
Heliyon 10 (2024) e33888

Available online 29 June 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Development and validation of a TAAbs and TAAs based 
non-invasive model for diagnosing lung cancer 

Yan Jiang a, Gong Zhang a, Jiayi Zhu b, Xuchu Wang a, Zhihua Tao a,**, Pan Yu a,* 

a Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China 
b Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China   

A R T I C L E  I N F O   

Keywords: 
Diagnostic model 
Lung cancer 
Tumor-associated autoantibody 
Tumor-associated antigen 
Lasso regression analysis 

A B S T R A C T   

Background: Single Tumor-associated autoantibodies (TAAbs) and tumor-associated antigens 
(TAAs) have been found to have lower diagnostic efficacy in lung cancer. Our objective is to 
develop and validate a lung cancer prediction model that utilizes TAAbs and TAAs and to enhance 
the accuracy of lung cancer detection. 
Methods: 1830 subjects were randomly divided into training and validation sets at a 7:3 ratio for 
this study. Lasso regression analysis was used to remove collinear variables, whereas univariate 
logistic regression analysis was employed to identify potential independent risk factors for lung 
cancer. A diagnostic model was constructed using multivariate logistic analysis. The results were 
presented as a nomogram and assessed for various performance measures, including area under 
the curve, calibration curve, and decision curve analysis. 
Results: The diagnostic model was developed using gender, age, GAGE7, MAGE-A1, CA125, and 
CEA as variables. The training set had an AUC of 0.787, while the validation set had an AUC of 
0.750. The calibration curves of the training and validation sets showed a strong agreement 
between anticipated and observed values. The nomogram performed better than any individual 
variable in both the training and validation sets in terms of net benefits for lung cancer detection, 
according to DCA analysis. 
Conclusions: This study proposes a diagnostic model for lung cancer that uses TAAbs and TAAs 
and incorporates individual characteristics. This model can be easily applied to personalized 
diagnosis.   

1. Introduction 

Lung cancer (LC) has consistently held the highest incidence rate among malignancies and remains the primary contributor to 
cancer-related mortality on a global scale [1]. As anticipated, the Chinese population exhibits the highest incidence of new cases and 
mortality rates associated with lung cancer [2]. The 5-year survival rate of individuals diagnosed with lung cancer exhibits a range of 4 
%–17 %, contingent upon the stage of the tumor upon initial detection [3]. Nevertheless, the implementation of premise-based lung 
cancer screening and timely initiation of early treatments have the potential to reduce lung cancer mortality and increase the 5-year 
survival rate to a range of 70–80 % [3,4]. Early detection of lung cancer remains the most efficacious approach for mitigating lung 
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cancer mortality, despite the fact that advancements in the treatment of advanced-stage lung tumors have only yielded marginal 
enhancements in survival rates [5,6]. The efficacy of sputum exfoliative cytologic examination in reducing lung cancer mortality has 
been demonstrated to be limited [7]. On the other hand, using low-dose spiral computed tomography (LDCT) has shown a significant 
20 % decrease in lung cancer (LC) deaths and a high level of sensitivity in finding small lung nodules at an early stage [8]. However, the 
prevalence of false-positive results and the associated expenses may impede its widespread adoption as a standard screening technique 
[7,9]. Consequently, there is a need for enhanced and more precise methods of minimally invasive detection in both general cases and 
specifically for early lung cancer screening. 

Currently, the tumor-associated antigen (TAA) is widely utilized as a non-invasive biomarker for lung cancer screening, as evi-
denced by its high frequency of usage [10]. However, due to the fact that TAAs are not exclusively found in tumor tissues or cells and 
can also be present in normal tissues or cells, the majority of TAAs lack tissue specificity and are not suitable as standalone biomarkers 
for the detection of asymptomatic patients with lung cancer [11]. Multiple investigations conducted in recent decades have demon-
strated that autologous cells possessing the ability to undergo tumorigenesis also bear tumor-associated antigens. Tumor-associated 
autoantibodies (TAAbs), which are autoantibodies targeting specific cellular antigens, can be induced by abnormal exposure to or 
presentation of these antigens within the human immune system. The conclusion has been reached based on the evidence that TAAbs 
serve as immunological “sentinels” associated with the molecular mechanisms that form the foundation of cancer [12–14]. During the 
initial phases of carcinogenesis, there is an observed increase in the levels of TAAbs [15]. Despite low levels of related antigens or their 
elimination, TAAbs remain persistent in high quantities in the sera of patients [16–18]. The aforementioned advantages have 
contributed to the increasing prevalence of TAAbs in the realm of cancer early detection in recent times. 

