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Due to the success of combined antiretroviral therapy (cART) in recent years, the
pathological outcome of Human Immunodeficiency Virus type 1 (HIV-1) infection has
improved substantially, achieving undetectable viral loads in most cases. Nevertheless,
the presence of a viral reservoir formed by latently infected cells results in patients having
to maintain treatment for life. In the absence of effective eradication strategies against HIV-
1, research efforts are focused on obtaining a cure. One of these approaches is the
creation of therapeutic vaccines. In this sense, the most promising one up to now is based
on the establishing of the immunological synapse between dendritic cells (DCs) and T
lymphocytes (TL). DCs are one of the first cells of the immune system to encounter HIV-1
by acting as antigen presenting cells, bringing about the interaction between innate and
adaptive immune responses mediated by TL. Furthermore, TL are the end effector, and
their response capacity is essential in the adaptive elimination of cells infected by
pathogens. In this review, we summarize the knowledge of the interaction between
DCs with TL, as well as the characterization of the specific T-cell response against HIV-1
infection. The use of nanotechnology in the design and improvement of vaccines based on
DCs has been researched and presented here with a special emphasis.
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INTRODUCTION

Human Immunodeficiency Virus type 1 (HIV-1) continues to be a health problem worldwide,
particularly in developing countries. Although the proportion of the population infected with the
virus has stabilized since 2000, the total number of infected subjects continues to increase.
According to UNAIDS data from 2019, 38 million people are living with HIV-1, increasing the
number of new infections to 1.7 million people in that year.
Abbreviations: Ce, conserved element; Vif, viral infectivity factor; Vpr, viral protein R; li, MHC class II-associated invariant
chain; Rev, regulator of expression of virion proteins; Nef, negative factor; Tat, regulatory protein HIV-1; PLGA, poly (lactic-
co-glycolic acid); PVPONAlk, N-vinyl pyrrolidone-ran-propargyl acrylate; g-PGA, Poly-g-glutamic acid; Man-PEI,
polyethyleneimine mannose; PAMAN, Poly-amidoamine; MMR, manose receptor.
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The discovery of antiretroviral therapies, especially the cATR
regimen, has helped the progression of the infection from a fatal
to a chronic disease. Access and adherence to treatment are
determining factors for the good medical prognosis of patients
with this infection (1). However, both factors can be easily lost
due to economic problems, social stigmas, and psychological side
effects, especially in less developed countries. Despite deaths
related to AIDS having drastically decreased in developed
countries, many associated co-morbidities, commonly known
as non-AIDS-events, decrease the quality of life of the infected
and are the first cause of death in HIV populations, according to
the CROI 2020 data. Therefore, a new long-term therapeutic/
preventive approach against HIV-1 infection must be found (2).

In the absence of a complete cure for HIV-1 infection, a
functional cure appears to be the most promising option (3). The
definition of a functional cure states that, although the virus is
still present in the host organism and remains latent in the
genome of many cells as a reservoir, the immune system keeps
the infection under control in the absence of cART (4).

The viral latency, the high mutability, and the variability of
this virus make the search for a therapeutic cure extremely
difficult. In this sense, the scientific community has spent
many years working intensively to achieve this aim through
different strategies, including the creation of vaccines against
HIV-1. Therapeutic vaccines could contribute to HIV-1 therapy
as their application immediately after the infection could limit
the size of the virus reservoir and prevent future viral spread (5).

A significant number of vaccine candidates have been tested
and failed. The main mechanism of all these vaccines is a delivery
of HIV-1 antigenic peptides to antigen presenting cells (APC) to
obtain a therapeutic response (6, 7).
Frontiers in Immunology | www.frontiersin.org 2
SPREAD OF VIRUS IN THE IMMUNE
SYSTEM

HIV-1 Entry and Processing Inside
Dendritic Cells
HIV-1 is capable of reaching a wide variety of immune cells. In
this sense, the contact of the virus with the target TLs is an
important mechanism for establishing a persistent infection.
However, the first step is the arrival of the virus to APCs, in
this case DCs, which will transmit HIV-1 to TLs (8). HIV-1 can
use different receptors/binding pathways to infect DCs, including
the CCR5 receptor, the CXC4 chemokine receptor (CXCR4), or
C lectin type receptors, especially DC-SIGN (dendritic cell-
specific ICAM-3 grabbing nonintegrin) that bind to the HIV-1
envelope, specifically, to gp120 (9). Then, the virus can transmit
to the target cell or degrade in endosomes by binding to
langergin before transmission occurs (10). In addition to this
receptor dependent on the binding of gp120, Singlec-1 or CD169
is another receptor independent of binding to this glycoprotein.
Singlec-1 is expressed in DCs; specifically it is found within the
uropodia of migratory DCs, facilitating the capture and retention
of HIV-1 by binding to ganglioside GM3 (11) (Figure 1).
Furthermore, Singlec-1 has the quality of being within the
compartments of DCs, and TLs can access to them in order to
improve the interaction between DCs with TLs. In addition to
this glycoprotein-dependent viral capture by DCs, HIV-1 can
also be taken up by a lipid-dependent mechanism (12, 13).
Moreover, HIV-1 has the ability to incorporate other virus
envelope glycoproteins during assembly, a phenomenon
known as pseudotyping. This allows HIV-1 to expand its
cellular tropism and enables it to infect not only T cells (14).
FIGURE 1 | Receptors and pathways involved in the entry of HIV-1 into DCs. HIV-1 binds to several different DC surface receptors, determining the fate of the virus.
Generally, HIV-1 is introduced to DCs through endocytosis after binding to DC-SIGN or other receptors, such as Declin-1 or Siglec-1. Binding to these receptors
generates a series of intracellular signals that allow transinfection or immunological recognition and the consequent activation of T cells.
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The process of interaction between viral particles and DCs
generates a series of responses that lead to the maturation and
regulation of chemokine receptors, which will help in the
migration process to secondary lymphoid organs to initiate the
adaptive immune response. DCs have been shown to undergo
activation and maturation through different virus-induced
mechanisms (15). These pathways of activation and
maturation include those mediated by toll like receptor
(TLR), the stimulator of the interferon gene (STING) (16), the
cyclic pathway of guanosine monophosphate-adenosine
monophosphate synthase (cGAS) (17), and the mitochondrial
pathway (MAVs) (18). Despite HIV-1 infection, DCs can
maintain their ability to migrate to the lymph nodes under the
influence of environmental chemotactic factors such as
sphingosine 1-phosphate (S1P) and CCL19/21, so DCs
expression remains unaltered (19, 20).

