extensive modifications of the epigenome. Therefore,  
therapeutic targeting of the demethylase may prove an effective 
strategy in reversing or attenuating more aggressive malignant  
phenotypes in many cancers.

Conclusions
This review has briefly summarized the current knowledge and 
research of LSD1, its expression patterns, recruitment mechanisms, 
chromatin remodeling, biochemical functions, molecular structure, 
and role in cancer. In the past several years, studies have eluci-
dated the role that histone lysine demethylases play in epigenetic  
regulation. LSD1 was the first histone demethylase identified and 
catalyzes the oxidation of methylated H3K4 through an amine  
oxidation reaction. Furthermore, LSD1 can act on non-histone  
proteins. While LSD1 is critical in conferring the dynamic nature 
of epigenetic regulation through histone modification, imbalance in 
histone modification with excessive LSD1 activity is significantly 
associated with increased cellular growth and suppression of cell 
cycle regulatory proteins in a broad array of tissues. Thus, LSD1 
represents a critical oncogene and potential therapeutic target. 
More is to be elucidated regarding the function of LSD1. Interest-
ingly, Wang et al. reported that LSD1 inhibits the invasion of breast  
cancer cells in vitro but conversely suppresses breast cancer  
metastatic potential in vivo73. These data suggest not only that 
LSD1 is multifunctional but also that its functions may be highly 
context-dependent. More extensive studies into the effects of 
these contexts on LSD1 function will be important to fully  
understand its role in cancer. A significant amount of research has 
been devoted to the development of a wide range of epigenetic  
therapies. Numerous questions still must be answered regarding 
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LSD1 if effective therapeutic strategies are to be developed. For 
example, what are the functions and interactions of other LSD1 
domains, or does LSD interact with methyltransferases, and how 
are these relationships regulated? In regard to the development 
of further therapies, emphasis should be placed on the develop-
ment of highly specific drugs for demethylase subtypes to bet-
ter direct the desired epigenetic effect of the drug. This would 
help specifically discern enzyme subtype mechanism. Despite 
these challenges, LSD1 is clearly important in normal cellular  
functions and malignancy.
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