TAAbs have garnered interest as potential biomarkers owing to their convenient accessibility in serum samples. Nevertheless, their 
utility as biomarkers has been hindered by inconsistent findings across various studies, thereby limiting their practical applicability. 
There exists a plausible notion that cancer immunosurveillance encompasses distinct phases, namely elimination, escapes, equilib-
rium, and subversions. Throughout these stages, a diverse array of immune cells, including natural killer cells, various subsets of T- 
cells, B-cells, dendritic cells, and other relevant cell types, function in a coordinated manner within both the localized tumor 
microenvironment and the systemic immune response. The utilization of a single targeted anticancer agent is hindered by the presence 
of tumor heterogeneity. Hence, it is suggested that a more favorable approach for diagnosis could involve the development of a panel of 
TAAbs through the utilization of high-throughput, impartial screening in extensive populations. 

The combination of various molecular indicators is hypothesized to be more efficacious in discerning cancer than relying solely on 
individual types of markers, owing to the distinct characteristics exhibited by each indicator. This study aimed to develop and validate 
risk predictive models for lung cancer screening through the examination of TAAs, TAAbs, and individual patient parameters. The 
evaluation of model performance involved the utilization of analytical methods such as Area Under the Curve (AUC), calibration curve, 
and Decision Curve Analysis (DCA). These analyses were conducted to ascertain the suitability of the model for clinical lung cancer 
prediction. 

2. Materials and methods 

2.1. Study population and data collection 

The retrospective collection of clinical data was conducted at The Second Affiliated Hospital Zhejiang University School of 
Medicine, encompassing 828 hospital patients and 1286 healthy volunteers who underwent LDCT. The data collection period spanned 
from January 2018 to March 2023. The exclusion of 284 patients and volunteers was influenced by several factors, as follows: (i) 
Patients with certain diagnoses of additional tumors; (ii) Patients without fine-needle aspiration biopsy; (iii) Incomplete clinical and 
absence of serum biomarker testing data. Finally, a total of 646 patients and 1184 healthy volunteers were ultimately enrolled in this 
study. Prior to the commencement of the trial, the protocol was approved by the ethics committee of The Second Affiliated Hospital of 
Zhejiang University School of Medicine, thereby validating the protocol. The TAA and TAAb data we collected from healthy volunteers 
and patients were detected by chemiluminescence immunoassay. 

2.2. Statistical analysis 

To facilitate the construction and validation of the nomogram, the participants were randomly allocated into two distinct sets: a 
training set and a validation set. The allocation ratio between these sets was 7:3, respectively. An assessment of comparability between 
the two sets was subsequently conducted. The continuous variables, which followed a normal distribution, were characterized using 
the means ± standard deviation; the differences between the two sets were then examined using the Student’s t-test. Continuous 
variables that exhibited a skewed distribution were examined for differences between the two sets by using the Mann-Whitney U test; 
these variables were described using the median, along with the 25th and 75th percentiles. The categorical data were expressed as 
numerical values in percentages and were subjected to statistical analysis using either the chi-square test or the Fisher’s exact test for 
the purpose of making comparisons. 

2.3. Prediction model 

The researchers employed Lasso regression analysis to determine the most effective predictive features within the training dataset. 
Additionally, univariate logistic regression analysis was employed to eliminate risk factors that were not independent. Subsequently, 
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multivariate logistic regression analysis was utilized to ascertain the independent factors. Following the completion of the multivariate 
logistic regression analysis, factors that exhibited a two-sided p value of less than 0.05 were deemed to possess statistical significance. 
The evaluation of nomogram prediction accuracy in both the training and validation sets involved the utilization of the Area Under the 
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The calibration curve evaluated the concordance between 
observed results and expected probabilities. The clinical application value of the nomograms was evaluated for a population size of 
1000 using DCA and clinical impact curves. The statistical analyses were conducted using R Studio software version 4.2.2 and SPSS 
version 25.0. 

