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Abstract
Purpose Kinase inhibitors (KI) are known to increase radiosensitivity, which can lead to increased risk of side effects.
Data about interactions of commonly used KI with ionizing radiation on healthy tissue are rare.
Patients andmethods Freshly drawn blood samples were analyzed using three-color FISH (fluorescence in situ hybridiza-
tion) to measure individual radiosensitivity via chromosomal aberrations after irradiation (2Gy). Thresholds of 0.5 and 0.6
breaks/metaphase (B/M) indicate moderate or clearly increased radiosensitivity.
Results The cohorts consisted of healthy individuals (NEG, n= 219), radiosensitive patients (POS, n= 24), cancer patients
(n= 452) and cancer patients during KI therapy (n= 49). In healthy individuals radiosensitivity (≥0.6 B/M) was clearly
increased in 5% of all cases, while in the radiosensitive cohort 79% were elevated. KI therapy increased the rate of
sensitive patients (≥0.6 B/M) to 35% significantly compared to 19% in cancer patients without KI (p= 0.014). Increased
radiosensitivity of peripheral blood mononuclear cells (PBMCs) among patients occurred in six of seven KI subgroups.
The mean B/M values significantly increased during KI therapy (0.47± 0.20 B/M without compared to 0.50± 0.19 B/M
with KI, p= 0.047).
Conclusions Kinase inhibitors can intensify individual radiosensitivity of PBMCs distinctly in 85% of tested drugs.
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Introduction

Targeted drug therapy with various kinase inhibitors is be-
coming increasingly important in the treatment of cancer
patients. Tyrosine kinase inhibitors such as alectinib, crizo-
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tinib and osimertinib are relevant in the treatment of non-
small cell lung cancer (NSCLC), which represents 85% of
all lung cancer cases [1]. Oncogenic drivers like epidermal
growth factor receptor (EGFR) are found in 10–15% and
for anaplastic lymphoma kinase (ALK) in up to 3–7% of
patients [2]. In a recent phase III trial median overall sur-
vival (OS) of the chemotherapy approach was 47.5 months,
whereas this endpoint in the KI group was not reached af-
ter a median follow-up duration of 70 months [3]. Further
studies showed advantage of second-generation inhibitor
alectinib vs. crizotinib with a rate of investigator-assessed
progression-free survival (PFS) of 68.4% vs. 48.7% after
12 months, respectively [4]. Furthermore, in cases of renal
cancer, tyrosine kinase inhibitor pazopanib, a multikinase
inhibitor targeting vascular endothelial growth factor recep-
tors (VEGFs), is very efficient in first-line treatment [5].

Previous studies found increased individual radiosensi-
tivity in cancer patients compared to healthy individuals
[6]. Beside this, different drugs such as the BRAF kinase
inhibitor vemurafenib have radiosensitizing potential result-
ing in higher rates of severe side effects like radiodermatitis
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≥2° during radiotherapy (RT) with BRAF inhibitor therapy
(44%) vs. 8% without KI (p= 0.004) [7, 8]. Consequently,
withholding kinase inhibitor therapy ≥3 days before and af-
ter fractionated RT and withholding ≥1 day pre- and post-
stereotactic radio surgery (SRS) is recommended by the
Eastern Cooperative Oncology Group (ECOG) [9]. How-
ever, recent data indicate an improvement of local tumor
control when kinase inhibitor therapy is combined with in-
tracranial stereotactic RT without an increase in necrosis
rates [10].

