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Abstract: The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-
known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that
the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular,
hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with
acute injury and alveolar development, we reviewed and summarized the current literature on the
mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive
pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that en-
dogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and
cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of
the AHR in the meaningful management of infants and adults with these lung disorders that lack
curative therapies.

Keywords: aryl hydrocarbon receptor; hyperoxia; acute lung injury; chronic obstructive pulmonary
disease; and bronchopulmonary dysplasia

1. Introduction

The Ah receptor (AHR) was discovered during studies aimed at understanding the
metabolism of carcinogenic polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]
pyrene (BP) and 3-methylchlanthrene [1,2]. It was found that the aryl hydrocarbon hydroxy-
lase, which later was found to be cytochrome P450 (CYP)1A1 and 1A2, was regulated by the
Ah locus and was formally renamed the AHR [3]. More recently, the AHR has been known
to be involved in chemical surveillances [4] and in different homeostatic pathways [5,6].

1.1. Regulation of the Aryl Hydrocarbon Receptor (AHR)

The AHR gene consists of 11 exons and is localized to chromosome 7p15 [7] in hu-
mans, and chromosome 12 A3 [8] in mice. In both species, the AHR gene’s promoter
contains several transcription activation sites in the GC-rich region that lack TATA and
CCAAT boxes [9,10]. The basal expression of the AHR is regulated by the zinc-finger
transcription factors, such as specificity protein (Sp) 1 and Sp3, that have consensus binding
sites in the GC-rich region of the AHR promoter [9,11]. Additional factors that regulate
AHR expression include transforming growth factor (TGF)-β [12], nuclear factor erythroid
2–related factor 2 (NRF2) [13], β-catenin [14], and peroxisome proliferator-activated recep-
tor α (PPAR-α) [15]. Interestingly, these factors regulate the AHR gene in a cell-specific
manner. For example, TGF-β activation downregulates the AHR gene at the transcriptional
level in human A549 lung carcinoma cells [16], whereas, in human HepG2 hepatocarci-
noma cells, TGF-β activation increases AHR promoter activity [17]. In addition to these
factors, epigenetic factors regulate the AHR gene expression. Histone deacetylase inhibitors
increase, whereas histone acetylase inhibitors decrease, AHR promoter activity, indicating
that histone acetylation is an important regulator of AHR expression [18]. Likewise, DNA
hypermethylation down-regulates AHR expression [19].
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1.2. Structure of the AHR

The human AHR protein has a molecular mass of 96 kDa and is composed of 848 amino
acids, whereas the mouse AHR protein contains 805 amino acids and has a molecular mass
of 90 kDa [20,21]. The AHR is a ligand-activated cytoplasmic transcription factor that
belongs to the basic helix-loop-helix (bHLH) family [22]. The highly conserved b and HLH
domains are located at the N-terminal of the AHR protein, where the former facilitates
the binding of the transcription factor to DNA, and the latter promotes protein-protein
interactions. Additionally, AHR contains two PAS domains, PAS-A and PAS-B, which
have a homologous sequence to the protein domains found in the Drosophila genes period
(Per) and single-minded (Sim) and the human AHR nuclear translocator (ARNT) [23]. The
PAS-B domain contains the ligand-binding site [24]. The AHR protein’s C-terminal region
contains the transactivation or Q-rich domain that participates in co-activator recruitment
and transcriptional activation [25] (Figure 1).
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1.3. The AHR Signaling Pathway

There are two pathways of AHR action: the classical pathway and the non-classical pathway.

1.3.1. Classical (Canonical) Pathway

The AHR is expressed practically in all mouse tissues [26], and, in humans, the re-
ceptor is highly expressed in the placenta, lungs, thymus, kidney, and liver [27]. The
receptor is particularly enriched in lungs and placenta, tissues that participate in oxygen
gas exchange [28]. The non-ligand bound AHR is predominantly cytosolic, localized in a
core complex comprising two molecules of 90-kDa heat shock protein (Hsp90), the 23-kDa
co-chaperone p23, and a single molecule of hepatitis X-associated protein-2 (XAP2), and
the Src kinase [29,30]. The Hsp90 and p23 complex protects the receptor from proteolysis
and facilitates ligand binding while preventing AHR from binding to the ARNT [31]. The
XAP2 binds to the nuclear localization sequence (NLS) and prevents the translocation of
non-ligand bound AHR to the nucleus [32]. Ligand-induced AHR activation results in a
conformational change of the cytosolic AHR complex and release of XAP2 that exposes
the NLS, resulting in translocation of this complex into the nucleus [33–35]. In the nucleus,
Hsp90, p23, and Src kinase dissociate from the AHR, exposing the PAS domains, which
facilitates AHR to dimerize with the ARNT [36]. The AHR/ARNT heterodimer complex
then initiates transcription of many phase I (such as cytochrome P450 (CYP)1A) and phase
II genes (anti-oxidant enzymes (AOE), such as glutathione S-transferase-α (GST-α), and
NAD(P)H quinone reductase-1 (NQO1)), by binding to the xenobiotic responsive element
(XRE)/AHR responsive elements (AHRE) motifs that contain the core bases 5′-GCGTG-3′

