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Abstract: The Danjiangkou Reservoir (DJKR) is the freshwater source for the Middle Route of
the South-to-North Water Diversion Project in China, and its water level and storage changes are
important for water resource management. To maximize the potential capacity of the Gravity
Recovery and Climate Experiment (GRACE) mission, an improved Lagrange multiplier method
(ILMM) is first proposed to detect terrestrial water storage anomalies (TWSA) in the small-scale
basin (DJKR). Moreover, for the first time, water diversion fingerprints are proposed to analyze the
spatiotemporal pattern of the TWSA in the DJKR. The results indicate that the increased water level
and storage signals due to the DJKR impoundment in 2014 can be effectively detected by using the
ILMM, and they agree well with the results from altimetry and in situ data. Additionally, the water
diversion fingerprints due to the DJKR impoundment are inferred, and describe the progression of
spatiotemporal variability in water storage. The results show that water storage decreased in the
upper Hanjiang River and increased in the DJKR as well as to the east of it during the period 2013–2015.
Our research provides a scientific decision-making basis for monitoring the water resources of the
DJKR and managing the South-to-North Water Diversion Project.
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1. Introduction

Surface water that is stored in lakes, reservoirs, and rivers plays a large role in agricultural irrigation,
aquaculture, hydroelectric power, disaster prevention and mitigation, human life, and industrial
activities [1]. However, surface water resources are unevenly distributed in China, with abundant
freshwater in the south and water scarcity in the north. To address this issue, the Chinese government
decided to implement the South-to-North Water Diversion Project (SNWDP) in 2002, which includes
three routes: East, Middle, and West. In particular, the Middle Route of the SNWDP (MRSNWDP) was
devised to divert freshwater from the Danjiangkou Reservoir (DJKR) to Henan and Hebei provinces
and the Beijing and Tianjin municipalities in China [2]. The Hanjiang River is the longest tributary of
the Yangtze River [3], and approximately 70% of the freshwater is diverted to the DJKR. The DJKR is
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the freshwater source of the MRSNWDP. The water level and storage changes in the DJKR are greatly
important for managing the water resources of the SNWDP.

Changes in water resources are strongly related to the sustainable development of society and the
economy, and they are generating wide public concern. One main tactic used by humans to control
water resources is the construction of dams or reservoirs. Human-induced changes in water resources
contribute to sea level variation in two major ways: a positive contribution is the loss of water due to
excessive groundwater depletion, and a negative contribution is the gain of water because of artificial
reservoir impoundment [4]. Deriving the change in water storage in artificial reservoirs can help us
precisely quantify the human influence on the water system [5]. If the amount of impounded water in
artificial reservoirs can be precisely determined, it can also benefit our understanding of the global
water distribution and global sea-level variables [6].

Currently, artificial reservoirs are monitored with considerable effort devoted to obtaining an
accurate estimation of the available water resources. In situ hydrological gauges can provide precise
observational data, but their consumption is large and hard to maintain. The number of operational
gauges has rapidly decreased, and as a result, limited data are available for hydrological research,
particularly for studies on the hydrological cycle [7,8]. Therefore, there is an urgent need to develop
other methods to obtain hydrological data.

One alternative method is satellite altimetry. Satellite altimetry involves determining surface
heights by measuring the two-way travel time of an electromagnetic pulse between the altimeter
and the surface, and is used to monitor water-level changes from space [9,10]. The advantages of
this method are the lack of additional costs and the provision of global observational data. Satellite
altimetry is a successful technique that has been widely used to monitor variations in lake, reservoir,
and river levels [11]. The comprehensive monitoring of surface resources not only requires knowing
the water-level changes, but also requires knowledge of the extent of the surface water and water
volume. Here, multi-source satellite altimetry missions and satellite images from Landsat 7 are used to
determine the surface water storage change in the DJKR.

Another effective method is satellite gravimetry. Artificial reservoirs are important indicators of
human influences on the environments, and their cumulative impacts on regional water storage cause
the gravity signal to change, which can be potentially detected by satellite gravimetry. Since the Gravity
Recovery and Climate Experiment (GRACE) mission [12] was successfully launched in March 2002,
it has been comprehensively used for monitoring terrestrial water storage anomalies (TWSA). It has
considerably promoted the development of hydrology research. TWSA include soil moisture, surface
water bodies (lakes, rivers, and reservoirs), groundwater, glaciers, snow water equivalence, and canopy
water storage [6]. TWSA determined from GRACE data (GRACE-TWSA) have been utilized for
various hydrological applications, such as monitoring floods [13,14], drought [15,16], groundwater [17],
and surface reservoir storage changes [18].

Due to the limitation of the GRACE resolution (~3◦ × 3◦), most applications have involved
large-scale regions, and few studies have been devoted to small-scale regions, such as artificial
reservoirs. The results from Lorenz et al. [19] emphasized that the spatial resolution of the GRACE
mission was not the only critical factor for studying water resources. They cited the signal strength as
another determinant, and termed it the ‘gravimetric resolution’. The latest results from Yi et al. [20]
showed that the signal of a small (~0.2◦ × 0.2◦) reservoir can potentially be detected by GRACE data if
the mass change is larger than 6 Gt. In the study presented herein, an improved Lagrange multiplier
method (ILMM) is proposed to detect the TWSA in a small-scale basin (DJKR).

Several studies have investigated sea-level fingerprints (SLF) [21]. SLF are the characteristic
signatures of sea level changes due to a specific mass source [22], and they are used to describe the
interaction between sea level changes and solid earth deformation coupled with gravitation. In the
current study, similar to the concept of SLFs, water diversion fingerprints in the land (DJKR) are
quantified for the first time. Water diversion fingerprints are derived by using data from GRACE,
multi-source altimetry missions, Landsat, land surface models, precipitation, and in situ measurements.
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The main contributions and novelties of this research are as follows: (1) the relationship between
changes in water level from in situ observations and the areas from Landsat images is determined in
the DJKR; (2) a new method of inferred leakage correlation and ILMM is proposed to detect the TWSA
in the DJKR; (3) the signal from the DJKR impoundment in 2014 is captured by using GRACE and
multi-source altimetry missions for the first time; and (4) the water diversion fingerprints due to DJKR
impoundment are derived and verified for the first time.