3. Results 

3.1. Characteristics of subjects 

A total of 1830 patients were included in the study for the purpose of developing and validating the model. The overall prevalence 
of lung cancer among these patients was found to be 35.3 %. A total of 1281 participants were allocated to the training set, while 549 
participants were assigned to the validation set, following a ratio of 7:3. The prevalence of lung cancer in both the training set and the 
validation set was 35.44 % and 34.97 %, respectively. There was no significant difference in the prevalence of lung cancer observed 
between the training set and the validation set. There were also no statistically significant differences observed in the other charac-
teristics of the subjects between the training set and the validation set, including gender, smoking status, age, P53, PGP9.5, SOX2, 
GAGE7, GBU4-5, MAGE-A1, GAGE, CA125, CA211, CEA, NSE, and SCC. Table 1 presents the characteristics of the participants. 

3.2. Features selection 

The Lasso regression analysis, utilizing a 10-fold cross-validation approach, identified ten variables with nonzero coefficients that 
were selected from the training set (Fig. 1, Table 2). Next, a univariate logistic regression analysis was conducted on the ten coefficients 
in order to identify independent factors. The candidate predictors for model building were identified as gender, age, GAGE7, MAGE- 
A1, CA125, and CEA (Table 3). 

3.3. Model development and validation 

A multivariate logistic regression analysis was conducted on the training set, incorporating gender, age, GAGE7, MAGE-A1, CA125, 
and CEA as predictor variables. The prediction model was then constructed using the selected candidate predictors. The performance 
of the receiver operating characteristic curve (ROC) was evaluated by calculating the area under the curve (AUC). The AUC of the 

Table 1 
Baseline characteristics of individuals in training set and validation set.  

Variables Training set (N = 1281) Validation set (N = 549) P values 

Lung cancer diagnosis status, n (%) 
No 827 (64.56 %) 357 (65.03 %) 0.873 
Yes 454 (35.44 %) 192 (34.97 %)  
Lung cancer type 
Adenocarcinoma 426 (93.83 %) 181 (94.27 %) 0.831 
Squamous carcinoma 28 (6.17 %) 11 (5.73 %)  
Gender 
Female 580 (45.28 %) 250 (45.54 %) 0.918 
Male 701 (54.72 %) 299 (54.46 %)  
Smoking status 
Yes 979 (76.42 %) 410 (74.68 %) 0.438 
No 302 (23.58 %) 139 (25.32 %)  
Age, year 50.00 (41.00, 57.00) 52.00 (41.00, 60.00) 0.3225 
TAAb biomarkers, median (the 25 % percentile, the 75 % percentile) 
P53, U/mL 0.10 (0.10, 0.50) 0.20 (0.10, 0.60) 0.2791 
PGP9.5, U/mL 0.10 (0.10, 0.20) 0.10 (0.10, 0.20) 0.6926 
SOX2, U/mL 0.30 (0.10, 1.15) 0.40 (0.10, 1.40) 0.0942 
GAGE7, U/mL 0.30 (0.10, 0.90) 0.40 (0.10, 0.95) 0.1894 
GBU4-5, U/mL 0.30 (0.10, 1.20) 0.30 (0.10, 1.10) 0.7191 
MAGE-A1, U/mL 0.10 (0.10, 0.10) 0.10 (0.10, 0.10) 0.4079 
GAGE, U/mL 0.10 (0.10, 0.10) 0.10 (0.10, 0.10) 0.6242 
TAA biomarkers, median (the 25 % percentile, the 75 % percentile) 
CA125, U/mL 10.5 (7.70, 14.20) 10.2 (7.70, 13.85) 0.4932 
CA211, ng/mL 2.30 (1.70, 3.00) 2.30 (1.70, 3.10) 0.6161 
CEA, ng/mL 1.70 (1.10, 2.50) 1.70 (1.20, 2.60) 0.3581 
NSE, ng/mL 14.20 (12.30, 16.60) 14.20 (12.15, 16.40) 0.6457 
SCC, ng/mL 0.80 (0.60, 1.00) 0.80 (0.60, 1.00) 0.2195 

Data were presented as median (the 25 % percentile, the 75 % percentile) for continuous variables and count (percentage) for categorical variables. 