in the promoter region of these genes [37–40]. The AHR signaling is terminated upon the
elimination of xenobiotics by at least two independent mechanisms, proteasomal degrada-
tion and competitive inhibition. AHR undergoes nuclear export, followed by E3 ubiquitin
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ligase-mediated ubiquitination and subsequent degradation by the 26S proteasome in the
cytoplasm [41,42] (Figure 2). Recent evidence demonstrate that activation of autophagy
can also degrade AHR protein via p23-dependent mechanisms [43]. In addition, the AHR
signaling is terminated by a negative feedback loop via the AHR repressor (AHRR). Since it
is structurally similar to AHR, the AHRR competes with the latter to dimerize with ARNT
and bind to the XRE [44]. The XRE-bound AHRR recruits co-repressors, such as histone
deacetylases, that repress transcription of the target genes [45].
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Figure 2. The AHR signaling pathway. Prior to ligand binding, the AHR (Aryl hydrocarbon receptor)
is located in the cytoplasm as a complex comprising menu proteins, including Hsp90 (Heat shock
protein 90), XAP2: (Hepatitis B virus X-associated protein 2), p23, and Src Kinase. Upon entry
of the ligand-AHR into the nucleus, the associated proteins are dissociated, and the ligand-AHR
complex binds to the ARNT (Aryl hydrocarbon receptor nuclear translocator,), which, in turn, binds
to the AHRE (Aryl hydrocarbon receptor responsive elements) on the CYP1A1 promoter, leading to
transcriptional activation of CYP1A1 and other phase II genes.

1.3.2. The Non-Classical (Non-Canonical) Pathway

Cross-talk between the AHR and other signaling mechanisms can result in non-
canonical pathways of the action of AHR and its ligands [46]. In the nucleus, the AHR has
been shown to associate with the hypophosphorylate form of pRB, resulting in growth
arrest at the GL/S phase of the cell cycle [46,47]. Other mechanisms entail involvement of
the transcription factor c-Maf [13,48], estrogen receptor, NRF2, RelA, and RelB [46].

1.4. AHR and Phase I/II Enzymes

The AHR’s well-established function is to mediate induction of phase I (CYP1A/1B1)
and II enzymes that metabolize xenobiotics [49,50]. The phase I enzymes, such as CYP1A/1B1
monooxygenases and NADPH-CYP reductase, act to introduce reactive and polar groups
to their xenobiotic substrates, which, in turn, leads to activation or detoxification of the
substrates, leading to toxicity or excretion. These substrate modifications include hydrox-
ylation, epoxidation, oxidation, reduction, hydrolysis, cyclization, and decyclization. In
phase II reactions, enzymes, such as NQO1, glucuronyl transferases, and GST, conjugate
the activated substrates with glutathione, sulfate, glycine, or glucuronic acid to detoxify the
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substrates and make them more polar so that they can be actively transported. Together,
phase I and II enzymes detoxify toxic compounds and metabolites.

The CYP enzymes belong to a superfamily of hemeproteins that are involved in the
metabolism of exogenous and endogenous chemicals [51]. The CYP1A enzymes are of
particular interest to oxygen toxicity. The CYP1A subfamily has two isoforms, CYP1A1
and 1A2. CYP1A1 is essentially an extrahepatic enzyme that is predominantly present in
rodent and human lungs, intestines, placenta, and kidneys. On the other hand, CYP1A2
is expressed mainly in the rodent and human liver and is not, or minimally, expressed in
extrahepatic tissues.

In addition, phase II enzymes, such as NQO1 and GST, have been shown to protect
cells and tissues against oxidant injury induced by various toxic chemicals [52–54] and
oxygen [55–57]. The protective mechanisms of these enzymes have been attributed to their
ability to conjugate and excrete the reactive electrophiles and lipid peroxidation products
generated by an oxidant injury [52,56].