2. Materials and Methods

2.1. Study Area

The DJKR (32◦36′–33◦48′ N, 110◦59′–111◦49′ E) is located upstream of the Hanjiang River at the
junction between the Hanjiang River and Danjiang River and forms a “V” shape. It includes the
Hanjiang and Danjiang Reservoir areas, and distributes water to Hubei and Henan provinces in China
(Figure 1). With a total drainage area of approximately 95,000 km2 and an average water storage
volume of approximately 39.48 billion cubic meters, the DJKR is the largest artificial freshwater lake in
Asia [23]. In addition, the DJKR is a top-grade multi-purpose reservoir with flood control, electricity
generation, navigation, and agricultural irrigation functions. In this study, data from altimetry missions
were used to monitor the water level change in the DJKR (the red rectangular region in Figure 1),
and GRACE mission data were used to detect the TWSA in the total drainage basin.
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Figure 1. The location of the study area (Danjiangkou Reservoir, or DJKR: the red rectangular region),
the distribution of in situ hydroclimatic gauges, and the altimetry mission tracks in the DJKR water
bodies (the red rectangular region). The red solid surface marks the Hanjiang River basin (HRB),
the triangle marks the Danjiangkou weather station, the square marks the Xiantao hydrological station,
the circle marks the Danjiangkou Dam and in situ water level, and the five-pointed star marks the
freshwater supply for the Middle route of the South-to-North Water Diversion Project (SNWDP).
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The location of the DJKR has a subtropical monsoon climate, which has remarkable transitional
climatic characteristics. The annual mean temperature and precipitation are 14.4–15.7 ◦C and
800–1000 mm, respectively, and 80% of the rainfall occurs between May and October [24]. The upper
Hanjiang River is the source of 70% of the runoff of the DJKR, and the remaining 30% comes from
the Danjiang River, which is the longest tributary of the Hanjiang River. The DJKR has a complex
topography, with mountains and hills forming approximately 97% of the area.

To implement the MRSNWDP, the height of the Danjiangkou Dam (DJKD) was increased from
162.0 m to 176.7 m, and its normal water level and storage capacity were increased from 157.0 m to
170.0 m and from 1.7 × 1010 m3 to 2.9 × 1010 m3, respectively [25]. The DJKR was impounded in
October 2013, and began diverting water to Beijing, Tianjin, Henan, and Hebei in December 2014.

2.2. Data

The area changes in the DJKR were determined by using Landsat 7 images, and the TWSA were
detected by using GRACE data. The Global Land Data Assimilation System (GLDAS) [26], Climate
Prediction Center (CPC) [27], WaterGAP Global Hydrology Model (WGHM) [28], and Community
Land Model (CLM4.0) [29] were used to determine the scale factors [30]. Altimetry data were used to
determine the water-level change in the DJKR, and in situ water-level data were used to establish the
relationship with the area of the DJKR and verify the water-level changes identified from altimetry data
and the TWSA detected from GRACE data. In addition, precipitation, evapotranspiration, GLDAS,
and CLM4.0 were used to support the GRACE-TWSA-based detection of water diversion fingerprints
in the DJKR.

2.2.1. Satellite Images

Data from the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational
Land Imager (OLI), and Moderate Resolution Imaging Spectroradiometer (MODIS) were successfully
applied to estimate the area of the lakes, reservoirs, and rivers [31]. Although MODIS data a have high
temporal resolution, their spatial resolution is approximately 250–1000 m, and the narrowest width
of the DJKR is approximately 300 m. The spatial and temporal resolutions of Landsat multispectral
images (TM, ETM+, and OLI) are 30 m and 16 days, respectively. Landsat spectral bands 1–7 were
used. Here, Landsat 7 multispectral images (path/row 138/037, TM and OLI) captured during the
period of 2011–2014 were collected from the United States (U.S.) Geological Survey (USGS) server [32].

2.2.2. GRACE Data

The ILMM requires an error in the satellite measurement, which is the formal error (Wahr et al.,
2006) of the GRACE-variable gravity field model. It was not provided by the Center for Space Research
(CSR) [33,34]. To compare with the results of the MASCON from the Jet Propulsion Laboratory
(JPL), GRACE data were obtained from the JPL Release 06 from April 2002 to March 2016. The C20

term of the GRACE time-variable gravity field model was determined from satellite laser ranging
observational data [35]; the degree-one harmonic coefficients (Earth’s geocenter) were estimated from
Swenson et al. [36], and correction for the glacial isostatic adjustment (GIA) was done following
A. Geruo et al. [37].

TWSA were also obtained from the GRGS (Groupe de Recherche de Géodésie Spatiale, etc. [38])
with a degree and order of 80, which applied DDK5 filtering [39] to the data from the CSR,
GeoForschungsZentrum Postdam (GFZ), and JPL. The method used to estimate the TWSA from
the above products is described in Wahr et al. [40]. The results from the JPL fan-shaped (FAN) filter [41],
JPL mass concentration (MASCON) [42], and CSR MASCON [43] were also compared.
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2.2.3. Altimetry Data

Laser Altimetry Data

The Ice, Cloud, and land Elevation Satellite (ICESat) mission, which is part of the National
Aeronautics and Space Administration (NASA) Earth Observing System (EOS), was launched in
January 2003 from Vandenberg Air Force Base; it ended in August 2010. The sole instrument on
board ICESat was the Geoscience Laser Altimeter System (GLAS), which is a laser altimeter that
provides a high-precision dataset. As the ICESat orbited, the GLAS produced a series of laser spots
of approximately 70 m in diameter that were separated by nearly 170 m along the spacecraft ground
track [44]. From 2003 to 2009, ICESat/GLAS observed 19 campaigns with a ground track cycle of 8 or
91 days. Here, the data from GLA14 (Version 34) [45] were used.

Radar Altimetry Data

In this study, we used the 20-Hz Environmental Satellite (Envisat) Geophysical Data Record (GDR)
data product in version 2.1 [46] and the 40 Hz Satellite with ARgos and ALtiKa (SARAL) GDR data
product in the Calibration/Validation (Cal/Val) phase. Since the quality of the Envisat data might not
be good at the mission-commissioning phase, this study applied data that were obtained between
January 2003 and September 2010 with a repeat cycle of 35 days. The SARAL reached the historical
orbit of Envisat at the end of October 2013 [47] and transitioned to a drifting orbit in July 2016. Thus,
for the Ka band, we chose altimetry data that were collected between November 2013 and March 2016
with a repeat cycle of 35 days.