Once the DCs reach the lymphoid organs, contact with the T
cells begins. Although the molecular mechanisms are still not
entirely clear, it is known that DCs capture the antigen by
endocytosis, degrade it to peptides after endosome-lysosome
fusion, and present it to T cells in the context of MHC (21).
The union established between the antigen and MHC, with the
collaboration of costimulatory signals on the surface of the DCs,
forms an environment known as “immunological synapse”,
capable of inducing the specific T response and, therefore, the
adaptive immune response (22).

For optimal antigen presentation to T cells, DCs must execute
good intracellular processing. However, cells infected with HIV-
1 present the antigen through MHC-I, through cross-
presentation (23). It is well known that HIV-1 exploits
multiple mechanisms to evade immune recognition, including
a high mutation rate, glycosylation of the envelope protein
gp120, or in this case the virus has the ability to manipulate
host antigen presentation and processing mechanisms (24).

Different HIV-1 proteins are involved in modifying these
antigen presentation pathways so virus seeks the endosomal
pathway, avoiding the lysosomal pathway, becoming a
proliferating way for the virus to spread to other places such as
the lymph nodes (24, 25). Endosomal processing may provide
another opportunity to escape immunological recognition by
promoting the destruction of key antigens by endosomal
proteases. During cross-presentation, antigens are exposed to
endosomal proteases. In this sense, the HIV-1 Nef protein
interrupts the presentation of antigens on the cell surface by
interfering with the normal trafficking pathway of MHC-I,
through the AP-1-mediated signaling. This mechanism reduces
the recognition of cytotoxic T lymphocytes and the lysis of
infected cells, using an immune escape route (26, 27).

Surface DCs-T Cells Interactions in the
Presence of HIV-1
During the immune synapse, T cells are able to probe the surface
of the protrusions generated by DCs, inside which there is a large
viral load. Due to exploratory contacts, the virus particles
produced from these DCs can be transferred to T cells with
high efficiency. In this context, a relatively small amount of DCs
Frontiers in Immunology | www.frontiersin.org 3
containing viral particles can generate an increase in T-cell
infection, making it exponential (28, 29).The number of
interactions established between DCs and TLs, as well as how
long they remain in contact, cause T cells differentiation and
acquisition of the ability to carry out effector and memory
responses. Memory T cells can establish themselves as a
reservoir during the chronic phase of viral infection, so that
these target cells can cause virus reactivation favoring
dissemination (30). A recent study in people with chronic
HIV-1 infection has shown that CD8+ T cells not only
responded to mutated HIV-1 epitopes which cause death of
CD4+ T cells, but also led to increased maturation of cells
producing higher transinfection of CD4+ T cells (31). The
persistence of mutated viral strains gives HIV-1 an advantage
over the immune system.

When T cells establish contact with viral particles embedded
within membrane invaginations, a signaling cascade occurs that
ends when T cells stop binding DCs. Knowledge of cell dynamics
that orchestrate viral shedding from DCs to T cells is still lacking.
HIV-1 binds to accessible surface adhesion and signaling
receptors, forming a crucial point of contact with T cells. This
leads to activation mediated by gp120 and lymphocyte function-
associated antigen 1 (LFA-1) that initiates signal transduction by
inducing T-cell entrapment and activation (32, 33). The
interaction between DCs and T cells allows trapped HIV-1
particles to reach target T cells in a manner similar to that
established in DCs, wherein DCs can capture ganglioside-rich
exosomes (34). It has been shown that increasing numbers of
viruses can bind directly to integrins (35). Particular importance
is the adhesive interaction between LFA-1 and ICAM-1 that
facilitate virologic synapse and cell-to-cell transmission (36).
Blocking the binding between LFA1 and ICAM-1 prevents
prolonged contact between DCs and T cells. Therefore, the
established binding between gp120 and T cells is necessary for
activation of LFA-1 (37). LFA-1 is activated when the binding of
the gp120 protein to a4b7 occurs in primary T cells. The
virological synapse is closely related to the activation of LFA-1,
as well as to the signals that are established in the interaction
of gp120 through a4b7 (38, 39). Therefore, the binding between
the virus glycoprotein and T cells represents a limiting step
in facilitating prolonged contacts of DCs and T cells
(40) (Figure 2).