Regarding BRAF inhibitors (BRAFi) like vemurafenib
and dabrafenib, cellular mechanisms of radiosensitization
are partly known. In thyroid cancer BRAFV600E muta-
tions promote nonhomologous end joining activity, a major
pathway of DNA double strand break repair [11]. Currently,
few data are available for most kinase inhibitors and their
possibly radiosensitizing potential [12]. Groups like Falcão
et al. [13] used peripheral blood lymphocytes and cancer
cell lines for comparison of RT effects and Cheng et al. [14]
reported a correlation between prostate cancer cell line and
blood of cancer patients. Finally, Keller et al. (2015) demon-
strated that increased radiosensitivity correlates with HIV-1
treatment containing non-nucleoside reverse transcriptase
inhibitors (NNRTI) in PBMCs of a specific subgroup of
patients in addition to experimental in vitro data of cancer
cell lines and healthy fibroblasts showing reduced survival
fraction and increased activation of DNA repair proteins
like H2AX, ATM, Nbs and 53BP1. Regarding the resilient
correlation of radiosensitivity of blood lymphocytes and in
vitro data of cancer cell lines [15], we investigated blood
samples of cancer patients treated with different tyrosine
and serine/threonine kinase inhibitors. Citing Hasan Mur-
shed in Fundamentals of Radiation Oncology [16] and Fur-
gason and el Bahassi [17], increased radiosensitivity is con-
sidered to be an advantage for improved local tumor control.
At the same time the risk of a possible severe therapy-re-
lated sequelae in the healthy surrounding tissue should also
be taken into account. To cover a wide range of outcomes
a heterogeneous patient cohort of eight different entities, in-
cluding rectal, lung, breast, prostate and others, was used.
The influence on individual radiosensitivity of normal tis-
sue by simultaneous kinase inhibitor treatment was studied
using a three-color FISH analysis approach. The radiosen-
sitivity was determined based on the rates of chromosomal
aberrations, calculated as B/M after ex vivo irradiation of
peripheral blood lymphocytes as an indicator of effects on
healthy tissue.

Materials andmethods

Patients and study design

Peripheral blood lymphocytes of healthy individuals and
cancer patients were analyzed by a three-color FISH
method to measure individual radiosensitivity. A historical
cohort consisting of healthy individuals served as negative
control. Selection criteria was “no prior or concurrent ma-
lignancies” and a Karnofsky performance status score of
at least 90. The cohort was stratified by age. A historical
cohort of cancer patients served as the control cohort. Pa-
tients with remarkable radiation-related chronic toxicity of
≥grade 3 according to the Radiation Therapy Oncology
Group (RTOG), e.g., fibrosis (grade 3 or 4) and bladder
contracture after irradiation, were defined as “sensitive” to
ionizing radiation (IR) and used as positive control [6, 18,
19]. In the current study, blood samples of patients with
systemic therapy with kinase inhibitors were collected to
study their individual radiosensitivity.

For this open cohort study, patients were collected con-
secutively between 2018 and 2020at the radiation oncology
department of the University Hospital Erlangen. Collection
was prospective and a total of 49 patients having kinase
inhibitor treatment were included. Inclusion criteria were
the following: having cancer, being treated with a kinase
inhibitor, age over 18 and written informed consent of the
participate. Blood samples were taken during continuous
inhibitor treatment.

Trial oversight

The institutional review board at Friedrich-Alexander-
Universität Erlangen-Nürnberg approved the study
(No. 21_19 B). The study was performed in accordance
with the Declaration of Helsinki. All patients gave written
informed consent that comprised a data privacy clause for
data collection and analysis for research purposes.

Three-color fluorescence in situ hybridization

Individual radiosensitivity was studied with peripheral
blood lymphocytes and three-color fluorescence in situ hy-
bridization (3C-FISH) to detect chromosomal aberrations
as described previously [15, 20]. In brief, individual ra-
diosensitivity was determined in freshly drawn heparinized
peripheral blood from cancer patients or healthy individu-
als. After dividing the blood sample in two aliquots, one
was not irradiated and the other irradiated with a dose of
2.0Gy. Irradiation was done with a linear accelerator used
in clinical routine for patient treatment. Normofractionated
irradiation (1.8–2.0Gy) was used to simulate a clinical rou-
tine setting [21]. This dose was previously most suitable for
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distinguishing radiosensitive patients and healthy individ-
uals relying on the statistical power of evaluation of B/M
[22, 23]. Ionizing radiation was generated by the linear
accelerator Elektra Versa HDTM (Elektra AB, Stockholm,
Sweden). After irradiation, lymphocytes were stimulated
with RPMI-1640 (Sigma Aldrich, München, Germany)
cell culture medium containing 2.5% phytohemagglu-
tinin (PAN biotech, Aidenbach, Germany) and 15% fetal
calf serum (FBS; Merck, Darmstadt, Germany) and cul-
tured for 48h at +37°C and 5% CO2. Afterwards, mitosis
was blocked by adding N-Deacetyl-N-methyl-colchicin
(0.09µL/mL; Merck, Darmstadt, Germany). Chromosome
preparation was performed using a mix of 75% methanol
(Sigma Aldrich, München, Germany) and 25% acetic acid
(Sigma Aldrich, München, Germany) and finally DNA
was transferred to glass slides. Slides were treated with
RNase (Roche, Penzberg, Germany) and pepsin (Sigma
Aldrich, München, Germany) and fixated with buffer con-
taining formaldehyde (Merck, Darmstadt, Germany). For

