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Abstract

Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell
dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5
homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor
expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the
human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but
only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration
of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted
nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a
gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins’
well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373
cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures
associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were
associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or
survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not
sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of
cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a
mechanism that normally restrains inappropriate cell migration.
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Introduction

Cell migration is essential for normal embryonic development,

wound healing, and immunity but can be devastating in tumor

invasion and metastasis. Netrins are secreted, laminin-related

proteins that direct cell and axon migration during neural

development (reviewed by [1]). Netrin-1 and netrin receptors

DCC, the DCC paralogue neogenin, and UNC5 proteins, are also

expressed in many adult tissues [2–9], but their function in mature

tissues is poorly understood. Netrin-1 is widely expressed by

neurons and glia in the adult CNS [5][10]. Reduced expression of

netrin-1 has been documented in brain tumors, including

glioblastoma [4], however, a role for netrins regulating brain

tumor cell migration has not been established.

Although substantial evidence suggests an anti-oncogenic role for

DCC, how disruption of netrin signaling might contribute to

malignancy is poorly understood. In colorectal cancer, allelic deletion

involving chromosome 18q21 occurs in .70% of tumors [11] and the

dcc gene was first identified as a putative tumor suppressor from this

chromosomal deletion [2]. Dcc expression is reduced in many cancers,

including most high-grade gliomas [12] [13]and loss of DCC

correlates with the development of highly invasive glioblastoma

multiformae [13]. Furthermore, ectopic expression of dcc in

transformed epithelial cells reduced tumorigenicity [14] [15], and

expression of DCC antisense RNA in transformed fibroblasts resulted

in an increased growth rate, anchorage independence, and tumori-

genicity when the cells were transplanted into nude mice [16]. No

increased incidence of tumor formation has been detected in

conventional DCC knockout mice [17], however, conclusions drawn

from this study were complicated by the possibility that tumors may

not have had time to develop due to the early post-natal lethality of

DCC knockouts. Unc5 homologue netrin receptors signal chemor-

epulsion, and co-expression of DCC often facilitates UNC5 function

(reviewed by [1]). Four UNC5s, UNC5A-D, are expressed in

mammals. Altered expression of UNC5A, B, C, and D has been

detected in various cancers and tumor cell lines [6,18][19].

Here we investigated the possibility that netrins and netrin

receptors influence tumor cell migration. Using human glioblas-

toma cell lines, we provide evidence that DCC is required for
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chemoattraction to netrin-1 and slows the rate of spontaneous cell

migration. Our findings support a role for netrins as autocrine

inhibitors of cell motility that regulate focal adhesions (FA).

Results

Glioblastoma cells express netrin and netrin receptors
To determine if netrins regulate glioblastoma cell migration, we

first characterized netrin and netrin receptor expression in human

astrocytoma cell lines U87, U343, and U373, and in cultures of

astrocytes isolated from newborn rat cortex (Fig. 1A). Western blot

analysis using an antibody that binds netrin-1 and netrin-3 [20]

detected a ,75 kDa band corresponding to full-length netrin in

conditioned medium collected from all cells tested. The DCCIN

monoclonal antibody detected a ,185 kDa band corresponding

to DCC in astrocyte and U87 cell lysates. In contrast, DCC was

not detected in lysates of U343 or U373 cells. The DCC

homologue neogenin was expressed by astrocytes and was detected

in all glioblastoma cell lysates.

RT-PCR (Fig. 1B) revealed dcc expression by U87 cells but not

U343 or U373 cells, and neogenin and unc5 expression by all three

cell types. U87 and U343 cells express unc5b and c, and U373 cells

express unc5b, c, and d. Netrin-1 expression was detected in U343

and U373 cells, and netrin-3 expression in U87 cells. Netrin-1 and

netrin-3 are essentially functionally equivalent: both bind DCC

and UNC5 proteins and evoke chemoattractant or chemorepellent

responses from responsive cells [21].

We then sought to determine if netrin might exert an autocrine

influence on cell migration. We first assessed the relative motility

of the three cell lines using a transfilter chemotaxis assay as

described [22]. Briefly, cells were cultured on the upper surface of

a porous membrane (Fig. 1G) and allowed to migrate across.