The ability to capture and transmit viral particles possessed by
DCs and their presentation to T cells at the site of cell-to-cell
contact, known as transinfection, promotes systemic release after
viral exposure (41, 42).

In addition to the interaction of the virus with the integrins,
there is another family of proteins with a very important role in
the transinfection process. Tetraspanins family is responsible for
regulating intracellular traffic and modulating the function of
other helper molecules, controlling their expression in the
plasma membrane or classifying themselves into intracellular
vesicles. Tetraspanins interact with other members of the
superfamily, other transmembrane receptors, lipids, signaling
molecules, and cytoskeletal components (43, 44). These proteins
attend to the organization of tetraspanin-enriched
January 2022 | Volume 12 | Article 719664
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microdomains (TEM) containing CD9, CD63, CD81, and CD82
in macrophages, DCs, and T cells (45). TEMs regulate the
recognition and presentation of Ag and the activation and
proliferation of T cells, as well as the extravasation of
leukocytes associating with MHC-I and MHC-II on the surface
of DCs (46). HIV-1 uses the mechanisms provided by the host
cells to its advantage. Individually, CD63 has a dual function (26,
27, 47). On the one hand, it is essential for the replication of
HIV-1 together with the CXCR4 and CCR5 receptor on T cells
participating in virus entry or reverse transcription, and on the
other hand, the expression of CD63 supports mediated fusion by
Env during transduction, so it regulates the replication step.
However, its activity and function have not yet been fully
understood (48). In addition, CD9, CD63, and CD81 are
involved in the immunological synapse at virion-enriched
budding sites (49). CD81 is important in cross-presentation of
antigen by DCs to cytotoxic T cells. In addition, it is capable of
increasing the availability of dNTPs and therefore favoring HIV-
1 infection thanks to the blocking SAMHD1, a restriction factor
that allows DCs to escape productive HIV-1 infection (50). CD9
and CD81 are found in extracellular vesicles as exosomes.
Blocking TEMs has previously been shown to result in a
significant decrease in exosomal uptake efficiency in DCs (51).
Both CD9 and CD81 bind to the cytoskeleton through proteins
of the ezrin-radixin-moeisin family (ERM) which bind to actin, a
key element in the interaction between DCs and TLs and in
propagation of HIV-1 (52, 53). There is a membrane protein
from tetraspanin family that, associated with the ARP2/3
complex, is capable of promoting nucleation and stabilizing
actin. This protein is TSPAN7. TSPAN7 prevents the viral
particles from being internalized, remaining close to the
membrane of the DCs, sites rich in actin, favoring the
dissemination to T cells (54).
Frontiers in Immunology | www.frontiersin.org 4
Intracellular Signaling Pathways
The different interactions that are established between protein
families during the virological synapse generate an intracellular
signaling cascade (55). This activation induces the reorganization
of MOTC and T cells polarization in cell-cell contact sites (56).
HIV-1 infection of T cells occurs during the acute phase. One
question is if virologic synapse favors the transmission of HIV-1
particles to T cells. Recent studies have shown that clustering of
the viral Env protein with TLs initiated T cell receptor signaling,
enhancing the transmission of HIV-1 between cells (57).
Furthermore, signal amplification occurred in these T cells,
suggesting that de novo expression of Env in infected T cells
was able to initiate further activation signals during cell-cell
contacts (58). The Env protein of HIV-1 induces a calcium flux
which initiates an intracellular signaling cascade that produces
MEK/ERK activation which induces phosphorylation of Lck and
partial activation of ZAP-70, a tyrosine kinase protein from SyK
family which plays a critical factor in T cell signaling (59).

These tyrosine kinases accomplish an essential function for T
cells since they intervene in their maturation and differentiation.
The Tec proteins trigger a signaling cascade in which LTK is
phosphorylated and as a consequence the mobilization of Ca2 +
occurs. Ca2+ involves the mobilization of actin responsible for
cytoskeletal reorganization (60). This phosphorylation of LTK
occurs after contact of ICAM-1 integrin with the gp120 protein
in the presence of HIV-1 (61, 62). However, low levels of LTK
activation occur, so the virus prevents actin from performing and
reduces intracellular p24 levels. This suggests that the signaling
pathway would be related to the transcription of the virus (63).
Also, the interaction between the activation of the glycoprotein
and the CD4+ T cells activates the PI3K pathway responsible for
regulating the migration of T cells and promoting the entry of
viral particles after HIV-1 infection (64). Furthermore, ERK
FIGURE 2 | Virological synapse in the presence of HIV-1. Virological synapse in the presence of HIV. The interaction between the different receptors present in both
DCs and T cells allows entry into the target cells (CD4+ T and CD8+ T lymphocytes), thus allowing the dissemination of HIV-1 that escapes the immune response
mechanism produced by these cells.
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phosphorylation is needed for reverse transcription, regulating
virus infectivity (65, 66). Signaling is dependent on chemokine
receptors, but these signals converge to regulate the behavior and
function of T cell migration.

Another very important point at the intracellular signaling
level is related to the ability of HIV-1 to spread to other cells. In
this context, a little-studied family of proteins, the ESCRT, has
great relevance (67). These will form cytosolic complexes
establishing themselves as a machinery of remodeling both the
cytoplasm and the cell membrane, allowing the viral budding
process (68, 69). HIV-1 is able to recruit this machinery upon
activation of ALIX and Tsg101 to mediate the budding process
(70, 71). Furthermore, it seems that the ESCRT machinery is
closely involved with the antigen presenting function of DCs by
MHC-II (72). On the one hand, in non-activated DCs, ESCRT
is capable of transporting antigens from MHC-II to
phagolysosomes. On the other, when DCs have undergone
activation, it supports the antigenic presentation process (73, 74).