1.5. Physiological Roles of the AHR

The AHR is of particular interest to toxicologists, and extensive research has been
conducted on its role in the bioactivation of polycyclic and aromatic hydrocarbons, leading
to carcinogenesis [58]. Transgenic and knockout mice with AHR deficiencies have provided
insight into the potential role(s) that AHR might play in normal physiological homeosta-
sis [59,60]. The very fact that AHR is evolutionarily conserved from invertebrates who lack
xenobiotic metabolism suggests that the role of AHR extends beyond xenobiotic metabolism.
In fact, the AHR homolog spineless (ss) in Drosophila is necessary for the development of
its legs, and distal segments of antennae [61] and AHR deficiency in Caenorhabditis elegans
lead to defects in neuronal development [62]. Moreover, studies in knockout and transgenic
mice indicate that AHR plays a vital role in the development of liver [63,64] and regulation
of reproductive [65], cardiovascular [66,67], renal [68], hematopoietic [69], immune [70],
and microbial [71] homeostasis. Additionally, AHR is known to regulate genes involved in
proliferation, apoptosis, cell growth and differentiation, and cellular stress response [72].

2. AHR Ligands

Several structurally diverse compounds activate AHR. There are two types of AHR
ligands, those coming from exogenous sources, such as diesel exhaust, commercial produc-
tion, or industrial contamination (e.g., PAHs, PCBs, TCDD, etc.), or diet, or those generated
endogenously (e.g., FICZ, indolo-carbazoles, indigoids, etc.) (Table 1).

2.1. Exogenous Ligands

The prototypical exogenous ligand is TCDD [73]. The majority of high affinity ligands
are planar, hydrophobic halogenated hydrocarbons (HAHs) (e.g., TCDD, PCBs, dibenzo-
furans, biphenyls), and PAHs, such as MC, BP, benzanthracenes, benzoflavones, etc.) [73].
The most potent ligands are the ones that are most metabolically stable (e.g., HAHs), with
binding affinities in the pM to nM range. The mechanisms of toxicity of HAHs involve
the AHR, but PAHs in part mediate their action by inducing CYP1A1, which, in turn,
bioactivates the PAHs to DNA-reactive metabolites, resulting in cancers of the lung and
other extra-hepatic organs [73].

2.2. Endogenous Ligands

The majority of these compounds are proligands, which are transformed into ligands
before they can bind and activate AHR [28]. The tryptophan derivative FICZ is one of the
most potent AHR ligands and inducers of CYP1A1 [28].
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Table 1. List of major agonists (exogenous and endogenous ligands) and antagonists of the AHR. The
table also describes the major target organs and the diseases that are modulated by the AHR.

Source Examples Target Organ/Disease

Exogenous

Halogenated aromatic hydrocarbons Lung cancer [28,73]

Dibenzofurans Lung toxicity not confirmed

Biphenyls Lung toxicity not confirmed

Polycyclic aromatic hydrocarbons Lung cancer [28,73], asthma [74], COPD [75], chronic
bronchitis [76,77]

3-Methylcholanthrene No severe lung toxicity

Benzo[a]pyrene Lung inflammation [78,79], respiratory tract cancer [80]

Benzanthracenes No immediate severe lung toxicity

Benzoflavones Non-toxic

Dietary
Endogenous

Flavonoids BPD/ARDS [81–83]

Quercetin BPD [84]

Indole-3-carbinol COPD, asthma, ARDS, BPD

3,3′-Diindolylmethane Lung cancer chemoprevention [85]

Indolo[3,2-b]carbazole No pulmonary therapeutic application reported

Tryptophan metabolites

Kynurenic acid ALI [86]

Kynurenine Lung cancer [87]

Tryptamine No pulmonary therapeutic application reported

6-Formylindolo[3,2-b]carbazole LPS-induced ALI [88]

Indoxyl sulfate No immediate severe lung toxicity

Microbiota

3-Methylindole May cause lung cancer [89]

Tryptanthrin Lung cancer [90]

1,4-Dihydroxy-2-naphthoic acid No pulmonary therapeutic application reported

Indole-3-aldehyde No immediate severe lung toxicity

Indole-3-acetate No pulmonary therapeutic application reported

Phenazines No pulmonary therapeutic application reported

Indirubin Lung cancer [91], anti-inflammatory [92]

Malassezin No pulmonary therapeutic application reported

Xenobiotic
3,4-Dimethoxy-a-naphthoflavone Lung cancer [93]