Following migration, cells remaining on the upper surface of the

membrane were scraped off, and the cells that migrated to the

underside were fixed, stained, and counted. While this assay is

often employed to assess the migration of cells in response to a

putative attractant or repellent cue, here we used it in the absence

of added factors to compare the relative rates of spontaneous

migration of the three glioblastoma lines. U343 and U373 cells,

lacking DCC, migrated significantly faster than DCC-expressing

U87 cells (Fig. 1C). Notably, the U343 cells, which were originally

derived from a grade IV glioblastoma multiformae [23], migrated

significantly faster than either the U87 or U373 cells, both of

which were originally derived from less aggressive grade III

astrocytomas [24].

Autocrine netrin inhibits U87 cell motility
We hypothesized that DCC and netrin expressed by U87 cells

might exert a kinetic influence on the rate of cell movement,

independent of netrin’s influence on directional migration. We

therefore tested the effect of disrupting DCC and netrin function

on the spontaneous rate of U87 cell migration. The rate of

spontaneous migration was not affected by addition of a DCC

function-blocking antibody (DCCFB). In order to disrupt autocrine

netrin function, netrin function-blocking antibody (NetFB) was

added to both the top and bottom compartments of the migration

chamber. This resulted in an approximately 10-fold increase in

spontaneous migration across the filter relative to the number of

Figure 1. Glioblastoma cell lines express netrins and their receptors: Endogenous netrin inhibits U87 and U373 cell migration. (A)
Western blot analysis of cell lysates or conditioned media from astrocytes (Ast), U343, U373, and U87 cells. Molecular mass markers (kDa) are indicated
to the left of each blot. Full-length netrin protein (,75 kDa) was detected in medium conditioned by each glioma cell line or by astrocytes (top
panel). A band corresponding to full-length DCC protein (,185 kDa) was detected in whole cell lysates of astrocytes and U87 cells, but not U343 and
U373 cells. This blot was overexposed to reveal DCC in astrocytes and its absence in U343 and U373 cells. U343 and U373 cells transfected with pDCC-
GFP express DCC-GFP chimeric protein, which migrates at a slightly higher molecular weight than endogenous DCC (middle panel). A ,190 kDa
band, the molecular weight of full-length neogenin, was detected in lysates of all three cell lines (bottom panel, 30 mg protein/lane). (B) RT-PCR
analysis of U87, U343 and U373 cell total RNA. (C) Transfilter microchemotaxis assays of U87, U343, and U373 motility. 1 p,0.05 vs. U87. * p,0.05 vs
U343. (D) U87 cell migration increased when 25 mg/ml netrin function-blocking antibody (NetFB) was added to the top and bottom compartments,
relative to medium alone (Control), or control antibody (Control IgG). 10 mg/ml DCCFB did not increase migration. (F) Netrin function-blocking
antibody (NetFB) significantly increased U373 cell migration, but had no effect on U343 cell migration (E). (G) Schematic diagram of microchemotaxis
assay. Number of cells migrated is per 10X objective field. Duration of microchemotaxis assays was 16 hrs. * p,0.05 vs. control.
doi:10.1371/journal.pone.0025408.g001

Autocrine Netrin Restrains Cell Motility
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cells migrating in either medium alone (Control) or in the presence

of a control IgG (Fig. 1D).

Autocrine netrin-1 inhibits migration of U373, but not
U343, glioblastoma cells

Netrin’s capacity to inhibit U87 cell motility in a DCC-

independent manner led us to determine if a similar mechanism

was active in U343 or U373 cells, which do not express DCC. The

addition of netrin function-blocking antibody to both the top and

bottom compartments of the transfilter assay significantly

increased the rate of U373 migration (Fig. 1F), indicating that

endogenous netrin-1 inhibits the rate of U373 migration.

Unlike U87 and U373 cells, blocking netrin function did not

alter the rate of U343 cell migration (Fig. 1E). Although U343 cells

express neogenin and UNC5 homologue netrin receptors, the

absence of an increase in the rate of migration may be the result of

mechanisms that restrain inappropriate cell motility being more

severely disrupted in these cells.