2.2.4. Model Data

(1) GLDAS: The Global Land Data Assimilation System (GLDAS) [26] includes four monthly land
surface models: the CLM (the Community Land Model), Mosaic (MOS), VIC (the Variable Infiltration
Capacity), and NOAH (National Centers for Environmental Prediction/Oregon State University/Air
Force/Hydrologic Research Lab Model), which do not include surface water storage in lakes, reservoirs,
and river channels. The average of the four monthly land surface models with soil moisture states in a
1◦ × 1◦ grid was used to estimate the water storage in the top 2 m of the soil layer. GLDAS include soil
moisture, snow, and vegetation canopy storage, excluding surface water storage in lakes, reservoirs,
and river channels. Therefore, GLDAS was subtracted by the GRACE data to infer the total change in
surface water storage.

(2) CPC: The Climate Prediction Center (CPC) [27] with soil moisture states in 0.5◦ × 0.5◦ with
monthly time steps were used to estimate the water storage.

(3) WGHM: The WaterGAP Global Hydrology Model (WGHM) 2.2 [28], with a spatial resolution
of 0.5◦ in monthly time steps, was used to estimate TWSA.

(4) CLM4.0: The National Center for Atmospheric Research (NCAR) Community Land Model
(CLM4.0) [29] simulates the partitioning of mass and energy from the atmosphere, the redistribution
of mass and energy within the land surface, and the export of freshwater and heat to the oceans.
The spatial and temporal resolutions of CLM4.0 are 0.9◦ × 1.25◦ and monthly, respectively. Components
of terrestrial water storage output by the CLM4.0 include soil moisture, snow, vegetation canopy storage,
channel storage in rivers, and climate-driven change; human activities are excluded. GRACE-TWSA
is the total water storage change. Therefore, human-induced TWSA can be determined by GRACE
subtracted by CLM4.0.

2.2.5. Precipitation, Evapotranspiration, and Water-Level Data

The monthly precipitation data are from the Tropical Rainfall Measuring Mission (TRMM),
which has spatial and temporal resolutions of 0.25◦ × 0.25◦ and monthly, respectively [48], as well
as the Danjiangkou weather station (Danjiangkou, China) (China Meteorological Data Service
Center [49]) and the Xiaotao hydrological station (Xiantao, China) (Chang Jiang Water Resources
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Commission of the Ministry of Water Resources [50]). Here, evapotranspiration data are from different
products, i.e., monthly evapotranspiration products from GLDAS, Moderate Resolution Imaging
Spectroradiometer (MODIS), and the Danjiangkou weather station. The GLDAS data integrate satellite
data and Land Surface Model (LSM) data to generate a global distribution of land surface states
(e.g., evapotranspiration). Evapotranspiration data from MODIS with spatial and temporal resolutions
of 1◦ × 1◦ and monthly are based on the Penman–Monteith method, in which remote sensing data and
meteorological observations are combined [51]. The in situ water level data at the DJKD observation
station are from the Hydrology and Water Resources Survey Bureau of China [52].

2.3. Methods

2.3.1. Deriving the DJKR Area Change from Landsat 7

The steps for capturing the area of the DJKR from Landsat 7 images are as follows: (1) preprocess
the original images via radiation correction, geometric correction, and atmospheric correction [3],
transform them to the Universal Transverse Mercator (UTM) projection, and obtain the reflectance
data; (2) extract the water body information by using the modified normalized difference water index
(MNDWI) [53]; (3) determine the threshold segmentation by using the Otsu method [54]; and (4) remove
the water data that are outside of the reservoir, count the total number of pixels, multiply by the area
of the pixels, and obtain the area of the DJKR as the final output.

Changes in water volume (i.e., changes in mass) cannot be estimated by only using water-level
data. Thus, the relationship between the change in area and water level should be obtained. The most
widely used method is to combine the area retrieved from satellite images and the water level from
multi-source altimetry missions or from in situ observations.

2.3.2. Estimating the Water-Level Change in the DJKR from Altimetry Data

In Frappart et al.’s study for European ENVIronmental SATellite (ENVISAT) validation over the
Amazon basin [55], the elevation change retrieved by the ice-1 algorithm [56] agreed best with in
situ gauge data from the inland water level. Here, the altimetry data (ENVISAT and SARAL) were
retrieved by the ice-1 algorithm [57] to perform further analysis. To retrieve the elevation change in the
water level in the DJKR, geophysical range corrections, including (European Centre for Medium-Range
Weather Forecasts) modeled wet and dry troposphere delays, the ionosphere delay, solid Earth tides,
and pole tides were applied [56]. Due to the potential contamination by radar echoes from land
reflectors and the locking loss of onboard trackers near the coasts, only data near the center of the lake
were used. The Envisat and SARAL tracks are shown in Figure 1.

The ICESat laser altimeter measured elevations in 18 cycles from 2003 to 2009, with each cycle
lasting 12–15 days. Previous studies, such as that by Nicolas et al. [58], have shown that the mean
accuracy of the ICESat-derived elevations over flat deserts is ±15 cm. Therefore, ICESat has sufficient
accuracy to determine changes in the lake and reservoir water levels. ICESat observations were
edited using the following empirical procedure: (1) remove the ICESat elevations that exceed the
minimum and maximum Shuttle Radar Terrestrial Mission (SRTM) elevations within the study region;
(2) remove the elevations at two consecutive along-track footprints that have a difference exceeding
15 m (the rationale for this approach is that allowing a maximum lake/reservoir slope of 5◦ for two
neighboring along-track footprints spaced at approximately 172 m results in a maximum elevation
difference of approximately 15 m); and (3) determine a smoothed value hn at a given point using
n neighboring points (n = 50 in this study). Along a sufficiently long ground track, the differences
between the original and smoothed heights were computed to determine the standard deviation (δn).

Then, if the original height (hi) fit the condition
∣∣∣∣hi − hn

∣∣∣∣ > 3δn, then hi was removed. The final ICESat
tracks are shown in Figure 1. Moreover, the biases between the different altimetry missions (ENVISAT,
SARAL, and ICESat) were corrected by eliminating systematic errors, and the surface water-level
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results from different altimetry missions in different places were the regional average values in the
DJKR water bodies.