MNF Lung cancer, COPD, asthma [94]

CH-223191 Lung cancer, COPD, asthma [74]

Dietary Resveratrol Lung cancer, asthma COPD [95]

AHR Active Pharmaceuticals
Tranilast COPD, Asthma [85]

Leflunomide BPD, ARDS [85]

Omeprazole BPD, ARDS [85,96–98]

Several developmental deficits and physiological impairments in AHR-deficient mice
indicate the presence of several endogenous AHR ligands, including phytochemicals,
microbial bioproducts, and metabolites of indole, tryptophan, heme, and arachidonic
acid [99,100]. Additionally, several nonclassical synthetic compounds, such as omeprazole
(OM), lansoprazole, thiabendazole, and primaquine, can activate AHR-dependent gene
expression indirectly. Although these compounds are not AHR ligands by themselves,
they are thought to activate AHR-dependent gene expression, either via metabolic con-
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version into a ligand or by their ability to affect a cellular pathway that results in AHR
activation [101–105]. The prototypical ligands, such as TCDD and MC, are unsuitable for
clinical use because of their well-known toxicities. Hence, identifying novel non-toxic
AHR ligands, such as OM, is important for developing the AHR as a clinically relevant
therapeutic target in oxidant injury- and inflammation-mediated lung disorders. OM, a ben-
zimidazole derivative, is a proton pump inhibitor that inhibits gastric acid secretion both in
humans [106] and in animals [107]. It has been widely used in the management of gastric
acid disorders in humans [106]. Several in vitro studies suggest that OM activates AHR in
human and rat hepatocytes [108–111], and the mechanistic role of AHR in the induction of
CYP1A enzymes by OM in vitro has been extensively studied [112–114]. Furthermore, OM
activates AHR and attenuates hyperoxic injury in adult mice in vivo [96] and adult human
lung H441 cells in vitro [112], which indicates that OM can be used as an AHR agonist
to understand AHR biology in hyperoxia-mediated lung disorders. Importantly, these
ligands can exert different molecular and cellular responses within the same cell, tissue, or
species [115]. The mechanisms of these ligand-specific effects are unclear at this time.

2.3. Selective AHR Modulators

A number of studies have recently showed AHR to be ligands that are selective
modulators (sAHRMs) [115]. In addition to binding of 2,3,7,8-teyrachlorodibenzo-p-dioxin
(TCDD) and PAHs, the AHR plays an important role in maintaining cellular homeostasis
and in pathophysiology of many human diseases, and studies are emerging that the AHR
is an important drug target [116]. The AHR binds structurally diverse chemicals, such as
pharmaceuticals, phytochemicals, and many endogenous ligands. Thus, the AHR ligands
are sAHRMs that display organ, tissue and cell-specific AHR agonist activities, and their
functional diversity is very similar to steroid hormone and other nuclear receptors [116].

2.4. Current Barriers/Limitations to Developing AHR Ligands as Therapeutic Agents

The clinical applications of drugs using the AHR as a target have been lacking mainly
due to the fact that the AHR was initially identified as the receptor that mediated the toxicity
of (TCDD) and other polychlorinated aromatic environmental contaminants [117,118].
However, the discovery of many endogenous ligands, phytochemicals, and therapeutic
compounds that activate the AHR suggest that AHR also plays a key role in myriad
signaling pathways that regulate the normal physiology of the organism [85,117,119]. In
fact, an AHR active drug, e.g., laquinimod, has been in clinical trials for treating multiple
sclerosis [120].

3. Roles of the AHR in Lung Inflammation and Oxidative Stress

The recent discovery of the AHR as a crucial regulator of lung immune homeosta-
sis suggests that AHR plays an important role in the modulation of lung inflammation.
However, AHR biology in inflammatory lung disease is complex and is context- and
disease-dependent. For example, depending on the nature of AHR ligands, the experi-
mental conditions, and the disease model, AHR activation may potentiate or attenuate the
lung inflammation [46,121]. Deficient AHR signaling has been reported to affect immune
and non-immune cells, such as neutrophils, macrophages, and fibroblasts in the lung,
leading to increased lung inflammation upon exposure to tobacco smoke, lipopolysaccha-
ride, and hyperoxia [122–124]. Conversely, AHR activation has been shown to decrease
airway inflammation in rodent models of asthma by regulating the production and secre-
tion of Th2 cytokines, such as interleukin (IL)-4, IL-5, and IL-15 [125,126]. Interestingly,
Wong et al. reported that AHR activation by TCCD increased the expression of the in-
flammatory cytokines, IL-1β, and monocyte chemoattractant protein-1 (MCP-1), in the
mouse lungs, which they attributed to the increased lung infiltration of neutrophils and
macrophages [126]. However, we observed that AHR activation by omeprazole (OM) de-
creased lung inflammation in an adult mouse model of acute hyperoxic lung injury, wherein
both the neutrophils infiltration and MCP-1 expression were decreased compared to vehicle-
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treated animals [96]. These contrasting findings further emphasize the complexity of AHR
biology in lung diseases, wherein the outcome is both ligand and context-dependent.