There is a wide variety of signaling pathways connected and
formed by mediators that intervene in multiples cellular
processes, and are involved in viral dynamics. The study of
these secondary effectors expand diverse treatment design
strategies (75). One of the new discoveries that has been
recently studied is lymphocyte activation pathway that does
not require the recognition and presentation of antigens by the
different APCs. This opens the possibility of a new pathway that
could act in parallel or not from a canonical one (76).

Thereby, the antigenic presentation process in DCs and the
consequent activation of T cells are a true platform to design new
therapeutic vaccines. Knowledge of both the signaling pathways
and all the participating intermediate molecules is essential to
achieve the objective of an effective therapeutic vaccine.
Frontiers in Immunology | www.frontiersin.org 5
VACCINES BASED ON DCS

Most DCs vaccines use viral peptides to stimulate autologous
DCs and generate a specific cytotoxic T response (77).
Accordingly, the protocol to be followed in most cases is based
on the extraction and isolation of monocytes from PBMCs
treated with GM-CSF and IL-4, deriving these monocytes to
immature DCs (iDCs) (78, 79). During the maturation process of
these iDCs, antigenic processing occurs, giving rise to monocyte-
derived dendritic cells (MoDCs) (80). After that, the adaptive
immune response begins with the objective of generating the T
cells proliferation. CD4+ T cells will be able to interact with B
lymphocytes for the generation of antibodies, while CD8+ T cells
will give a cytotoxic response in order to eliminate the infected
cells and reduce the viral load, preventing latency. To promote
this process, expanding the immune response, MoDCs are
capable of secreting a series of inflammatory cytokines such as
IL-12p70 and TNFa (15) (Figure 3).

DCs vaccines have been developed using different antigens
such as DNA vectors, recombinant proteins, and even the
attenuated whole virus itself (81, 82).

Some of the first attempts at developing DCs vaccines were based
on cancer immunotherapy studies. In these studies, nanotechnology
has also been used to load proteins or lysates being used for
numerous treatments (NCT02334735) (83) (NCT00045968) (84).
Thus, some of these studies show the combination of DCs vaccines
with treatments such as chemotherapy (NCT03688178,
NCT03657966) (85, 86), radiotherapy (NCT03226236) (87), or
agents or immunotherapeutic regimens (NCT03546426,
NCT03450044) (88–90). All these studies seem to be a
breakthrough and have led to the use of these vaccines for
other purposes.
FIGURE 3 | Scheme of the development of a therapeutic vaccine based on DCs. For the development of autologous dendritic cell vaccines, monocytes were
extracted from PBMC obtained by leukapheresis from the patient himself. Monocytes are stimulated in vitro with GM-CSF and IL-4 to induce differentiation into
immature dendritic cells (iDCs). These iDCs are loaded with HIV-1 derived antigen (antigenic peptides, inactivated whole virus, envelope glycoproteins) and will
subsequently become mature antigen-presenting dendritic cells. These MoDCs can be used to formulate a vaccine that is administered to the patient to elicit a
specific T-cell response to the HIV-1 antigen.
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Immune Checkpoints in DCs Vaccines
There is a number of molecules at the immune level that act as
immune checkpoints so that their function is to negatively
regulate immune responses to maintain homeostasis.
Nowadays, blocking immune checkpoint molecules is
considered a strategy to enhance immune responses in
patients. Recently, immunotherapy against cancer has attracted
much attention due to the successful clinical application of
inhibitors targeting the cytotoxic T lymphocyte antigen 4
(CTLA-4) and programmed cell death protein (PD-1)/PD-L1
pathways (91). Studies on cancer vaccines, especially those based
on DCs, have made significant progress in recent years. In fact, as
mentioned above, the first DCs vaccines were developed as a
cancer treatment. In particular, the identification and
characterization of the cross-presenting allows effector T cells
to mediate immunity against viruses, bacteria, and tumors. In
this context, immune checkpoints are often improved during
cancer and chronic infections as a mechanism of immune
subversion and, therefore, have become a therapeutic target for
cancer, but also for the fight against infectious diseases (92).

One of the most important factors that have been studied in
recent years is programmed cell death ligand 1 (PDL-1) in DCs
and its interaction with PD1 in T lymphocytes (93, 94). This
interaction that is established between PDL-1 and PD1 assumes a
control of activated T cells. It should be noted that this
interaction takes place at two different time points in the life
cycle of T cells: First, during the presentation of antigens to naïve
T cells for their activation and differentiation, influencing the
differentiation pathway of activated T cells leading to cytotoxic,
antibody, or regulatory responses. Second, during antigen
recognition (95). The PD-1/PD-L1 axis includes the action of
effector TL and promotes the depletion of TL, thereby negatively
affecting tumor infiltrating lymphocytes in the tumor
microenvironment. PD-1 primarily exerts its inhibitory effect
on T cells in the periphery where T cells meet PD-1 ligands (96).
In cancer, tumor cells and myeloid cells are believed to be the
main cell types that mediate T-cell suppression through this
junction. In addition, PD-L1 utilizes the STAT3/caspase 7-
dependent pathway and directly blocks interferon-g-mediated
cytotoxicity (97). Therefore, blocking the PD-1/PD-L1 axis will have
a synergistic therapeutic action when co-administered with DCs
vaccine therapy, thus affecting the tumor microenvironment,
decreasing IL-10, interferon-g, and enhancing the function of
cytotoxic T lymphocytes (98).