2.3.3. Improved Lagrange Multiplier Method to Infer TWSA in the DJKR

Due to the flight characteristic factors of the GRACE task and the limits of the background and
current mathematical models, the GRACE-TWSA must be filtered to eliminate the north–south striping
error [40]:

TWSA(θ,λ) =
aρave

3ρw

L∑
l=0

2l + 1
1 + kl

Wl

l∑
m=0

Plm(sinθ)[(∆Clm cos mλ+ ∆Slm sin mλ)] (1)

where λ is the geocenter longitude; θ is the geocenter latitude; a is the semi-major axis of the reference
ellipsoid; l, m are the degree and order; L is the highest degree; ρave is the average Earth density
(5517 kg/m3); ρw is the water density (1000 kg/m3); kl is the Love number [59]; Plm is the completely
normalized Legendre association function [60]; ∆Clm and ∆Slm are the residual spherical harmonic
coefficient after subtracting the long-term mean of Earth’s gravity field, which is about the normal
Earth gravity field; and Wl is the smoothing coefficients of the Gaussian filter [40,61].

Smoothing methods can also cause signal attenuation and leakage. Therefore, the scale factor (S),
leakage (lm), and bias (bm) were obtained on the basis of the hydrological models from Landerer and
Swenson [30], Longuevergne et al. [62], and Klees et al. [63]:

s→ min
{
M(θ,λ) − sM(θ,λ)

}
(2)

lm =
1
A

∫
Ω

M(θ,λ)R∗(θ,λ)R(θ,λ)dΩ (3)

bm =
1
A

∫
Ω

M(θ,λ)(R(θ,λ) −R(θ,λ))dΩ (4)

where θ is the colatitude, λ is the geocentric longitude, dΩ = sinθdθdλ, M(θ,λ) is the value from the
models, and R(θ,λ) is a function of the study region:

R(θ,λ) =

1, inside study area Ω

0, elsewhere
(5)

A bar over M(θ,λ) and R(θ,λ) indicates their first filter.
To determine the leakage, the outside region of the study area is defined as:

R∗(θ,λ) = 1−R(θ,λ) =

0, inside study area Ω

1, elsewhere
(6)

A∗ =
∫
Ω

R(θ,λ)∗dΩ = 4π−A, A =
∫
Ω

R(θ,λ)dΩ.

The above methods are highly dependent on the hydrological model, which can cause scaling
factors to differ considerably, especially in semi-arid, arid, and over-irrigated areas [64]. GRACE-TWSA
can be considered a hydrological signal, but this signal differs from hydrological models. If the two
types of data are fitted, signal aliasing can occur. Therefore, a scale factor that is independent of the
hydrological model was proposed by Dutt Vishwakarma et al. [65], so it is called the DV method
(DVM) herein:
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s =

∫
Ω

R(θ,λ)dΩ∫
Ω

R(θ,λ)R(θ,λ)dΩ
(7)

The TWSA (Equation (1)) in the spatial domain can be expressed as:

f (θ,λ) = f (θ,λ)R(θ,λ) + f (θ,λ)R∗(θ,λ) = F(θ,λ) + F∗(θ,λ) (8)

The first filter is:

f (θ,λ) = 1
A

∫
O

f (θ,λ)R(θ,λ)dΩ

= 1
4π

∫
Ω′

(F(θ,λ) + F∗(θ,λ))b(θ,λ,θ′,λ′)dΩ′

= F(θ,λ) + F
∗

(θ,λ)

(9)

The abbreviation expression is:
f = F + l (10)

where l is the leakage and is calculated by:

l =
1
A

∫
Ω

f (θ,λ)R∗(θ,λ)R(θ,λ)dΩ (11)

With f = sF: ∫
Ω

f (θ,λ)R(θ,λ)dΩ = s ·
∫
Ω

F(θ,λ)R(θ,λ)dΩ (12)

Thus, the leakage from Equation (11) can be transformed by using Equation (7):

l = 1
A

∫
Ω

f (θ,λ)R∗(θ,λ)R(θ,λ)dΩ = 1
A

∫
Ω

f (θ,λ)R(θ,λ)R
∗

(θ,λ)dΩ

= s
A

∫
Ω

F(θ,λ)R(θ,λ)R
∗

(θ,λ)dΩ
(13)

Here, we used f = sF to derive a new expression of leakage l (Equation (13)).
Therefore, from Equations (7), (10), and (13), we can determine the surface mass change expression,

which does not need the hydrological model to restore the signal and correct the leakage:

f =
f
s
+ l⇔ f = s( f − l) (14)

According to Equations (7), (9), (13), and (14), the key to improving the accuracy of mass change is the
determination of the optimal smooth kernel for the study area.

To estimate the regional surface mass changes using GRACE data, Swenson et al. [66] proposed
the Lagrange multiplier method (LMM), which reduced the impact of GRACE observation errors.
The key step in this method is the determination of the Lagrange parameter λ, which is obtained by the
minimum satellite measurement error and signal leakage error, and only the formal error is needed.

The LMM is a spatial smoothing method [66] that requires the restoration and correction of the
signal. Here, in the improved LMM (ILMM), the signals were restored and corrected after applying the
LMM. The process of the ILMM comprises the following steps: (1) the TWSA are first determined by
using the LMM; (2) the restored signal and corrected signal are determined by using Equations (7) and
(13); and (3) the TWSA results are finally determined from Equation (14). More details on the Lagrange
multiplier method are in Appendix A, Swenson et al. [66], and Chao et al. [14].

From the above descriptions, the surface mass change can be inferred by different methods.
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(1) Scale factor method (SFM) [30]:

f = s f , s→ min
{
M(θ,λ) − sM(θ,λ)

}
(15)

(2) Additive approach (AA) [63]:

f = f − lm + bm (16)

(3) Multiplicative approach (MA) [62]:

f = s( f − lm) (17)

(4) The LMM [66];
(5) The ILMM (this study), which is based on the LMM and Equations (7), (13), and (14).