Y. Jiang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e33888

4

model (Nomogram) in the training set was found to be 0.787, with a 95 % confidence interval (CI) ranging from 0.761 to 0.813. The 
AUC values for age, gender, GAGE7, MAGE-A1, CA125, and CEA were 0.713 (95 % CI: 0.682–0.745), 0.632 (95 % CI: 0.604–0.660), 
0.586 (95 % CI: 0.554–0.619), 0.502 (95 % CI: 0.483–0.522), 0.560 (95 % CI: 0.527–0.593), and 0.648 (95 % CI: 0.617–0.679), 
respectively (Fig. 2A). Additionally, we assess the effectiveness of the nomogram and individual predictors in the validation dataset. 
The researchers calculated the AUC for the model (Nomogram) to be 0.750, accompanied by a 95 % CI spanning from 0.706 to 0.794. 
The AUC values for age, gender, GAGE7, MAGE-A1, CA125, and CEA were determined to be 0.662 (95 % CI: 0.611–0.713), 0.626 (95 
% CI: 0.584–0.669), 0.581 (95 % CI: 0.531–0.631), 0.496 (95 % CI: 0.468–0.525), 0.567 (95 % CI: 0.517–0.616), and 0.620 (95 % CI: 
0.571–0.670), respectively (Fig. 2B). The cut-off values of each indicator and the comparison between them are presented in Table 4. In 
addition, the calibration curve exhibited a high level of concordance between the anticipated values and the actual values in both the 
training set (Slope = 1.000) and the validation set (Slope = 0.818) (Fig. 2C and D). 

Fig. 1. Feature selection using the least absolute shrinkage and selection operator (Lasso) binary logistic regression model in the training set. (A) 
Identification of the optimal penalization coefficient lambda (λ) in the Lasso model with 10-fold cross-validation. (B) Lasso coefficient profiles of 15 
features. The trajectory of each lung cancer-related feature’s coefficient was observed in the Lasso coefficient profiles with the change of the lambda 
in the Lasso algorithm. 

Table 2 
Nonzero coefficient variables selected by Lasso regression model.  

nonzero coefficient variables Coefficients 

Gender − 0.98212337 
Age 0.05815464 
PGP9.5 − 0.01095153 
GAGE7 0.01683627 
MAGE.A1 0.02404285 
CA125 0.02965106 
CA211 − 0.09270514 
CEA 0.13860046 
NSE − 0.01507374 
SCC − 0.01282176  

Table 3 
Univariate logistic regression analysis of lung cancer risk factors.  

Risk factors HR (95 % CI) P values 

Gender 0.339 [0.267, 0.429] <0.001 
Age 1.067 [1.056, 1.079] <0.001 
PGP9.5 0.964 [0.917, 1.004] 0.106 
GAGE7 1.054 [1.028, 1.088] <0.001 
MAGE.A1 1.099 [1.034, 1.190] 0.008 
CA125 1.045 [1.027, 1.064] <0.001 
CA211 0.993 [0.916, 1.071] 0.859 
CEA 1.508 [1.367, 1.673] <0.001 
NSE 0.989 [0.955, 1.023] 0.512 
SCC 0.941 [0.821, 1.078] 0.382  
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3.4. Clinical utility 

A clinical nomogram was developed to facilitate model visualization and enhance operational convenience (Fig. 3). A score was 
assigned to the serum biomarker and individual characteristics of patients, and a total score was calculated to determine the proba-
bilities of lung cancer. The findings from the decision curve analysis (DCA) demonstrated that the nomogram exhibited superior net 
benefits in the detection of lung cancer compared to any individual factor in both the training and validation sets (Fig. 4A). The 
validation sets yielded comparable outcomes (Fig. 4B). Furthermore, utilizing the outcomes of DCA, we proceeded to construct clinical 
impact curves in order to assess the clinical efficacy of the nomograms. The nomogram’s clinical impact curves demonstrated a strong 
alignment between the predicted probability and the actual probability within the training sets (Fig. 4C). The validation sets yielded 
comparable outcomes (Fig. 4D). 