Netrin-1 is a chemotropic attractant for U87 glioblastoma
cells

Transfilter migration assays were then used to determine if

DCC-expressing U87 cells can respond to a gradient of netrin-1 as

a chemoattractant. Addition of 100 ng/ml netrin-1 to the bottom

compartment of the migration chamber (NB) produced a

significant increase in the number of U87 cells that migrated

across the membrane relative to control (medium alone: Fig. 2A,

16 hr assay; Fig. 2B, 48 hr assay). In contrast, when netrin-1 was

added to both the top and bottom compartments (NTB),

migration was not significantly different from control. This

indicates that U87 cells respond to a gradient of netrin-1 as a

chemotropic attractant. When challenged with a gradient of

netrin-1 whilst in the presence of the DCCFB antibody in the top

and bottom wells (NB DCCFB), U87 cell migration was not

significantly different from control, indicating that the tropic

response of U87 cells to netrin-1 requires DCC. Neither U343 nor

U373 cells, which do not express DCC, altered their migration in

response to a gradient of netrin-1 (Fig. 2C), despite expressing

neogenin and UNC5 netrin receptors. These findings suggest that

although these receptors may be sufficient to mediate autocrine

inhibition of migration (Fig. 1F), they are insufficient for these cells

to generate a chemotropic response to a gradient of netrin-1

(Fig. 2C).

Chemoattractant response of DCC-expressing U343 and
U373 cells to a gradient of netrin-1

To further investigate the contribution of DCC to the regulation

of cell motility, we reintroduced the dcc gene back into U343 and

U373 cells by transfection with a cDNA encoding a DCC-GFP

chimera (pDCC-GFP, described by [25]). The proportion of cells

expressing DCC-GFP was increased by passaging the cells with

Geneticin selection, such that the vast majority of cells seeded in

the migration assays expressed DCC. Expression of DCC by U343

and U373 cells was confirmed by western blot (Fig. 1A). Unlike the

Figure 2. Netrin-1 is a chemoattractant for DCC-expressing glioblastoma cells. (A,B) Addition of 100 ng/ml netrin-1 to the bottom
compartment (NB) of the transfilter microchemotaxis assay significantly increased U87 cell migration compared to control (medium alone). NB:
netrin-1 bottom; NTB: netrin-1 top and bottom; NB DCCFB: netrin-1 bottom, DCC function-blocking antibody top and bottom. Similar results were
obtained in assays lasting (A) 16 hours and (B) 48 hours. (C) Netrin-1 in the bottom compartment had no effect on the migration of U343 or U373
cells. (D) U343 cells transfected with a DCC expression construct (U343D control) reduced their rate of migration relative to the parental line (U343P).
Increased migration of DCC-transfected U343 cells was evoked by netrin-1 in the bottom compartment (U343D NB), but not uniform netrin-1 (NTB).
DCCFB blocked this response (U343D DCCFB). (F) Transfection of U373 cells with DCC produced responses similar to U343 cells, which mimic those
seen in DCC expressing U87 cells. Number of cells migrated is per 10X objective field. 16 hr assays in all panels except (B). * p,0.05 vs. control (A,B),
U343P (D) or U373P (E). 1 p,0.05 vs. U343D control (E) or U373D control (F).
doi:10.1371/journal.pone.0025408.g002
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parental U343 and U373 cell lines, DCC-GFP-expressing U343D

and U373D cells migrated up a gradient of netrin-1 (Fig. 2D, E),

indicating that ectopic expression of DCC now rendered these

cells competent to generate a chemotropic response to netrin-1.

Like DCC-expressing U87 cells, the gain-of-function migration

towards netrin-1 exhibited characteristics of chemotropic attrac-

tion, as the cells only responded to a gradient. Uniform

presentation of exogenous netrin-1 resulted in migration that

was not significantly different from control. The DCCFB antibody

blocked the chemoattractant response of U343D and U373D cells,

indicating that DCC is required for chemoattraction to netrin-1.

Consistent with the slow migration of DCC-expressing U87

cells, the number of DCC-transfected U343 and U373 cells that

migrated under control conditions was substantially reduced

relative to that of the parental cells (Fig. 2D, E). These findings

suggest that DCC expression decreases the motility of these cells;

however, application of the DCC function-blocking antibody

(DCCFB) did not increase the rate of migration, as was also found

for the U87 cells (Fig. 1D). In constrast, DCCFB completely

blocked the chemoattractant migratory response of the U87 cells,

and the DCC-transfected U343 and U373 cells to a gradient of

netrin-1. These findings are consistent with DCC activating a

mechanism that slows non-directional cell migration; however, this

mechanism can be differentiated from DCC-dependent chemoat-

traction due to its insensitivity to DCCFB.