2.3.4. Inferring Total Surface Water Storage and Human-Induced Surface Water Storage Anomaly

The total TWSA from GRACE can be disaggregated into soil moisture anomaly (SMA), surface
water storage anomaly (SWSA), and groundwater storage anomaly (GWSA) [6]:

TWSA = SMA + SWSA + GWSA (18)

Here, our study area is the DJKR; the total surface water storage anomaly (TSWSA) is defined as
the sum of the SWSA and GWSA, and the human-induced surface water storage anomaly (HSWSA)
can be represented by the difference between the TSWSA and climate-driven surface water storage
anomaly (CSWSA). Arranging Equation (18) [67,68]:

TSWSA = SWSA + GWSA = TWSA− SMA
HSWSA = TSWSA−CSWSA = TWSA− SMA−CSWSA

(19)

SMA can be obtained from GLDAS or CLM4.0, and CSWSA can be obtained from CLM4.0 [68,69].
Here, TSWSA is determined by combining GRACE and GLDAS, and CSWSA is determined by
combining GRACE and CLM4.0, which is the same as approach as that in the studies of Voss et al. [67]
and Joodaki et al. [68].

3. Results

3.1. The Area Change in the DJKR from Landsat

The surface area of the DJKR expansion or reduction responds to a water level increase or decrease,
respectively, which is proven in Figure 2a. The surface area and water-level change can be affected
by climate variability and human activities. The natural (climate-driven) variability is mainly from
climate-derived precipitation and evapotranspiration changes, which result in seasonal changes in
surface area and water level. Human-induced changes include irrigation, drinking water, and power
generation, which lead to the consumption of water resources, and artificial impoundment increases
water resources. From Figure 2a, the surface area and water level during the period of 2012–2013 both
declined without a seasonal effect, possibly as a result of human activities (such as power generation).
The surface area and water level both increased in 2014 because of artificial impoundment.

Figure 2b shows a good linear correlation between the changes in the DJKR area and the water
level, with an R2 value of 0.99. Once an optimal relationship between the changes in area and water
level is determined, it can be used to fill in and predict missing data on the area or water level, thus
generating a longer and more efficient time series that can be used to verify the results from the
GRACE data. This approach has useful applications in water resource management, flood control,
and environmental monitoring of the MRSNWDP.
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3.2. TWSA in the DJKR from the ILMM

3.2.1. Results of the Scale Factor and Leakage

The SFM depends on the hydrological model and the smoothing method, but the DVM is
independent of the hydrological model and only depends on the optimal average kernel. Here,
the scale factors were obtained by different hydrological models and smoothing methods from the
SFM and different smoothing methods from the DVM (Table 1).

Table 1. Scale factors from different methods. CLM4.0: Community Land Model, CPC: Climate Prediction
Center, DVM: scale factor independent of the hydrological model proposed by Dutt Vishwakarma et al. [65];
GLDAS: Global Land Data Assimilation System, LMM: Lagrange multiplier method; SFM: scale factor
method, WaterGAP Global Hydrology Model.

Scale Methods

Smoothed Methods

Gauss Smooth Radius (Units: km)
LMM

200 300 400 500

DVM 3.67 4.40 6.59 9.56 2.48

SFM with different
hydrological models

CPC 1.36 1.68 1.98 2.20 1.63
GLDAS 1.39 1.70 1.95 2.11 1.66
WGHM 1.41 1.72 2.01 2.25 1.70
CLM4.0 1.42 1.71 2.02 2.23 1.68

As shown in Table 1, the scale factors are greater when the smoothed radius increases, which
shows that more signals are attenuated for larger smoothed radii. The scale factors from different
hydrological models are basically consistent with each other. The scale factors from the WGHM and
CLM4.0 are larger than those from the CPC and GLDAS. The scale factor from the smoothed LMM is
smaller than that from the 300-km Gauss filter by using the SFM; thus, the LMM can retain a more
effective signal than that from the 300-km Gauss filter.

The scale factor results from the DVM show that as the smoothed radius increases, the scale factors
also quickly increase. According to Equation (7), the scale factors largely depend on the study area.
When the area is smaller, more and quicker signals are attenuated. The scale factor determined by
using the DVM with a smoothed 200-km Gauss and the scale factor from the LMM are consistent with
each other and closer to the results of the SFM than different hydrological models. This result shows
that the key to scale factors from the DVM is to establish an approach that obtains the optimal regional
average kernel, and the optimal kernel based on the LMM method can effectively preserve the signal
and improve the spatial resolution.

The red line in Figure 3 represents the results of the DJKR leakage obtained from the LMM and
Equation (13), and the other line represents data from the SFM (Equation (3)) with the smoothed
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300-km Gauss and WGHM model. As shown in Figure 3, because the area of the DJKR is small,
the leakage error is large. Therefore, correcting the signal leakage is crucial for determining the TWSA
in small-scale basins.
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3.2.2. TWSA in the DJKR from Different Methods

Figure 4 shows the time series of the TWSA in the DJKR according to different data sources and
different post-processing methods. The results in Figure 4b are from different filtering methods (such
as the FAN and DDK5 filters) by applying different data (such as CSR, JPL, and GFZ) and different
MASCON products. As shown in Figure 4, the amplitude is slightly different, but the periodic signals
are basically consistent with each other. The periodic signals of the TWSA from the ILMM are more
obvious than those from other methods. The difference in the TWSA amplitude between January
2014 and November 2014 according to the ILMM is about 30 cm, which is the largest of the results of
different methods.
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Figure 4. (a) Terrestrial water storage anomalies (TWSA) in the DJKR according to different methods
and (b) different data. The ‘Unrecovery’ designates TWSA without restoring signals. The SFM, additive
approach (AA), multiplicative approach (MA), Lagrange multiplier method (LMM), and improved
Lagrange multiplier method (ILMM) are the different methods described in Section 2.3.3.
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3.3. DJKR Water Level and Storage Changes from GRACE, Altimetry, and Hydroclimatic Data

As shown in Figure 5a, the periodic signals between water levels from the altimetry mission
(ICESat, ENVISAT, and SARAL/Altika), TWSA from in situ observations of changes in the water
level and area, and GRACE-TWSA agree well with each other. Figure 5a reveals that the 2006–2009
water-level data from ICESat and ENVISAT are in good agreement. The objective of the ICESat mission
was to monitor mass changes in the ice sheets at the poles, which led to sparse laser footprints at middle
and low latitudes. The signals of the water level from the ICESat mission were not well captured,
especially between 2007–2008 (Figure 5a). Between 2012–2014, the water level declined as a result of
human activities, such as power generation. This can be immediately captured by in situ data. Human
activities cannot be reflected in real time because of the limitation of GRACE spatiotemporal resolution.
Therefore, there are some peak TWSA values and human-induced TWSA, but no signals are detected
in the in situ water level. The amplitudes between GRACE-TWSA and the water storage based on
water level change and area data are slightly different.
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Figure 5. (a) Changes in the water level and storage from multi-source altimetry missions, in situ
(DJKD), Gravity Recovery and Climate Experiment (GRACE), and CLM4.0 data; (b) the non-seasonal
signal from GRACE, SARAL/Altika altimetry, and in situ (DJKD) water-level change.