NRF2 is a master regulator of the antioxidant response, but it is also known to regulate
the AHR expression transcriptionally. Moreover, the XRE and antioxidant responsive
elements (ARE) are adjacent to each other in the promoter region of the genes encoding the
antioxidant enzymes, such as NQO1 and GST [127]. Hence, AHR and NRF2 regulate and
share a subset of common target genes with antioxidant properties, suggesting that AHR
may be an essential regulator of the redox status of the cell. Along those lines, our studies
in adult mice and adult human lung cells indicate that AHR deficiency increases, whereas
AHR activation by OM decreases, oxidative stress in the lungs [96,112,128]. Additionally,
AHR deficiency has shown to increase cardiac ROS levels via the pro-oxidant enzyme,
NAD(P)H oxidase [129]. These observations strongly indicate that AHR signaling may be
beneficial in inflammation- and oxidant injury-mediated lung disorders.

4. Lung Disorders and AHR
4.1. Acute Lung Injury

Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease that is
characterized by acute lung injury (ALI), respiratory failure, bilateral opacities on chest
imaging, and a PaO2/FiO2 ratio < 300 mm Hg on at least a positive end-expiratory pressure
(PEEP) of 5 or a PaO2/FiO2 ratio < 315 mm Hg without any PEEP requirement [130,131].
Despite improved intensive care management, the treatment of patients with ARDS is
mostly supportive, with associated mortality as high as 46% [131]. The recent pandemic
due to SARS-CoV-2 infection has, until today, seen numerous deaths (over 511,000) globally,
and respiratory illnesses, such as pneumonia and ARDS [132], are the major causes of death.
Thus, there is an urgent need for improved therapies for ARDS patients. Oxidative stress
from increased reactive oxygen species (ROS) generation is a major contributor to ARDS
development [133,134]. Supplemental oxygen, that is traditionally used as a life-saving
measure in patients with impaired lung function, in itself, increases ROS generation and
exacerbates lung injury [135–137]. Hyperoxia-induced acute lung injury in adult mice leads
to a phenotype similar to human ARDS [138,139]. ALI is a multi-factorial morbid and fatal
lung disorder in humans.

The AHR is expressed in numerous lung cells, including macrophages, club cells, alve-
olar type II cells, and endothelial cells [140–146], and plays a significant role in modulating
lung function, especially in the context of environmental exposures-induced lung injury. In
models of hyperoxic lung injury in adult animals, AHR deficiency potentiates hyperoxia-
induced lung inflammation and damage [124,129], whereas AHR activation [124] mitigates
these effects of hyperoxia. The molecular mechanisms by which the pulmonary AHR
protects against hyperoxic lung injury remains poorly defined; however, CYP1A family
of enzymes mediate some of the beneficial effects of the AHR in the context of hyperoxic
injury. Hyperoxia for 48 h induces CYP1A1/1A2 in the liver and CYP1A1 in the lung of
adult rodents. Interestingly, the induction of CYP1A enzymes in liver and lung decline after
continuation of hyperoxia for 60 h [147,148], the time period that coincides with expression
of overt respiratory distress in these animals, suggesting that CYP1A induction may protect
against hyperoxic lung injury in adult rodents. The protection against hyperoxic lung injury
of adult rodents pretreated with beta-naphthoflavone (BNF) [81] or 3-methylcholanthrene
(3-MC) [149] has been attributed to the aryl hydrocarbon receptor (AHR)-mediated induc-
tion of CYP1A1, an enzyme with high peroxidase activity. It has also been shown that
the CYP1A inhibitor 1-aminobenzotriazole potentiates hyperoxic lung injury in rats [124].
Studies have consistently demonstrated that CYP1A enzymes mitigate hyperoxic injury.
Genetic or pharmacologic inhibition of CYP1A enzymes potentiates [124,150,151], whereas
activation of these enzymes prevents and abrogate [81] hyperoxic injury. Mechanistic stud-
ies demonstrate that CYP1A enzymes protect against hyperoxic lung injury by decreasing
lipid peroxidation and oxidative DNA damage [151,152]. On the other hand, CYP1B1,
which is also regulated by the AHR, appears to play a pro-oxidant role in hyperoxic lung
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injury, as mice deficient in CYP1B1 are less susceptible to hyperoxic lung injury [152].
Recently, AHR activation was also shown to mitigate lipopolysaccharide (LPS)-mediated
acute lung injury in mice by upregulating the immunomodulatory gene, TNF-stimulated
gene 6 (TSG-6) [153] (Figure 3).
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Figure 3. AHR modulates ALI in vivo via CYP1A enzymes. AHR is expressed in lungs and liver.
In hyperoxic lung injury animal models, AHR deficiency potentiates the symptoms, which may be
associated with AHR-regulated genes, such as CYP1A1/2, in these tissues. AHR-regulated genes may
also alleviate LPS-induced lung injury. The CYP1A enzymes attenuate lung injury by detoxifying
lipid hydroperoxides, such as F2-isoprostanes [129,152,153].