Fig. 1 Study scheme and analysis of chromosomal aberrations. a Patient blood was collected and processed using a standard protocol. Breaks
per metaphases (B/M) were calculated by subtracting the 0Gy background from the 2Gy values. b Microscopic images after fluorescence in
situ hybridization of isolated patient blood lymphocytes. red chromosome #1, green chromosome #2, yellow chromosome #4, left chromosomes
without aberrations; middle translocation of chromosome 1 and chromosome 2, right complex chromosomal aberrations. Scale 10µm

the three-color FISH, DNA was denatured using a for-
mamide-containing puffer (Merck, Darmstadt, Germany)
at 72°C. For the hybridization step, a mixture of probes
for chromosomes #1, #2 and #4 was incubated for 72h
at 37°C in the cell culture incubator. Chromosomal aber-
rations of chromosome #1 (red), chromosome #2 (green)
and chromosome #4 (yellow) were detected and analyzed
in a semiautomated manner using Biomas software (Ver-
sion 4.1 07/2018 MSAB, Erlangen, Germany). For valid
analysis, we based our calculation on findings of Keller
et al. [23] who scored 150 metaphases for “2Gy” as the
minimum to obtain reliable results. For the unirradiated
control (0Gy), referring to more rare spontaneous aberra-
tions, an appropriate number of more than 150 images of
metaphases were analyzed. As the B/M value of “0Gy”
generally underly a hyperbola function near the y-value
“0”, our analyses always include as many pictures (a min-
imum of 150) as necessary to reach a stable and valid
B/M value [6, 23]. Radiosensitivity was studied using 3C-

K



Strahlenther Onkol (2022) 198:838–848 841

FISH of freshly drawn blood samples. The irradiation-in-
duced aberrations were analyzed by staining chromosomes
#1, #2 and #4. These chromosomes represent 22% of the
whole genome. Based on the initial work of Savage and
Simpson [24], aberrations were scored by the number of
underlying chromosomal breakages and accumulated to
breaks per metaphases [6, 24], which was implemented
for this method by Keller et al. [22]. Keller et al. inves-
tigated the predictive power of different aberration types
such as translocations, complex aberrations and breaks
per metaphases. It was proven that the best distinction in
radiosensitive of blood lymphocytes between a healthy co-
hort (n= 11) and a hypersensitive cohort (n= 5) is delivered
by breaks per metaphases (p= 0.002, Mann-Whitney-U
test). As defined in the previously validated scoring, aber-
rations as deletion, acentric fragments and open breaks
were counted as one break event, whereas translocations,
dicentric and ring chromosomes were counted as two break

Table 1 Patient characteristics Healthy
individuals
(%)

Radiosensitive
patients
(%)

Cancer
patients
(%)

Cancer patients
with KI
(%)

n 209 24 452 49

Gender (%)

Male 90 (43) 10 (42) 210 (49) 25 (51)

Female 119 (57) 14 (58) 220 (51) 24 (49)

Age (years)

Median age 52 55 62 65

SD 18 16 13 14

Inhibitor (n)

BRAF inhibitors – – – –

Dabrafenib – – – 12

Vemurafenib – – – 8

Multi tyrosine kinase
inhibitor

– – – –

Pazopanib – – – 12

Lenvatinib – – – 4

EGFR inhibitor – – – –

Osimertinib – – – 7

ALK inhibitors – – – –

Alectinib – – – 3

Crizotinib – – – 3

Cancer type (n)