The signals for the annual, semi-annual, and trend were removed by the least-squares fitting
method, and the residual is called the non-seasonal signal [15], which is shown in Figure 5b. Figure 5b
shows the non-seasonal signal of GRACE-TWSA, human-induced TWSA, the SARAL/Altika altimetry,
and in situ (DJKD) water-level changes. From Figure 5a, the human-induced TWSA are weaker than
those from GRACE-TWSA before 2011, but they were the same after 2011. The non-seasonal signal of



Sensors 2019, 19, 3510 13 of 23

GRACE-TWSA and human-induced TWSA from Figure 5b show the same results, indicating that the
TWSA in the DJKR were influenced mostly by human activities after 2011 [50].

Figure 5 also shows a steep water level increase due to the impoundment in 2014, which is
detected in the GRACE data and Altika altimetry data. Moreover, they agree well with the in situ
data. According to the above results, the DJKR impoundment signal in 2014 was captured by GRACE,
altimetry missions, and in situ data, indicating that GRACE and altimetry can be effectively used to
monitor the surface water change in a small reservoir.

Figure 6a shows the change in precipitation in the Hanjiang River basin (HRB) from the TRMM,
the Xiantao hydrological control station, and the Danjiangkou city weather station. The Xiantao
hydrological control station exhibits hydrological information for the entire HRB. The results show
that the HRB precipitation data from the TRMM and the Xiantao hydrological control station are
basically the same, and the correlation coefficients between them are over 0.8. They agree well with the
precipitation data from the Danjiangkou city weather station, except for amplitude differences in the
summer; thus, the data from the TRMM are sufficient to quantify the HRB precipitation. From the
strong relationship between the monthly precipitations data from the TRMM and the Danjiangkou
city weather station (e.g., high correlation coefficients), the rainfall situation for the entire HRB and
DJKR are basically the same. Figure 6b shows the evapotranspiration in the Hanjiang River basin and
the DJKR from the four GLDAS models, MODIS, and the Danjiangkou city weather station, and it
indicates that evapotranspiration has a large uncertainty. As shown in Figure 6, the water in the HRB
was sufficient. Precipitation and evapotranspiration were steady, without heavy rainfall and/or low
evaporation in 2014.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 23 

 

The signals for the annual, semi-annual, and trend were removed by the least-squares fitting 
method, and the residual is called the non-seasonal signal [15], which is shown in Figure 5b. Figure 
5b shows the non-seasonal signal of GRACE-TWSA, human-induced TWSA, the SARAL/Altika 
altimetry, and in situ (DJKD) water-level changes. From Figure 5a, the human-induced TWSA are 
weaker than those from GRACE-TWSA before 2011, but they were the same after 2011. The 
non-seasonal signal of GRACE-TWSA and human-induced TWSA from Figure 5b show the same 
results, indicating that the TWSA in the DJKR were influenced mostly by human activities after  
2011 [50]. 

Figure 5 also shows a steep water level increase due to the impoundment in 2014, which is 
detected in the GRACE data and Altika altimetry data. Moreover, they agree well with the in situ 
data. According to the above results, the DJKR impoundment signal in 2014 was captured by 
GRACE, altimetry missions, and in situ data, indicating that GRACE and altimetry can be effectively 
used to monitor the surface water change in a small reservoir. 

Figure 6a shows the change in precipitation in the Hanjiang River basin (HRB) from the TRMM, 
the Xiantao hydrological control station, and the Danjiangkou city weather station. The Xiantao 
hydrological control station exhibits hydrological information for the entire HRB. The results show 
that the HRB precipitation data from the TRMM and the Xiantao hydrological control station are 
basically the same, and the correlation coefficients between them are over 0.8. They agree well with 
the precipitation data from the Danjiangkou city weather station, except for amplitude differences in 
the summer; thus, the data from the TRMM are sufficient to quantify the HRB precipitation. From 
the strong relationship between the monthly precipitations data from the TRMM and the 
Danjiangkou city weather station (e.g., high correlation coefficients), the rainfall situation for the 
entire HRB and DJKR are basically the same. Figure 6b shows the evapotranspiration in the 
Hanjiang River basin and the DJKR from the four GLDAS models, MODIS, and the Danjiangkou city 
weather station, and it indicates that evapotranspiration has a large uncertainty. As shown in Figure 
6, the water in the HRB was sufficient. Precipitation and evapotranspiration were steady, without 
heavy rainfall and/or low evaporation in 2014. 

 
Figure 6. (a) Change in precipitation in the DJKR from the Tropical Rainfall Measuring 
Mission (TRMM), hydrological station, and weather station; (b) evapotranspiration (ET) in 
Figure 6. (a) Change in precipitation in the DJKR from the Tropical Rainfall Measuring Mission
(TRMM), hydrological station, and weather station; (b) evapotranspiration (ET) in the DJKR from the
four GLDAS models, Moderate Resolution Imaging Spectroradiometer (MODIS), and weather station.

The TWSA from GRACE and CLM4.0 data, water-level change from in situ data, and precipitation
from the Danjiangkou city weather station are all compared in Figure 7. A time lag between precipitation
and GRACE-TWSA is revealed in this figure; in other words, when precipitation increases or decreases,
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GRACE-TWSA responds by increasing or decreasing after several months. The maximum correlation
of 0.62 between precipitation and GRACE-TWSA is at a two-month lag (Figure S1). The results also
show that the HRB precipitation was steady without heavy rainfall in 2014, but the human-driven
surface water storage change shows a steep increase. Therefore, the signal for the steep water level
increase is due to impoundment by humans, which can be verified by GRACE, altimetry, and in
situ data.
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3.4. Fingerprints of the MRSNWDP in the DJKR

Impoundment would be expected to affect the water storage in the HRB and DJKR. In order to
investigate the fingerprints in the DJKR, an analysis was carried out on the spatiotemporal changes
in precipitation from the TRMM, TSWSA from GRACE and GLDAS data, as well as HSWSA from
GRACE and CLM4.0 data.