4.2. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD), a chronic adult lung disease that
affects 300 million people worldwide, includes diseases such as chronic bronchitis and
emphysema, and it is predicted by the World Health Organization to be the third most
common cause of global deaths, by the end of 2030 [86,154]. The morbidity associated
with the disease, including physician visits and hospitalizations, increases with age and is
influenced by other comorbid diseases [155,156]. Further, COPD increases the economic
and social burden and is predicted to be the seventh leading cause of disability-adjusted life
years lost worldwide in 2030 [157]. COPD is a progressive lung disease that is characterized
by mucociliary dysfunction and lung inflammation, fibrosis, destruction, and dysfunction
and persistent airflow limitation [158]. Cigarette smoking is the most common risk factor
for COPD [159]. Occupational exposures to organic and inorganic dusts, chemical agents
and fumes, and indoor pollution from biomass cooking and heating are other important
risk factors for COPD [154,160]. Additionally, genetics, lung developmental anomalies,
and socioeconomic factors play important roles in the development and progression of
COPD [159]. All the above mentioned risk factors ultimately cause oxidative stress, in-
flammation, and aberrant proliferation, death, and senescence of lung cells, leading to
parenchymal tissue destruction and the development of COPD [161,162].

The AHR exerts ligand-specific effects on the lungs and can either potentiate or at-
tenuate COPD. For instance, the dioxins and PAHs in tobacco smoke and particulate
matter mediate their toxic effects on the lungs through AHR signaling. These xenobiotic
ligands induce inflammation, upregulate expression of mucin 5AC and matrix metallopro-
teinases, and damage ciliated cells, Club cells, and alveolar macrophages, contributing to
the pathogenesis of COPD [75,126,163–165]. By inflammation and oxidative stress, the ma-
jor contributors to the COPD pathogenesis [166]. Cigarette smoke (CS) exposure is a major
risk factor for the development of COPD [167,168] and is a commonly used insult in animal
models to elucidate the molecular mechanism of COPD [169]. Both acute and chronic CS ex-
posure elicits an augmented neutrophilic response in the lungs of AHR-deficient mice than
AHR-sufficient mice [122]. The precise molecular mechanisms through which endogenous
AHR mediates these effects are unclear, but studies strongly indicate that the NF-κB protein
RelB may be partly responsible. The AHR interacts with and modulates the expression of
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RelB [170,171], which is essential for maintaining immune homeostasis. AHR deficiency
potentiates CS-induced RelB degradation, which, in turn, leads to: (1) increased expression
of the neutrophil chemokine, intercellular adhesion molecule 1, and neutrophilia [123];
and (2) increased levels of the pro-inflammatory enzyme cyclooxygenase-2 via human
antigen R-dependent pathway [75,121,122]. Further, AHR also regulates oxidative stress,
the other common risk factor for COPD. AHR-deficient lung cells exhibit more increased
reactive oxygen species (ROS) generation and decreased expression of the anti-oxidant
enzymes, NQO1, and sulfiredoxin than AHR-sufficient cells, upon exposure to CS [172],
suggesting that CS-induced oxidative stress is potentiated in AHR-deficient lungs. These
findings collectively indicate that endogenous AHR ligands may protect the lungs against
inflammatory and oxidant injuries and provide a mechanistic rationale for developing
select AHR agonists as therapeutic agents to prevent and mitigate COPD (Figure 4).
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Figure 4. The role of AHR in the pathogenesis of COPD. Cigarette smoke and occupational pollutants
may cause COPD due to abnormal immune homeostasis in the lung, which is attenuated by activation
of AHR. It suggests AHR agonists may prevent or treat COPD.