Rectal – 1 212 –

Breast – 8 146 –

Lung – 1 49 13

HNSCC – – 30 3

Melanoma – 1 8 20

Prostate – 1 4 –

Others – 8 3 1

Renal – – – 12

Unknown – 4 – –

SD standard deviation

events (Fig. 1a). In addition, insertions were counted as
three break events and complex aberrations were evaluated
according to how many DNA double-strand breaks would
theoretically be needed for their formation. Schuster et al.
studied blood of 202 healthy individuals and 393 patients
and revealed slight differences of radiosensitivity based
on chromosomal aberrations with healthy individuals and
cancer patients having values of 0.015 and 0.02, respec-
tively [6]. The final value of individual radiosensitivity was
calculated as breaks per metaphases (B/M) after subtract-
ing background rates of the 0Gy sample to normalize for
the individual rate of spontaneous aberrations. Regarding
previous studies of Keller et al., the underlying thresholds
were evaluated as B/M+3×standard deviation (SD) and val-
idation was done empirically over our whole collected data
on patient blood. Values of 0.5–0.6 B/M can be assumed as
increased radiosensitivity, whereas values greater 0.6 B/M
indicate a distinctly increased radiosensitivity [22, 25, 26].
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Patient cohorts

The established negative control cohort consisted of 219
healthy individuals and the positive control cohort of 24
radiosensitive patients. The historical comparative cohort
consisted of 452 cancer patients. The main tumor entities
were rectal (n= 212) and breast cancer (n= 146), followed
by lung cancer (n= 49) and head and neck squamous cell
cancer (n= 30; Table 1). The study cohort consisted of 49
cancer patients with ongoing kinase inhibitor therapy, as
part of the maintenance therapy ensuring that the blood
withdrawal was performed when a stable (steady-state)
kinase inhibitor plasma concentration was reached. This
guaranties a higher comparability of the results, based on
the constant therapeutically active concentration of the
drug in the organism. This cohort mainly consisted of
patients with melanoma (n= 20), lung (n= 13) and renal
cancer (n= 12). The used kinase inhibitors were the BRAF
inhibitors vemurafenib (n= 8) and dabrafenib (n= 12), the
multikinase inhibitors lenvatinib (n= 4) and pazopanib
(n= 12), the EGFR inhibitors osimertinib (n= 7) and the
ALK inhibitors alectinib (n= 3) and crizotinib (n= 3). Gen-
der was equally distributed in the “cancer patient” and the
“patients with KI” cohorts (p= 0.880). Mean age also did
not differ with 62 years in the cancer control cohort and
65 years in the KI cohort (p≥ 0.999). Blood samples were
taken pre-RT or >6 months post-RT to avoid bias by radia-
tion on the background values of chromosomal aberrations,
whenever possible.

Statistical analysis

GraphPad prism 8 software (San Diego, CA, USA) was
used to perform statistical analysis. One/two-tailed Fisher’s
exact test was used to analyze the categorial data (with-
out kinase inhibitor and without radiosensitivity), as well
as one-tailed Wilcoxon test and Mann–Whitney U test. P-
value≤ 0.05 was determined as significant. Graphs were
also generated using GraphPad Prism 8 software.

Results

Kinase inhibitor-induced radiosensitivity

Three-color FISH analysis of aberrations in chromosomes
#1, #2 and #4 were used to measure the number of B/M
after irradiation with a 2Gy dose (Fig. 1a). An increase
in chromosomal aberrations points to increased radiosensi-
tivity (Fig. 1b; [27, 28]). Thresholds of 0.5 and 0.6 B/M
indicate slightly or clearly increased radiosensitivity, re-
spectively.

The B/M (mean± SD) values in lymphocytes of healthy
individuals (0.41± 0.10) serve as a negative control and
a cohort of radiosensitive patients serve as positive con-
trol (0.75± 0.30). The cancer patient cohort (0.47± 0.20)
was compared to patients during kinase inhibitor therapy
(0.50± 0.19; Fig. 2a). Among healthy subjects, 19% had
rates ≥0.5 B/M and 5% had rates ≥0.6 B/M. The high-
est B/M rates were found in the cohort of sensitive pa-
tients, which comprised highly radiosensitive patients who
suffered from radiation-related side effects after RT treat-
ment. Increased radiosensitivity was proven, since 100%
of all sensitive patients had rates ≥0.5 and 79% greater or
equal to 0.6 B/M. In the cancer cohort, radiosensitivity was
similarly increased as in the group of healthy individuals.
Overall, the radiosensitivity of cancer patients was slightly
(≥0.5) increased in 35% and distinctly (≥0.6) increased in
19%. In the cohort with kinase inhibitors, 51% and 35% of
all had elevated B/M values ≥0.5 and ≥0.6, respectively.
Compared with the cancer patient cohort, this was a signif-
icant increase in the fraction of KI patients with increased
B/M values ≥0.5 (p= 0.029) and ≥0.6 (p= 0.014).