As shown in Figure 8, the water storage increased in the upper HRB, but decreased in the lower
HRB. This agrees with the goal of the SNWDP, which is the diversion of water to the north from the
south in China to address the increasing reduction of water in northern China. The TSWSA was fairly
steady, without a significant surplus or shortage, but the HSWSA decreased in the upper HRB and
increased in the lower HRB.
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Figure 8. (a) Trends of the changes in precipitation from the TRMM, (b) total surface water storage
from GRACE-GLDAS, and (c) human-induced surface water storage from GRACE-CLM4.0 during the
period of 2003–2015.

To analyze the water diversion fingerprints due to the DJKR impoundment, each month’s
precipitation, TSWSA, and HSWSA between October 2013 and December 2015 were obtained (Figure S2).
The precipitation change and TSWSA were basically steady and water sufficient; this observation
indicates that the TSWSA were mainly influenced by the rainfall in this period (Figure S2). However,
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regardless of the precipitation change, the HSWSA obviously decreased in the upper HRB and increased
in the DJKR and east of it, especially between October 2014 and January 2015 (Figure 9). The water
diversion fingerprints (Figure S2) show the progress of water resources in the upper HRB as water
is impounded to the DJKR. The impoundment caused water in the upper region to decrease and
water from the DJKR and the east of it to increase. The above results reveal that the water diversion
fingerprints due to the DJKR impoundment can be captured by the GRACE mission.
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4. Discussion

4.1. Verification TWSA from ILMM

In this study, the results show that ILMM can be used to effectively infer the TWSA in small basins
(such as DJKR); thus, with the ILMM, there is a high potential for the full exploitation of GRACE data
for hydrology research. GRACE-TWSA of the DJKR should be verified by water balance equations [20].
Unfortunately, we do not have in situ runoff data for the DJKR. Moreover, evapotranspiration is difficult
to estimate and has a large uncertainty (Figure 6b) [69]. Therefore, the TWSA obtained from ILMM are
compared with different methods, and the result shows that the TWSA from the different methods
agree with each other, but the periods and amplitudes from the ILMM are the most pronounced.
The impoundment signal in 2014 was only detected by using the ILMM (Figure 4). Additionally,
five methods are used to extract the TWSA from GRACE data, which can also be used to verify the
accuracy of different hydrological models in different regions.
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Additionally, there are no effective methods that can fully verify the results of GRACE, and this
is one of the key limitations in the application of GRACE. Presently, the most effective method for
verifying the results from GRACE is comparing GRACE data with in situ hydrological station data.
Although GRACE’s main signal can be considered hydrological data after deducing other signals from
the background model, the TWSA from GRACE represent the total surface mass change, which is
different from hydrological data. In addition, there are errors in the background model and hydrological
data, which can also affect the results. Therefore, it is still necessary to further study an effective
method in order to verify the accuracy of the TWSA detected from GRACE data.

4.2. Combination of In Situ, GRACE, and Altimetry Data to Manage Reservoir Water Resources

Changes in the water level and storage in artificial reservoirs are important components of the
water cycle and water resources. With the increasing use of reservoirs, the annual and seasonal flow
will change, and water cycles will be affected. There is an urgent need to study reservoir water
resource management. Compared with satellite remote sensing technology, in situ data can provide
observational data with higher precision, and are more appropriate for monitoring an individual water
body of importance. Although the satellite is important for monitoring water storage changes, its
advantage is its consecutive data and ability to cover large areas. Therefore, the potential capacity of
satellites (such as GRACE and altimetry missions) to monitor water resources in small-scale basins
should be established. In situ and remote sensing data can be combined to manage global and regional
water resources.

Many studies have indicated that GRACE and altimetry can be used to detect and manage water
resources, especially in remote regions and in transboundary countries [7]. Here, we also confirm that
the combination of GRACE remote sensing, altimetry, and model data can provide another effective
method for understanding the hydrological processes in small reservoirs.

The combination of satellite gravimetry and multi-source altimetry provide a unique tool
for global water resource management. With the development of space technology, regional and
global hydrological models that are developed by means of space-based observations will aid in
the management of water resources [20] and disrupt the deadlock caused by unavailable data and
management opacity. Combining hydrological remote sensing observational data, hydrological
modeling, and existing high-precision hydrological station observational data can provide a wide
range of high-precision freshwater maps for a particular region or the entire world. This kind of
scientific research is essential for more efficient, sustainable, and cross-boundary cooperative water
resource management.

5. Conclusions

The surface water in rivers, lakes, and reservoirs is an important part of the environment and a
key strategic resource for human development. Artificial reservoirs play an important role in water
supply and flood control, and may become more critical with the increasing frequency and intensity
of extreme weather events. However, few studies have focused on small artificial reservoirs. Here,
we propose the ILMM to improve the potential of the GRACE mission for detecting the TWSA in the
DJKR. The water diversion fingerprints due to DJKR impoundment are quantified and analyzed by
using GRACE, multi-source altimetry, Landsat, land surface model, precipitation, and in situ data.
The main findings are as follows:

(1) Changes in the water level and area in the DJKR show a good linear correlation. The relationship
between the changes in area and changes in the water level is determined, and it can be used
to fill in and predict missing data, verify the TWSA from GRACE data, and benefit water
resource management.

(2) The ILMM can improve the spatial resolution and enable the use of GRACE data to detect the
TWSA in small-scale basins (such as DJKR).
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(3) GRACE and altimetry missions can be effectively used to monitor human-induced surface water
changes, such as the impoundment of small artificial reservoirs.

(4) The precipitation change and TSWSA in the HRB are basically steady and water sufficient.
According to GRACE and CLM4.0 data, regardless of the precipitation changes, HSWSA obviously
decreased in the upper HRB and increased in the DJKR and to the east of it, which indicates that
these are the human-induced TWSA. The GRACE mission can capture the phenomenon, i.e.,
the water diversion fingerprints due to the DJKR impoundment.