In the case of HIV-1, this interaction between PDL-1 and PD1
has two phases. The first occurs in the early phase of infection
where this PD-L1/PD-1 immune checkpoint is low and the
CD8 + T cells perform their function by eliminating infected
cells. However, in the later, even latent phases of the infection,
the expression of PD-L1 is increased by the secretion of different
cytokines and acts as a negative feedback system on CD8+ T
cells. This circumstance is used by the virus to escape the
immune response (99).

The other checkpoint that has been studied is CTLA-4. It was
one of the first inhibitory receptors shown to play a role in
suppressing T cell responses (100). CTLA-4 is structurally
Frontiers in Immunology | www.frontiersin.org 6
similar to CD28 and binds CD80 and CD86 with a higher
affinity than it. In fact, CTLA-4 prevents CD28 binding to
CD80/CD86 on DCs, inhibiting the activation of naïve T cells
(101). On one hand, CTLA-4 expression by T reg cells serves as a
mechanism to suppress excessive T cell responses, while
intracellular reservoirs of CTLA-4 prevent tissue damage by T
cells spontaneously activated pathogens. In a retrospective study
of patients with advanced melanoma whose case progressed after
DC vaccine therapy, the addition of ipilimumab (anti-CTLA-4)
promoted tumor-specific cytotoxic T-lymphocytic action (102).

Both control points are also fundamental in the case of HIV-
1, the use of anti PDL-1, anti PD1, and anti CTLA-4 treatments
supposed to improve the immune response that occurs in the T
cells and that are fundamental for the good performance of the
vaccine based on DCs. However, not all HIV-1 infected patients
respond favorably to these inhibitors, possibly due to the lack of
immune cells. In addition, therapeutic vaccines have not
achieved an adequate CD4+ T response with low antibody
levels and poor viral control (103). Perhaps the combination of
both, anti-checkpoints and DCs vaccines, can lead to the success
of cancer and HIV-1 therapy.

Homing DCs Vaccine
During activation and differentiation into secondary lymphoid
organs, T cells integrate TCR and are exposed to different
costimulatory and cytokine signals, inducing the generation of
memory and effector cells. The local lymphoid microenvironment
is in charge of inducing this differentiation, in addition to selecting
the specific properties of tissue localization expression on TLs
(104). Localization and chemoattractant receptors can be up-
regulated in secondary lymphoid organs and undergo selection
during recirculation of cells moving through antigen-rich tissues.
The ability to target effector lymphocytes to specific tissues helps
increase the efficiency of pathogen clearance and prevents
pathological inflammation (105).

Responding T cells program into secondary lymphoid organs
and acquire these tissue localization phenotypes within two days
of activation, before they leave their initial antigen-encounter site
(106). Therefore, the possibility that these phenotypes are
induced and randomized during successive rounds of
recirculation in peripheral antigen-rich tissues is ruled out. The
return of lymphocytes from the blood to the tissues is mediated
by a series of sequential interactions between the lymphocyte
and the vascular endothelium in specialized postcapillary
venules (107).

This entire process is influenced by the pathway of entry of
the pathogen into the body, which implies a variation in the
availability of molecules that can be processed by dendritic cells
at different sites in the lymphoid tissue (108). Some of the most
widely studied site-specific phenotypes are those found in the
cutaneous versus intestinal secondary lymphoid organs during
initial T-cell activation. These would include vitamin A and D
derivatives produced by DCs that drain the dermis or intestine
positively regulate skin and gut localization markers on T cells
(109). DCs can metabolize vitamin D3, a compound that is
abundantly present in the skin, transforming it into its active
January 2022 | Volume 12 | Article 719664
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form, and this metabolite suppresses the intestinal localization
program in T cells at the same time that it induces the expression
of the chemokine receptor, CCR10 (110), which allows
localization in the skin. In contrast, dendritic cells located in
gut-associated lymphoid tissue can convert vitamin A to retinoic
acid. The production of retinoic acid by DCs, particularly those
that express CD103, imprints intestinal tropism in T cells by
inducing the expression of the integrin a4b7 and the chemokine
receptor CCR9 (111–113).

Knowing the homing mechanisms that are established
between DCs and TLs are essential when administering a
possible therapeutic vaccine. The route of administration of
antigen-loaded DCs affects the migration of DCs to lymphoid
tissues and the magnitude of the antigen-specific TLs response.

Approaches in DCs Vaccines
The design of a therapeutic vaccine has two important points in
its development. The first is how viral peptides can be introduced
into DCs to be recognized as antigens and processed (114). The
second is if the administered peptide is capable of stimulating the
specific T response after contact with antigen-presenting DCs
(115). Some of the most used strategies with the objective of
introducing peptides to be recognized as antigens are
mentioned below.