In a subgroup of 6 patients in the kinase inhibitor co-
hort, blood samples were available prior to KI therapy and
during KI treatment (Fig. 2b). In 5 of these 6 patients indi-
vidual radiosensitivity increased due to the in vivo kinase
inhibitor combined with 2Gy ex vivo irradiation. It clearly
indicates that in vivo kinase inhibitor treatment increases
radiosensitivity (p= 0.047).

To exclude potential chromosomal instability induced by
kinase inhibitors, the unirradiated control samples were an-
alyzed and B/M values were plotted over time after the last
RT fraction. There is a clear correlation between the period
of time between the end of RT and elevated background lev-
els. B/M values of the unirradiated blood samples (0Gy) in
the kinase inhibitor cohort had background values mostly
under the threshold of 0.5 B/M (Fig. 2c). Just 16% of all
individuals showed values above 0.5 B/M. There is no evi-
dence that KIs themselves cause chromosomal aberrations.
As mentioned in the materials section, this 0Gy B/M val-
ues were subtracted from the 2Gy values given in Fig. 2a
to correct for background.

Induced radiosensitivity by different kinase
inhibitors

In general, kinase inhibitors significantly increased individ-
ual radiosensitivity in ex vivo analyses of blood samples
(Fig. 2a). Although we can determine an increase in ra-
diosensitivity in the entire group of the kinase inhibitor
cohort, this effect can possibly also be driven by specific
drugs. Consequently, distinguishing between the different
kinase inhibitors subgroups is necessary (Fig. 3). As men-
tioned above, the cancer cohort had B/M≥ 0.6 in 19% of all
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Fig. 2 Three-color fluorescence in situ hybridization (FISH) analysis of patient blood under KI treatment. a Comparison of a healthy cohort, tumor
cohort, sensitive cohort and the KI treatment cohort of all kinase inhibitors. The number of patients with radiosensitivity ≥0.5 was significantly
increased in KI cohort (two-sided Fisher’s exact test; p= 0.0287) as well as values ≥0.6 in the KI cohort (two-sided Fisher’s exact test; p= 0.0135).
b Six patients were tested before and during KI treatment. Radiosensitivity (at 2Gy) was significantly increased (one-tailed Wilcoxon; p= 0.0469)
during KI therapy. (Treatments: red, green and purple pazopanib, blue imatinib, black alpelisib). c Background radiosensitivity (0Gy) of the tested
patients of KI cohort over time after RT (n= 48). One patient was excluded because of unclear former therapy

cases. Radiosensitivity in each subgroup of the seven kinase
inhibitors studied yielded B/M values >0.6 for dabrafenib
of 33%, vemurafenib of 50%, pazopanib of 25%, osimer-
tinib 57%, lenvatinib of 0%, alectinib of 33% and crizotinib
of 33%. This indicates that increased radiosensitivity can be
induced by most of the kinase inhibitors studied.

Discussion

Kinase inhibitors are able to increase individual radiosen-
sitivity of the tumor and the healthy surrounding tissue and
influence the outcome of RT and possible side effects, re-
markably. This is known for BRAF inhibitors such as vemu-
rafenib. Increased side effects and cytotoxicity were noticed
and therefore pausing the KI treatment is recommended for
this group of targeted therapies [8, 18].

Our data suggest that the frequency of radiosensitivity
of PMBCs in patients is significantly increased in the KI
cohort, which may lead to an increased risk of side ef-
fects in normal tissue. Patients during KI therapy showed