The GRACE mission has made significant and unique contributions to Earth science. This mission
ended in October 2017. The GRACE Follow-On (GFO) mission was launched in May 2018, and the
SWARM constellation [70] has the potential to determine the time-variable gravity field and the
TWSA [71]. Therefore, we can combine GRACE, GFO, and SWARM data to detect Earth’s mass
transport. Additionally, the altimetry missions CryoSat-2, ICESat-2, and future missions (Water Cycle
Observation Mission (WCOM) and Water and Ocean Topography (SWOT)) [72] can be used to monitor
water resources, and all of these missions have the potential to complement or replace in situ datasets
for global or regional water resource management.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/16/3510/s1,
the cross-correlation coefficient between TWSA and precipitation (Figure S1), and changes in the precipitation
(left), total surface water storage (middle), and human-induced surface water storage (right) between October 2003
and December 2015 (Figure S2).
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Appendix A. Lagrange Multiplier Method

Wahr et al. [40] proposed a simple Gaussian smoothing method to determine the terrestrial water
storage anomalies (TWSA); however, the method was unable to isolate a specific basin. Additional
technology is required to estimate basin TWSA by using GRACE data.

The vertical integration of water storage in any average region can be written as follows [66]:

TWSAregion =
1

Ωregion

∫
TWSA(θ,λ)ϑ(θ,λ)dΩ (A1)

where λ is the geocenter longitude, and θ is the geocenter latitude. The accurate average kernel ϑ(θ,λ)
is the function of the shape of the described regional (such as a river basin):

ϑ(θ,λ) =

0 outside the basin

1 inside the basin
(A2)

where dΩ = sinλdλdθ is the solid angle element, and the integration in a given spherical domain
Ωregion (spherical area) is ϑ(θ,λ). From Equations (1) and (A1), we can obtain

TWSAregion =
aρave

3Ωregion

∞∑
l=0

l∑
m=0

(2l + 1)
(1 + kl)

(ϑc
lm∆Clm + ϑs

lm∆Slm) (A3)

where a is the semi-major axis of the reference ellipsoid; ρave is the average earth density (5517 kg/m3);
kl is the Love number [59]; l, m are the degree and order; ∆Clm, ∆Slm are the residual spherical harmonic
coefficient after subtracted the long-term mean of the Earth gravity field; ϑc

lm and ϑs
lm are the spherical

harmonic coefficients of ϑ(θ,λ):

ϑ(θ,λ) =
1

4π

∞∑
l=0

l∑
m=0

P̃lm(cosθ){ϑc
lm cos mλ+ ϑs

lm sin mλ} (A4)

{
ϑc

lm
ϑs

lm

}
=

∫
ϑ(θ,λ)P̃lm(cosθ)

{
cos mλ
sin mλ

}
dΩ (A5)

Using W(θ,λ) to replace the accurate average kernel ϑ(θ,λ) in Equation (A1),

T̃WSAregion =
1

Ωregion

∫
TWSA(θ,λ)W(θ,λ)dΩ (A6)

where T̃WSAregion is the approximate regional average, and W can be expanded to obtain the following:

W(θ,λ) =
1

4π

ltrnc∑
l=0

l∑
m=0

P̃lm(cosθ){Wc
lm cos mλ+ Ws

lm sin mλ} (A7)

The approximate regional average can be approximately expressed by using the spherical harmonic
coefficients:

T̃WSAregion =
∑
l,m

Kl
Ωregion

(Wc
lm∆Clm + Ws

lm∆Slm) (A8)

where Kl =
aρE

3
(2l+1)
(1+kl)

.
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The variance of the corresponding satellite measurement error is

var(εsat) =
1

Ω2
region

∑
l,m

K2
l B2

l

2l + 1
[Wc

lm
2 + Ws

lm
2]) (A9)

where B2
l = 1

n

n∑
i=1

l∑
m=0

[(∆δc
lm)

2 + ∆δs
lm)

2
], (∆δc

lm, ∆δs
lm) is the nominal error of GRACE data [34].

The Lagrange multiplier method fixes one type of error (satellite or leakage errors) to a specific
value and minimizes the other type of error (leakage or satellite errors). A type of signal leakage
is defined as the ratio of the variance of accurate and approximate average kernel difference to the
variance of the accurate average kernel:

var(εlkg) =

∫
[W(θ,λ)−ϑ(θ,λ)]

2
dΩ∫

[ϑ(θ,λ)]
2
dΩ

= 1
4πΩregion

∑
l,m

[
(Wc

lm − ϑ
c
lm)

2 + (Ws
lm − ϑ

s
lm)

2
] (A10)

Let δ2 be the variance of satellite measurement error (Equation (A9)) and ∆2 = δ2Ω2
region, which

are used to establish the Lagrange multiplier equation (Equation (A11)). Wc
lm, Ws

lm, and λ can be
determined through the minimum value of Equation (A11):

ξ =
∑
l,m
{[Wc

lm − ϑ
c
lm]

2 + [Ws
lm − ϑ

s
lm]

2
}

+λ

{∑
l,m

K2
l B2

l
2l+1 [W

c
lm

2 + Ws
lm

2] − ∆2
} (A11)

We seek the partial derivative of Wc
lm, Ws

lm, and λ of ξ and set them to zero to obtain

{
Wc

lm
Ws

lm

}
=

1 + λ
K2

l B2
l

2l + 1

−1{
ϑc

lm
ϑs

lm

}
(A12)

∑
l,m

K2
l B2

l
2l + 1

[Wc
lm

2 + Ws
lm

2] = ∆2 (A13)

Combining Equations (A12) and (A13), we obtain

∑
l,m

K2
l B2

l
2l + 1

ϑc
lm

2 + ϑs
lm

2[
1 + λ

K2
l B2

l
2l+1

]2 = ∆2 (A14)

When λ is obtained from Equation (A14), we can plug it into Equation (A12) to obtain Wc
lm and Ws

lm.
Finally, we put them into the Equation (A8), and TWSA can be inferred. This is the Lagrange multiplier
method, which is the fixed satellite measurement error to minimize the signal leakage error.
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