Chemoattraction to netrin-1 is converted to repulsion by
laminin-1

Laminin-1 exerts a neuromodulatory influence that converts the

response of Xenopus retinal ganglion cell growth cones to netrin-1

from attraction to repulsion [26]. We therefore investigated the

possibility that laminin-1 might influence the migratory response

of U87 cells to a gradient of netrin-1 (Fig. 3). When U87 cells were

challenged with an ascending gradient of laminin-1 (LB), the

number of cells that migrated across the membrane increased. In

the presence of a uniform concentration of laminin (LTB), U87

migration was not significantly different from control, indicating

that a gradient of laminin-1, like netrin-1, is a chemoattractant for

these cells. Interestingly, the combination of an ascending gradient

of netrin-1 and a uniform concentration of laminin-1 (LTB NB)

dramatically reduced the number of U87 cells that migrated across

the membrane to the extent that it was significantly less than

control, suggesting that laminin-1 converted the reponse to netrin-

1 from attraction to repulsion. Consistent with this, confronting

cells with a descending netrin-1 gradient in the presence of a

uniform concentration of laminin-1 (LTB NT) resulted in an

increase in migration relative to control. Importantly, this finding

provides strong evidence that laminin-1 does not influence the

response to a gradient of netrin-1 by arresting cell motility. When

the cells were simultaneously exposed to uniform concentrations of

netrin-1 and laminin-1, (LTB NTB), fewer cells migrated across

Figure 3. U87 attraction to netrin is converted to repulsion by laminin-1. (A) U87 migration in the microchemotaxis assay challenged with
an ascending gradient of laminin-1 (LB) increased relative to control (C). A uniform distribution of laminin-1 (LTB) does not increase U87 migration. An
ascending gradient of netrin-1 and uniform laminin-1 (LTB NB), or uniform distributions of both netrin-1 and laminin-1 (LTB NTB), results in reduced
U87 migration. Challenging cells with a descending gradient of netrin-1 with a uniform distribution of laminin-1 (LTB NT), evoked increased migration
relative to control. Addition of DCCFB to both the top and bottom compartments in the presence of a uniform distribution of laminin-1 and an
ascending gradient of netrin-1 (LTB NB DCCFB) or of uniform distributions of both netrin-1 and laminin-1 (LTB NTB DCCFB) blocked the decrease in
migration observed. (B) Schematic depicting migratory responses of U87 cells in (A). Migration assayed after 48 hrs. * p,0.05 vs. control.
doi:10.1371/journal.pone.0025408.g003
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the membrane, indicating that the combined action of netrin-1

and laminin-1 exerts a non-directional effect that inhibits U87 cell

motility. These results are consistent with laminin-1 switching

netrin-1 from an attractant to a repellent for U87 cells, as

previously described for the axons of Xenopus retinal ganglion cells

[26]. Addition of DCCFB antibody in the presence of a uniform

concentration of laminin-1 and either an increasing gradient (LTB

NB DCCFB) or uniform concentration (LTB NTB DCCFB) of

netrin-1, did not significantly affect migration compared to

control, indicating that the laminin-induced repellent response to

netrin-1 requires DCC. This is consistent with a requirement for

DCC in chemorepellent responses to netrin-1, documented in

many cell types [27] [28], including glial precursor cells [29–

31][22][32].

Netrin-1 and DCC do not affect U87, U343, and U373 cell
proliferation or survival

DCC and UNC5 homologues have been proposed to function

as dependence receptors, activating apoptosis in the absence of

netrin-1 [33]. This raises the possibility that the effects described

above may be due to an influence on cell survival and not motility.