a gain of B/M compared to the cancer patient cohort in
the 3C FISH analysis. Nevertheless, the KI cohort includes
different tumor entities and seven different FDA-approved
kinase inhibitors. To answer the question whether one KI
is reasonable for the rise of B/M values itself, we ana-
lyzed the seven KI dabrafenib, vemurafenib, pazopanib,
lenvatinib, osimertinib, alectinib and crizotinib separately.
BRAF inhibitors dabrafenib and vemurafenib are known to
have radiosensitizing potential, which correlates with our
data [7, 10, 29, 30]. Occasionally, individual differences
in side effects such as radiodermatitis and further severe
side effects could be related to interindividual polymor-
phisms of cancer patients, confirming the range of B/M
values [31]. Multikinase inhibitor pazopanib showed less
radiosensitizing potential regarding values ≥0.6 B/M and
lenvatinib, which also targets multiple kinases, showed no
distinct radiosensitization ≥0.6 B/M. However, several case
reports for VEGF inhibitors including pazopanib reported
elevated risks such as gastrointestinal perforation and others
[32, 33]. Overall, beside occasional cases of hepatotoxic-
ity [34], RT+ pazopanib shows good tolerability [35]. No
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Fig. 3 Radiosensitivity of control cohorts and seven different inhibitor cohorts. Radiosensitivity of different cohorts (healthy as positive control,
sensitive patients as negative control, tumor patients, and seven different KI-treated groups). The number of patients with radiosensitivity ≥0.6 was
significantly increased in the sensitive cohort vs. the healthy cohort (two-sided Fisher’s exact test; p< 0.0001) and in the sensitive vs. cancer cohort
(two-sided Fisher’s exact test; p< 0.0001). Subgroups with KI showed increased number of radiosensitive patients for dabrafenib (p= 0.0031), ve-
murafenib (p= 0.0005) and pazopanib (p= 0.0232). The lenvatinib cohort showed less radiosensitive patients than the cancer cohort (p= 0.0005);
two-sided Fisher’s exact test. Radiosensitivity was analyzed using three-color FISH and measured in B/M. Cohorts “healthy”, “tumor” and “sen-
sitive patients” were historical control cohorts as published previously [18]. The inhibitor cohorts were collected from patients of the radiation
oncology department of the University Hospital Erlangen. Blood samples were collected during KI therapy of the patients

data are available describing interactions between IR and
lenvatinib. Noticeable, even in the smallest cohorts of the
ALK/ROS and EGFR inhibitors alectinib, crizotinib and
osimertinib, which are approved for NSCLC, we were able
to find patients with highly increased sensitivity to radia-
tion in PBMCs which should lead to a certain attention.
For osimertinib no case reports or clinical data are avail-
able. However, increase of sensitivity to radiation is found
on the cellular level by delaying DNA damage repair [36].
Effects of alectinib and crizotinib in combination with RT
are still discussed controversially, since there are results for
both radioprotecting and radiosensitizing ability in NSCLC
[37–39]. These diverse outcomes corroborate our thesis that
there are interindividual differences in radiosensitivity in
cancer patients, which hints at the need to monitor patients
particularly closely during RT or if possible, testing every
case.

There are a few limitations of our study mainly that blood
samples were irradiated and analyzed, exclusively. Basi-
cally, the number of patients treated with KI in our clinic
is currently low, which is why large cohorts are difficult to

collect. Nevertheless, there is noticeable evidence for the
correlation of radiosensitivity and the outcome of our FISH
analysis of radiosensitivity of PBMCs [26]. In addition, the
number of radiosensitive individuals was increased in the
cancer cohort than compared to the healthy control group
[6]. Different types of medications are able to increase ra-
diosensitivity. Anti-HIV drugs can also increase individ-
ual radiosensitivity [15]. Especially the drug efavirenz is
known to induce double strand breaks via the induction of
cellular oxidative stress [40]. Several kinase inhibitors such
as BRAF inhibitors vemurafenib and dabrafenib as well
as phosphoinositide 3-kinase inhibitor idelalisib are able
to increase radiosensitivity, too [8, 18]. Previous studies
were able to show more favorable survival and less toxicity
with BRAFi interruption during RT [7]. Furthermore, only
small patient cohorts treated with the different KIs were
included in our study. Thus, more patients treated with the
same inhibitor are needed to validate our data, especially
relating blood samples of patients before KI treatment and
under sustained maintenance KI therapy post-RT. This type
of cohort might be advantageous, since the B/M values
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show strong interindividual differences. Those strong dif-
ferences could be mitigated by expanding this group of pa-
tients. Also, other commonly used kinase inhibitors such as
gefitinib or erlotinib should be included in this patient-re-
lated study. It is of certain interest to generate larger groups
of the same tumor entity to find reliable correlations be-
tween radiosensitivity in healthy tissue and specific kinase
inhibitors and irradiation schemes including multiple doses
related to clinical fractionation should be assessed for fol-
low-up projects. However, in contrast to previous data, we
were able to examine a total of 744 blood samples with
the same method. Previous research mainly focused on in-
dividual cases (case reports) or small case series of cancer
patients [18, 32].