4. Discussion 

The majority of individuals diagnosed with lung cancer are found to be in advanced stages, resulting in unfavorable prognoses and 
elevated mortality rates [19]. Hence, it is imperative to enhance the rate of early detection of lung cancer in order to enhance the 
prognosis and mitigate mortality. There is a consensus in the medical community that low-dose computed tomography (LDCT) has 
emerged as a widely accepted screening tool for the detection of lung cancer and has demonstrated significant efficacy in reducing 
mortality rates associated with this disease [20,21]. Nevertheless, there is still uncertainty regarding the specificity of LDCT, which has 
limited its potential application in lung cancer screening [8,22]. In recent years, there has been a significant focus on the utilization of 
serum biomarkers in the diagnosis of lung cancer, primarily due to their non-invasive nature and ease of accessibility [10]. The 

Fig. 2. Model performance assessment by ROC and calibration curve. (A) ROC curves of the factors and nomogram in the training set. (B) ROC 
curves of the factors and nomogram in the validation set. (C) Calibration curves of nomogram prediction in the validation set. (D) Calibration curves 
of nomogram prediction in the validation set. 

Table 4 
Performance of non-invasive models for diagnosing lung cancer.  

Variables AUC 95%CI Sensitivity Specificity Cut-off P values 

Training Cohort (n = 1281) 
Nomogram 0.787 [0.761–0.813] 0.727 0.705 0.338 NA 
CEA 0.648 [0.617–0.679] 0.621 0.589 1.75 <0.001 
CA125 0.560 [0.527–0.593] 0.509 0.589 11.15 <0.001 
GAGE7 0.586 [0.554–0.619] 0.452 0.696 0.55 <0.001 
MAGE-A1 0.502 [0.483–0.522] 0.055 0.976 1.05 <0.001 
Validation Cohort (n ¼ 549) 
Nomogram 0.750 [0.706–0.794] 0.661 0.731 – NA 
CEA 0.620 [0.571–0.670] 0.615 0.571 – <0.001 
CA125 0.567 [0.517–0.616] 0.839 0.325 – <0.001 
GAGE7 0.581 [0.531–0.631] 0.531 0.622 – <0.001 
MAGE-A1 0.496 [0.468–0.525] 0.036 0.992 – <0.001  
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utilization of a combined panel of multiple biomarkers has been recognized as an effective strategy to enhance the efficacy of indi-
vidual biomarkers in the context of lung cancer [23]. 

With regards to the durability and consistency of tumor-associated autoantibodies (TAAbs), an expanding body of research has 
identified TAAbs as potentially valuable biomarkers for the purpose of cancer detection [24]. Li et al. developed a lung cancer pre-
diction model using TAAbs, which were identified by analyzing differential TAAbs in the sputum of individuals diagnosed with lung 
cancer. The predictive model demonstrated strong performance, achieving a sensitivity of 81 % and a specificity of 83 %. However, the 
standardization of TAAbs levels in sputum remains uncertain due to the variability in sputum sample volume and the omission of 
individuals’ characteristics as predictive factors in constructing the model [25]. Furthermore, certain studies employed TAAbs as a 
diagnostic tool for lung cancer without conducting a thorough examination of potential confounding variables or conducting internal 
or external validation of the model [26,27]. Considering the aforementioned factors, the current approach of detecting biomarker 
levels in serum remains in use. This study involves deliberately integrating tumor-associated autoantibodies (TAAbs) with 
tumor-associated antigens (TAAs) and individual characteristics to construct a diagnostic model for lung cancer that is suitable for 
clinical implementation. Lasso regression analysis screens for non-collinear variables; univariate logistic regression analysis de-
termines independent risk factors for lung cancer; and available variables are used to build a diagnostic model whose performance is 
evaluated by ROC analysis. Furthermore, an internal validation was conducted to assess the reliability of the lung cancer diagnostic 

Fig. 3. Nomogram for predicting the probability of lung cancer. Nomogram used by summing the scores identified at top scale for each variable. 
The totaled point score then located on total score scale to determine the lung cancer probability. 

Fig. 4. Clinical utility evaluation of the nomogram by DCA and clinical impact curves. (A) DCA of nomogram prediction in the training set. (B) DCA 
of nomogram prediction in the validation set. (C) Clinical impact curves of nomogram prediction in the training set. (D) Clinical impact curves of 
nomogram prediction in the validation set. 
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model. 
In this study, the initial step involves conducting Lasso regression in order to eliminate variables that exhibit collinearity. 