4.3. Bronchopulmonary Dysplasia

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of predominantly preterm
infants that is characterized histopathologically by alveolar and pulmonary vascular hy-
poplasia [173–175]. The incidence of BPD remains unchanged despite significant advance-
ment in the medical care of extremely low birth weight infants with respiratory dysfunc-
tion [176]. The therapies in the early phases of respiratory dysfunction in premature infants
are mostly supportive, and there are no specific interventions known to prevent BPD
directly. Furthermore, infants with BPD are more likely to have long-term pulmonary
problems, increased re-hospitalizations during the first year of life, and neurodevelopment
impairments [177–184]. In addition, BPD increases the economic burden with an estimated
cost of BPD infants being twice that of non-BPD infants [185], making it the second most
expensive childhood disease after asthma. Inflammatory stimuli, such as infection, hy-
peroxia, and mechanical ventilation, disrupt growth factor signaling, extracellular matrix
assembly, and cell proliferation in the developing lungs and contribute to BPD pathogen-
esis [186–189]. Failure to understand the specific molecular mechanisms that contribute
to the development of BPD is one of the main reasons for the lack of specific therapies to
prevent BPD and its associated economic burden and long-term sequelae.

AHR signaling plays an important role in BPD pathogenesis [190,191]. In humans,
placenta expresses the greatest levels of AHR followed by lungs and liver, whereas, in mice,
the lungs express the highest levels of AHR followed by the placenta [28]. In human fetal
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lungs, the AHR is strongly expressed in the epithelial cells of the bronchus, bronchiole, and
alveoli, and it is weakly expressed in the endothelial and smooth muscle cells of blood ves-
sels [192]. Evidence indicates that AHR is expressed in the airway and parenchyma of the
developing rodent lungs [97,144]; however, the lung cell-specific expression of AHR in ro-
dents is not well characterized. Exposure to chronic hyperoxia activates AHR, as evidenced
by increased expression of AHR-regulated phase I and II enzymes, such as CYP1A1 and
NQO1, in wild-type (WT) mice but not in AHR dysfunctional (AHRd) mice. Interestingly,
the failure of AHR activation in AHRd mice is associated with increased hyperoxia-induced
lung inflammation and alveolar simplification. This implies that endogenous AHR sig-
naling protects newborn mice against chronic hyperoxia-induced developmental lung
injury [193]. By contrast, AHR activation protects neonatal rodents against hyperoxic lung
injury. The AHR agonists, quercetin and β-napthoflavone, up-regulate the anti-oxidant en-
zymes, reduce oxidative adducts, decrease inflammation, and mitigate hyperoxia-induced
neonatal lung injury in mice [82,83,194]. However, the AHR agonist, omeprazole, has
differential effects on neonatal hyperoxic lung injury. While omeprazole activates AHR and
mitigates hyperoxic lung injury in adult animals [96], prolonged (2-week) omeprazole ther-
apy decreases pulmonary AHR activation and potentiates hyperoxia-induced: alveolar and
pulmonary vascular simplification; inflammation; vascular injury; and oxidative stress [97].
In contrast, omeprazole activates AHR, increases surfactant and angiogenic proteins, and
improves lung development and function in preterm rabbits exposed to hyperoxia [98].
Differences in the animal species, omeprazole dosage, and the nature and duration of the
insult maybe some of the causes for these variable results. Nevertheless, these findings are
consistent with the notion that an endogenous AHR response is protective in the context of
neonatal hyperoxic lung injury. AHR activation can also potentiate neonatal lung injury
in rodents. Maternal exposure to the environmental pollutant, BP, potentiates hyperoxia-
induced alveolar hypoplasia in the offspring [195]. Mechanistic studies suggest that BP
mediates hyperoxic injury by modulating the CYP1A/1B1 enzymes, leading to increased
inflammation and oxidative lipid and DNA damage in the lungs [195]. Collectively, the
findings indicate that AHR exerts ligand-specific effects on the developing lungs (Figure 5).
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The AHR deficiency also potentiates hyperoxic injury in primary fetal human pul-
monary microvascular endothelial cells (HPMECs), the cells which promote alveolarization
and facilitate lung development. Silencing AHR signaling in primary fetal HPMEC in-
creases hyperoxia-induced cytotoxicity, ROS generation, and inflammation and decreases
the expression of antioxidant enzymes [146]. Interestingly, AHR-deficiency decreases the
activation of the alternative NF-κB pathway (RelB) that mediates anti-inflammatory effects
in these cells [146]. These results suggest that AHR signaling is also necessary to protect
human fetal lung endothelial cells against hyperoxic injury. Gene expression profiling of
AHR-sufficient and -deficient HPMEC exposed to hyperoxia indicate that AHR deficiency
downregulates genes that mediate organ development and cell proliferation, and it upreg-
ulates genes that increase inflammation [145]. These results have important implications
for managing BPD, a developmental lung disorder of preterm infants characterized by
increased inflammation and interrupted alveolar development.