One of the ways that has been used to develop a delivery
towards DCs has been to conjugate monoclonal antibodies
specific for endocytic receptors of DCs, such as DEC205 and
Clec9A, with the antigenic particle (116). DEC-205 is a C-type
lectin receptor that acts as a recognition receptor for apoptotic
and necrotic cells (117). These molecules have been used as a
possible target molecule to selectively deliver antigens to DCs
because DEC-205 and Clec9A are known to be highly expressed
in DCs. Although DEC-205 and Clec9A are promising surface
molecules for the targeted delivery of antigens by DCs, vaccines
based on these molecules require adjuvants such as anti-CD40
(118) for efficient induction of CD8+ T cell responses. Some of
the conjugates that have been used by this technique are those
formed by the HIV-1 protein p24 or gag and the monoclonal
antibody DEC-205, generating in both cases a B and T response
(119). The conjugate with the Gag HIV-1 protein had better
results both in the efficacy for the presentation of the antigen,
and in achieving a better humoral response, with higher levels of
antibodies, as well as cellular (120).

Another strategy that has been used is the formation of a
trimer complex formed by the HIV-1 gp140 protein bound to the
CD40 ligand (CD40L), incorporating itself directly into the DCs
(121). An example of this chimeric strategy is that which was
developed from a DNA vaccine encoding the Env protein of
HIV-1 together with plasmids encoding the macrophage
inflammatory protein alpha1 (MIP-1a) and the tyrosine ligand
kinase 3 (Flt3L) (122, 123). This strategy resulted in the
recruitment of DCs at the immunization site and induced the
expression and maturation of CD11b, CD80, CD83, and MHC
class II markers on DCs. One example is found in a DNA vaccine
that encodes HIV-1 gp120 bound to the extracellular domain of
Flt3L (124). In this case, the expansion of the DCs was induced,
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but the CD8+ T response was improved and the production of
anti-gp120 antibodies increased, remaining up to 16 weeks after
amplification of immunization. In addition, CTLA4 or PD-1
have also been incorporated as an alternative for the formation of
these complexes as both are important checkpoints as mentioned
before (125).

Another approach in recent years is the use of mRNA that
codes for TAT, NEF, and REV, incorporating them into the
MoDCs of HIV-1 patients. This technique achieves an
improvement in the response of TL, both CD4+T and CD8+ T
(126). Through the regulation of costimulatory molecules and
cytokines, proteins such as Nef and Vpr can affect certain DCs
maturation processes or the activation of T cells. The use of
specific peptides in this case improves the immunogenic
properties in contrast to the use of complete proteins (127).

There are also other types based on the use of the HIV-1 Gag
and Env genes incorporating them into an adenovirus that codes
for li (invariant chain), ces, rev, vif, and vpr (128). The invariant
chain (Ii/CD74) has been identified as a surface receptor for
migration inhibitory factor (MIFa). Most cells expressing Ii also
synthesize major histocompatibility complex class II (MHC II)
molecules, which depend on Ii as a companion and targeting
factor. The membrane association of Ii-MHC II complexes
allows MIF to target Ii-MHC II to antigen-clustered B-cell
receptors (BCRs) and promote BCR-driven signaling and
intracellular trafficking. The peptides that will bind to MHC-II
are mainly of exogenous origin and are captured by endocytosis
to be targeted to lysosomes (129).

In addition, there are also other types of vaccines like DNA
vaccines (130, 131) or VLV vaccines (virus like vaccines) (132).
Clinical trials have also shown that the current generation of
DNA vaccines cannot induce a strong antibody response.
Therefore, targeting antigen presentation in the MHC-II
pathway to activate CD4 + Т cells seems especially
advantageous (133).

However, these approaches are based on the use of the
immune mechanisms offered by DCs in prophylactic therapy.
DCs are used as intermediaries to generate an immune response,
and recent improvements in this area consist in delivering
immunogens towards these cells, facilitating their antigen
capture and presentation functions through different strategies.
Nevertheless, if we focus on the therapeutic use of vaccines based
on DCs, in recent years, the use of therapeutic vaccines has been
studied with the objective of inducing broad immune responses
instead of specific responses of a single antigen to combat viral
escape mutants and suppress viral rebound. In this sense, the
studies that have been carried out on therapeutic vaccines based
on DCs are mentioned below.

AGS-004, was one of the phase IIb trials based on autologous
DCs co-electroporated with patient-derived HIV-1 RNA
encoding three or four HIV-1 antigens and also CD40L.
Although it seemed successful as there was an induction of the
CD8+ T response, it was observed that there was no detectable
antiviral effect compared to placebo (134). The next trial reached
phase I and II using an autologous DCs HIV-1 ApB vaccine. For
this, delivery was made with autologous apoptotic cells infected
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with HIV-1. Although it maintained a good safety profile and
produced activation and lysis of infected cells, it did not prevent
viral rebound during treatment interruption (135).

A vaccine (DCV-2) composed of autologous myeloid dendritic
cells with high doses of heat-inactivated autologous HIV-1 was
studied. In those patients in an initial phase of the infection, a
reduction inplasma viral loadwas achieved alongwith a goodT-cell
response (136). This suggests that vaccines based on DCs could be
used in newly infected patients with a greater chance of success.
There is another study completed tophase I inwhichDCswereused
for the delivery of HIV-1 lipopeptides. Despite the polyfunctional
response, a virus rebound was observed after 14 days (137).