Remarkably, the inclusion of smoking, a widely recognized risk factor for lung cancer, was conspicuously absent. In general, non-small 
cell lung cancers (NSCLCs) are categorized into adenocarcinomas and squamous cell carcinoma based on their histopathological 
features. Lung adenocarcinoma (LUAD) constituted approximately 55%–60 % of cases among Chinese patients, as reported in a study 
[28]. The findings of this study revealed that the proportion of LUAD patients constituted approximately 90 % of the overall population 
of cancer patients. There is a widely held belief that smoking is closely linked to the development of lung squamous cell carcinoma 
[29]. Hence, it is reasonable to exclude smoking as a variable in this study. Additionally, the variables p53, SOX2, GBU4-5, and GAGE 
were excluded from the analysis due to their collinearity, as determined by Lasso regression. Subsequently, a univariate logistic 
regression analysis was conducted to eliminate non-independent risk factors. Ultimately, a nomogram was developed to predict lung 
cancer, utilizing six variables: age, gender, CEA, CA125, MAGE-A1, and GAGE7. All parameters are easily accessible during routine 
health examinations. Hence, the utilization of nomograms can prove valuable in conducting comprehensive evaluations indepen-
dently, without the need for medical professionals. 

The analysis of the receiver operating characteristic (ROC) revealed that the nomogram exhibited exceptional predictive ability for 
lung cancer. Additionally, the DCA and clinical impact curves in both the training and validation datasets indicate that a significant 
proportion of the threshold probabilities of the nomogram yielded favorable net benefits. However, despite the favorable performance 
demonstrated by the nomogram, the predictive ability of TAAbs in lung cancer was not as compelling as anticipated for a standalone 
predictor, which contradicts the findings of the majority of existing studies. Upon investigating the underlying reason for the observed 
discrepancy, it was discovered that a particular TAAb indicator exhibited satisfactory performance in these studies. Additionally, a 
statistically significant difference in TAAb levels was observed between individuals with lung cancer and those who were healthy 
volunteers [30,31]. Nevertheless, our study revealed minimal disparity in the levels of TAAb between the two cohorts, potentially 
attributed to variations in the methodologies and kits employed for TAAb detection across diverse investigations. Given the wide range 
of TAAb kits available on the market, there are variations in the methods employed to measure serum concentrations of TAAbs. 
Autoantibodies found in human blood are a diverse collection of polyclonal antibodies, with significant anticipated variations among 
individuals. Hence, the selection of a suitable calibrator poses an additional challenge in the process of commercializing autoantibody 
detection kits. The inclusion of gender as a significant factor in the prediction of lung cancer is an unexpected finding in our nomogram. 
In the present study, it is plausible that the high prevalence of adenocarcinoma among the population may have contributed to the 
observed phenomenon. Additionally, it is worth noting that a substantial proportion of patients diagnosed with adenocarcinoma were 
female [32]. In view of the variable composition of the diagnostic model, four variables GAGE7, MAGE-A1, CA125, and CEA need to be 
detected when using this model to diagnose lung cancer. The cost of completing the diagnostic process of this model is worthy of 
attention. Coincidentally, the total cost of testing for these four biomarkers in our area is almost the same as the cost of CT testing. 
Therefore, regardless of the detection performance or cost, this model cannot yet replace CT examination for lung cancer screening. It 
can be used as a supplementary approach to lung cancer screening. 

5. Limitations 

First of all, there is no external multicenter validation was conducted to enhance the reliability of the nomogram for predicting lung 
cancer. Another constraint that should be acknowledged is the absence of the inclusion of family history of lung cancer as a predictive 
factor in the development of a nomogram for lung cancer. This omission has the potential to impact the diagnostic accuracy of the 
nomograms used in the assessment of lung cancer. Furthermore, the assessment of the utility of nomograms in the grading of lung 
cancer necessitates the availability of comprehensive clinical staging data pertaining to patients with lung cancer, and our lack of this 
part of the data limits the scope of application of the nomogram. Finally, we are short of several key information such as specific lung 
cancer tissue types and molecular characteristics, which also limits the further exploration of the application value of the model in lung 
cancers with different tissue types and molecular characteristics. In summary, we have successfully incorporated tumor-associated 
antigens (TAAs), tumor-associated antibodies (TAAbs), and individual characteristics to develop a nomogram for the prediction of 
lung cancer. Our findings demonstrate favorable diagnostic performance. However, it is important to acknowledge that there are 
certain limitations that require further refinement. By addressing these shortcomings, we can enhance the suitability of the constructed 
nomogram for clinical implementation. 
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