4.4. AHR Antagonists

Because the AHR is involved in the causation of the above mentioned lung diseases,
one approach is to develop drugs and chemicals that target the AHR signaling pathway.
The most well-known AHR antagonists are 3′methoxy-4′-nitroflavone (MNF) [94] and
resveratrol [95], Recently, AHR activation has been shown to upregulate the expression of
mucin SAC (oligomeric mucus/gel-forming (MUC5AC)) in the airway epithelial cell line
via formation of ROS [196], which, in turn, contributes to lung diseases, such as COPD [197].
Chiba et al. [196] have shown that the AHR antagonist resveratrol mitigates the production
of mucin. Wang et al. [74] have reported that the PAH BP increases dermiaogaphagoides
group I (Der f1)-induced allergic lung inflammation via the AHR, and this effect is mitigated
by the AHR antagonist CH223191. This AHR antagonist has also been shown to reverse the
development of experimental pulmonary hypertension induced by Sugen 5146 in rats [198].
Development of AHR antagonists for human therapeutics is also being considered in the
fields of wound healing and cancer [199].

5. Conclusions

The AHR is a versatile transcription factor that is evolutionarily conserved, serving
many important physiological and pathological roles beyond its traditionally recognized
role in xenobiotic metabolism. Importantly, activation of the AHR can exert opposing effects
within the same cell or organ, depending upon the activating ligand and the nature of the
insult. In general, endogenous AHR signaling is necessary to protect against both acute
lung disease and chronic lung disorders, such as COPD and BPD. Furthermore, while the
typical xenobiotic AHR ligands, such as TCDD and BP, can contribute to the development
of lung diseases, the atypical AHR ligand, omeprazole, and the natural xenobiotic AHR
ligands, quercetin and β-napthoflavone, can protect the lungs against oxidative damage.
Despite decades of research, there are several knowledge gaps in the field of AHR biology.
One of the most intriguing gaps is the mechanism behind the cell- and tissue-specific effects
of the AHR ligands. The biological actions of the same AHR ligand can differ between
tissues. There is also a lack of sufficient knowledge of the non-canonical pathways through
which the AHR exerts its beneficial or harmful effects. Finally, the role of the negative
feedback loop of the AHR pathway, e.g., AHRR, in the pathobiology is unclear. Deciphering
these knowledge gaps would advance AHR biology and lay the foundation for selecting
and developing the most effective AHR ligands as novel therapies for lung disorders,
including ALI, COPD, and BPD.
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Abbreviations

AHR aryl hydrocarbon receptor
AHRE AHR responsive elements
AHRR AHR repressor
ALI acute lung injury
AOE anti-oxidant enzyme
ARDS acute respiratory distress syndrome
ARE antioxidant responsive elements
ARNT AHR nuclear translocator
bHLH basic helix-loop-helix
BNF beta-naphthoflavone
BP benzo[α]pyrene
BPD bronchopulmonary dysplasia
COPD chronic obstructive pulmonary disease
CYP cytochrome P450
GST-α glutathione S-transferase-α
HPMEC human pulmonary microvascular endothelial cells
Hsp heat shock protein
MC methylcholanthrene
MCP monocyte chemoattractant protein
NLS nuclear localization sequence
NQO1 NAD(P)H quinone reductase-1
NRF2 nuclear factor erythroid 2–related factor 2
OM omeprazole
PPARα peroxisome proliferator-activated receptor α
ROS reactive oxygen species
TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin
TGF transforming growth factor
XAP2 hepatitis X-associated protein-2
XRE xenobiotic responsive element
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