These studies have not achieved a very successful result, so
other alternatives therapeutic vaccines continue to be developed.
One of the latest advances is the ALVAC-HIV vaccine that
combines the Nef, Pol, Env, and Gag genes of HIV-1 with LIPO-
6T (tetanus toxoid class II-restricted universal CD4 epitope
combined with 2 Gag, 2 Nef, and 1 Pol peptide) (138, 139).
The novelty included in this vaccine is the incorporation of a
lipid tail in the C-terminal region that favors the antigenic
presentation function (140). In fact, there is a trial of
immunized cART-treated HIV+ patients with autologous DCs
enriched by ex vivo culture with GM-CSF and IFN-a and loaded
with LIPO5 (2 Nef, 2 Gag, and 1 Pol lipopeptides) (141).

Despite all efforts, effective treatment is still not available with
this type of vaccine. This is where nanotechnology plays a very
important and advantageous role, both from a prophylactic and
therapeutic treatment.
NANOPARTICLES IN DCs VACCINES

One of the most used approaches in recent years is based on the
use of nanoparticles as delivery agents. The size of these
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nanosystems is an advantage in drug delivery due to their
ability to cross physiological barriers, reaching specific cells or
intracellular compartments (142). The unique nanodimensional
size, symmetrical shape, uniformity, and stable structure of the
assembled nanoparticles, which closely resemble native viruses,
are all advantages. Notably, smaller nanoparticles (25–40 nm in
size) penetrate tissue barriers and traffic to the draining lymph
nodes more rapidly than larger nanoparticles (greater than 100
nm in size), which are typically retained by cells at the site of
injection and which need to be taken up and trafficked by
dendritic cells (DCs) to facilitate their transport to the lymph
nodes (143). From this perspective, numerous studies have been
carried out in which nanoparticles have been used for the release
of small molecules, proteins, or DNA, targeting them specifically
to target cells, in this case DCs. Nanoparticles (NPs) are an
extraordinary tool to provide different compounds such as DNA,
siRNA, and peptides for different cells types (144). Several types
of nanoparticles (NPs) such as gold, carbon, dendrimers,
polymers, and liposomes nanoparticles have the ability to
generate the production of cytokines and antibodies (145).
Some of these particles that have been used for these purposes
are inorganic NPs (iron and silica) (146), polymeric NPs
(chitosan, PLGA, PVPONAlk, g-PGA) (147), liposomes
(cholesterol and lipids) (148, 149), virus-like particles (VLP)
(150), and dendrimers (151, 152) (Figure 4).

DCs need the presence of an adjuvant for their correct
activation and maturation. One of the advantages of NPs is
that they can encapsulate both the antigen and the adjuvant, thus
ensuring the release of both and favoring the establishment of an
effective immune response (153). Fortunately, nanotechnology
allows new forms of delivery to DCs. For example, studies using
liposome-encapsulated HIV-1 gp160 or gp41 proteins or HIV-1
gag p24 protein coated on colloidal biodegradable polylactic acid
(poly-d, llactide) could cause activation of MoDCs in patients of
FIGURE 4 | Use of nanotechnology as a delivery system in dendritic cell vaccines. There are different types of nanoparticles that can be used as nanocarriers for
antigen delivery in DC-based immunotherapies against HIV-1. During the development of these vaccines, MoDCs are loaded with antigen-nanoparticle complexes
that enhance antigen uptake by DCs, leading to the generation of a more specific and potent CD4+ T cell and CD8+ T cell response after reinjection of DCs.
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HIV-1 and induce specific cytotoxic CD8+ T responses, CD4+ T
cell proliferation, and cytokine secretion (154). Polymeric NPs
have been highlighted for their use in the development of
therapeutic vaccines due to their excellent physico-chemical
properties. These particles, in addition to having good safety
and biocompatibility profiles, are biodegradable and capable of
adjusting on their surface according to requests (155). The most
commonly used polymeric NPs for vaccine administration are
poly (lactic-co-glycolic acid; PLGA) or poly (lactic acid; PLA)
(156). Other polymers of natural origin, such as inulins, alginate,
and chitosan, have been used as adjuvants (157, 158).

There is a recent study related to the use of gold nanoparticles
in vivo that are capable of transporting mannose oligosaccharides
that are linked to HIV-1 peptides (159, 160). In this study, the
use of these nanostructures used as peptide delivery was
demonstrated; in comparison with antigenic peptides alone,
they improved the CD4+ T cells and CD8+ T cells response
and increased cytokine secretion (161). It seems that the adjuvant
mechanism of these mannose ligands is through their binding to
type C lectin receptors, such as DC-SIGN, present on DCs (162).
As a result, a topical vaccine was developed in the form of a
transdermal patch (DermaVir) based on polyethyleneimine
mannose (Man-PEI), glucose and a DNA plasmid that encodes
the HIV-1 antigen formulated in 100 nms nanoparticles and has
reached phase II of clinical trials (163).

Regulating the processing of intracellular antigens is
important for antigen presentation and subsequent priming of
T cells. DCs have limited lysosomal capacity due to decreased
proteolytic degradation, being slower than other APCs (164).
The moderate lysosomal capacity of DCs favors the presentation
of antigens and gives the opportunity to study another
modulation pathway to enhance the degradation and
presentation of antigens. Thanks to this mechanism of
autophagy, intracellular degradation, and elimination of
unneeded or dysfunctional components, the adequate
presentation of antigens by DCs occurs, leading to an effective
T response. An example is found in the covalent bond between
Beclin1, autophagy-inducing peptide, OVA257-264 antigen
peptide, and a polymer (165). This nanoconjugate represented
an improvement in the induction of autophagy, increasing the
efficiency of antigen presentation and the activation of T cells.