Although kinase inhibitors seem to increase radiation
sensitivity, this must not be a disadvantage in the treatment
of cancer patients. If kinase inhibitors influence cellular ra-
diation sensitivity in the blood, this effect could lead to in-
creased local tumor control, too. This is an advantage when
modern radiotherapeutic methods are used to irradiate more
and more precisely and thus less normal tissue is at risk.
There is clear evidence that there is a relationship between
radiosensitivity of blood and tissue in mice (Rübe et al.
2008), which makes lymphocytes an appropriate represen-
tative for healthy tissue. Individual radiosensitivity evalu-
ated by using in vitro irradiated patient-derived blood lym-
phocytes has been found to correlate with normal tissue
reactions [41–44]. Noticeably, an early case report demon-
strated complete remission after dramatic dose reduction
(1.8 to 0.6Gy) in an 11-year-old boy diagnosed with ataxia
telangiectasia [45]. In addition, blood samples can easily be
incorporated into everyday clinical practice and are avail-
able in a patient-friendly manner. Sensitizing the tumors of
patients for radiation therapy could be an advantage for ra-
diation oncology, when monitoring the patients closely for
possible side effects. KI targeting the DNA damage repair
proteins PARP1 and PARP2, as well as DNA-PK, ATM and
ATR seem to be promising targets for combination with ra-
diation therapy. On the cellular level there is evidence that
cytotoxicity can be increased with combination therapy in
cancer cells [46–48]. Even though there is an increased
risk of skin toxicity with combined therapy using BRAF
inhibitors, it is usually well tolerated by most patients [30].

Different approaches are commonly used to analyze ra-
diosensitivity. Cell death, colony forming ability, pathways
regarding DNA damage repair and related proteins can be
therefore targeted. These assays are easy to establish and
use for a clinical approach, but mainly look at only one
aspect of cellular radiosensitivity. Using three-color FISH
analysis for measuring chromosomal aberrations harbors
different advantages compared to more simple assays. The
FISH approach uses lymphocytes blocked at the late G2
phase. Therefore, they had to undergo an almost complete

cell cycle. Occurrence of cell death, inability to overcome
checkpoints and lack of potent DNA repair are covered by
this procedure. Taken together, we are able to cover a wide
range of possible effects of radiation, leading to a highly re-
liable indicator of individual radiosensitivity. Nevertheless,
the combination of several approaches, e.g., FACS analysis
of PBMCs or whole blood samples, should be considered
in the future to back our conclusions.

Conclusions

In 6 out of 7 KIs, we found patients with B/M≥ 0.6,
even within groups of small numbers of cases. In to-
tal 17 patients, out of 49, treated with kinase inhibitor
showed B/M values ≥0.6, which represents 35% of all
KI patients. Remarkably, kinase inhibitors do not induce
chromosomal aberrations by themselves. Higher B/M val-
ues in the 0Gy samples were related to a short period
of time between the blood collection and a previous irra-
diation. Which rules out that chromosomal instability is
not induced by drug treatment, but mainly related to the
previous radio(chemo)therapy. Finally, there is evidence
for interactions between irradiation and small molecules
and correlations of improved overall survival after com-
bination therapy were published in renal cell carcinoma
and melanoma brain metastasis [49, 50]. Therefore, radia-
tion therapists should give attention to these findings and
common clinical use of radiosensitivity testing should be
further developed. Ideally, as a consequence of our data
presented in this study, all patients should undergo a close
clinical monitoring during concomitant kinase inhibitor and
RT. Concerning the up-scaling capability more knowledge
about identifying subgroups is needed from distinct clinical
trials focusing on simultaneous treatment of irradiation and
kinase inhibitors and further more specific related entities
harboring more risks or gaining benefit form combination
therapy. The development of evidence-based recommenda-
tions regarding treatment interruptions or dose adaptions
of KI during RT regarding risk of severe side effects on
healthy tissue should be a major focus of research to guide
individual radiation oncologists in clinical routine.
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