One of the nanoparticles that have been used for the design of
vaccines are those based on lipids. This can enhance the
stimulation of the host’s immune response. Until now, the
lipid formulations have been formulated as a unilamellar or
multi lamellar structure composed by biodegradable
phospholipids (phosphatidylserine, phosphatidylcholine, and
cholesterol) (166). The mechanism by which these liposomes
deliver vaccines is through membrane binding causing
internalization of lipid vesicles by DCs (167). The studies that
have been carried had lipid particles have been used with
those in which phosphatidylserine is conjugated with virus
peptides (168).

Other methods, such as the use of dendrimers, have facilitated
delivery to dendritic cells. Dendrimers are branched structures
that have multiple functional groups at the ends of the terminal
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branches (169). Thanks to this type of structure, the dendrimer is
capable of generating multiple vaccines. A single dendrimer is
capable of delivering several components or antigens to the
target cell (170). The stimulation capacity of these
nanoparticles must be verified to avoid inducing tolerance of
the cells (171). Dendrimers, like other nanoparticles, must be
capable of inducing the absorption of antigenic peptides by
MoDCs and stimulating the immune response.

One of the dendrimeric structures that has been used in order to
generate a therapeutic vaccine is the one formed by the
glycodendrimers. In a recent study it was shown that these
nanostructures can be used for the incorporation of HIV-1
peptides, and although there did not seem to be evidence of
cytotoxicity, the glycodendrimers did not modify both the
phenotype and some functions of the MoDCs such as the
migration capacity and the cytokine profile (172). This is the first
study that used a structure formed by the peptide-dendrimer
junction forming complexes that are functionalized with maltose
as a possible candidate for a DC-based vaccine capable of
stimulating the immune system (173). In fact, studies have
shown that the presence of maltose and maltosylated
macromolecules are capable of binding to langerin, so that cells
could potentially be activated by maltose when these nanoparticles
are transported by langerin or DC-SIGN due to high structural
similarity between them (174).

Another recent study uses G4-70/30 PAMAM polycationic
dendrimer and AMC6 nanoparticle derived from b-cyclodextrin
as peptide delivery agents (175). In this work, an antigenic
peptide derived from the HIV-1 gag p24 protein was used in
combination with these polycationic structures, binding to
specific receptors. In the case of the G4-70/30 PAMAM
dendrimer through mannose (MMR, DC-SIGN), it was linked
to clathrin vehicleization, while the cyclodextrin structure could
be clathrin-dependent or non-dependent (176). In case of this
study, the efficacy of both structures as antigenic carriers was
demonstrated, improving the presenting function of DCs and
producing the release of pro-inflammatory cytokines IL-2 and
TNF-a related to the activation of T cells.
SUMMARY

HIV-1 infection involves a loss of immune system cells as a
consequence of intense immune stimulation that leads to a
prolonged and sustained inflammatory state that involves
chronic immune activation (177). Controlling this disease state
caused by the virus through the use of immunotherapy is a
challenge. Therefore, DCs play a major role in the search for a
functional vaccine or cure against HIV-1. Their role in the
adaptive response, being responsible for the preparation of
naïve T cells is a key point, and their manipulation opens the
way to new forms of immunotherapy (28). In this sense, the first
phase I and II trials in cancer therapy have generated
encouraging results (178). Therefore, DCs are also promising
candidates in the search for a functional HIV-1 cure or vaccine
(69). The objective of the development of a therapeutic vaccine is
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to induce strong and broad specific immune responses against
HIV-1 antigens and that these are capable of resisting viral
escape due to mutation in the virus (179). The arsenals
available to elicit such responses include DCs as critical
mediators of innate and adaptive immunity, as well as
proteins, nucleic acids, and viral vector vaccines (180).

Despite all the knowledge about the molecular and
physiological mechanisms of both DCs and HIV-1 infection, it
is still not known exactly how the response occurs, so more
research is needed (181). DCs play a key role due to their ability
to serve as a link between innate and adaptive immunity,
including in the presence of HIV-1 infection. Knowing in
depth the behavior of these cells would allow the design of
modulating immune systems that function at different levels,
either with a prophylactic or therapeutic purpose (69). To benefit
from advantages offered by the field of nanomedicine, different
mechanisms have been developed to improve activation by
increasing the therapeutic efficacy of DC-based vaccines.
Nanotechnology allows DCs activation in vivo and simulate
natural antigen presentation, favoring lysosomal proteolysis for
antigen presentation (182). Additionally, nanotechnology can
further intervene in the presentation of antigens, acting directly
on the APCs or serving as an adjuvant, improving the efficacy of
immunotherapy based on DCs (183). One of the problems with
conventional treatments based on DCs is that during the
migration of these to the lymph nodes, these therapies can lose
activity, being unable to interact with T cells to elicit a better
specific response. However, nanoparticles can accumulate in the
lymph nodes, which contributes to a high efficiency of lymph
node drainage (184). Therefore, nanotechnology offers a
promising therapeutic alternative that intervenes in the
development of multiple disciplines, signifying great progress
in clinical treatment (144).

Despite the fact that an increasing variety of nanoparticles are
being directed towards the objective of providing a mechanism to
achieve a potent immune response based on the use of DCs,
additional studies in the field of modulation of these cells,
antigen presentation, and DC-HIV-1 interaction are essential
Frontiers in Immunology | www.frontiersin.org 10
to determinate the foundations for the much desired functional
cure of HIV-1 (185).
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