Thus, we examined the consequences of manipulating netrin

function on the survival of U87, U343 and U373 cells. No

significant change in cell number (Fig. 4A), or activation of

caspase-3, an indicator of apoptosis (Fig. 4B), was detected

following 16 hrs treatment with exogenous netrin-1, laminin-1, or

both; nor following disruption of netrin or DCC function using

blocking antibodies. Further testing, by blocking netrin and DCC

function for 48 hrs, again resulted in no detectable increase in

caspase-3 activation (Fig. 4C). In contrast, staurosporine, applied

as a positive control, activated caspase-3 and caused extensive cell

death (Fig. 4B, C). These findings are consistent with previous

analyses of glial precursor cells, indicating that netrin-1 and DCC

do not regulate oligodendroctye precursor survival either in vitro or

in vivo [22][34], and they support the conclusion that the results of

transfilter assays reflect changes in cell migration and not effects on

cell survival or proliferation.

Endogenous netrin promotes the maturation of focal
complexes into focal adhesions

Cell migration requires the formation of transient adhesive

contacts with the extracellular matrix (ECM). Initial contacts

occur at the leading edge of lamellipodia where integrins bind

ECM ligands and recruit proteins such as vinculin and paxillin to

Figure 4. Neither netrin-1 nor laminin-1 affect the survival or proliferation of U87, U343, or U373 cells. (A) Cell viability was assessed by
labeling F-actin with Alexa 488-conjugated phalloidin, nuclei with Hoechst, and counting the number of cells. Addition of netrin-1, laminin-1, or both
did not affect U87 cell viability. Neither 25 mg/ml NetFB nor 10 mg/ml DCCFB affected cell number. The number of U343 or U373 cells did not change
following addition of 100 ng/ml netrin-1 or 25 mg/ml NetFB (16 hr assay). (B) To further assess apoptotic cell death under the same conditions
analyzed in panel A, cell lysates were analyzed by immunoblot for the active (cleaved) form of caspase-3. In all three cell lines, a 17 kDa caspase-3
band (black arrowhead) was only observed in lysates exposed to staurosporine, a potent inducer of apoptosis. The white arrowhead indicates a
nonspecific 15 kDa immunoreactive band. (C) To determine if netrin regulates apoptosis through a ‘dependence’ mechanism, cells were treated with
antibodies blocking either DCC or netrin function for 48 hours. As in panel B, only staurosporine treatment promoted cell death. Ponceau S staining
demonstrates equal loading. Ctrl C control; Lam L laminin-1; Net N netrin-1; Netfb Nfb netrin function-blocking antibody; DCCfb Dfb DCC function-
blocking antibody; LN laminin-1 and netrin-1; NDfb Netrin-1 and DCCfb; LNDfb Laminin-1 netrin-1 and DCCfb; R pre-immune rabbit IgG; St
staurosporine.
doi:10.1371/journal.pone.0025408.g004
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form immature adhesive contacts called focal complexes (FC)

(reviewed by [35]). The transition from FC to FA is marked by

consolidation of the adhesive contact, an increase in size, and the

recruitment of additional proteins including zyxin [36].

The effect of disrupting netrin function on adhesive complex

formation in glioblastoma cells was investigated by examining the

distribution of paxillin, which is present in both FAs and FCs, and

zyxin, which is present in FAs but not FCs. The influence of netrin

on FC formation was quantified by subtracting the distribution of

zyxin immunoreactivity (Fig. 5C, H, M, R, W) from paxillin

immunoreactivity (Fig. 5B, G, L, Q ,V) to create images

representing regions of paxillin, but not zyxin localization (Fig. 5D,

I, N, S, X). Using the ‘paxillin minus zyxin’ images, the density of

FCs present in each lamellipodium was calculated. Exposure of U87

cells to an isotype control antibody (RbIgG), DCCFB, or netrin-1,

resulted in no change relative to control. In contrast, application of

NetFB resulted in increased FC density (Fig. 5Z). A similar increase

was observed when netrin function was inhibited in U373 cells, but

not U343 cells, in which FC density was high in all conditions

examined (Fig. 5AA and AB, data not shown).

To determine if inhibiting endogenous netrin function influ-

ences FA density, images depicting regions of paxillin and zyxin

colocalization were generated (Fig. 5E, J, O, T, Y). From the

‘paxillin and zyxin’ images, the density of FAs in each

lamellipodium was calculated. In U87 (Fig. 5AC) and U373

(Fig. 5AE) cells, addition of netrin function-blocking antibody

resulted in decreased FA density. In all other conditions analyzed

for U87 and U373 cells and in all conditions analyzed for U343

cells, no change in FA density was observed.

Notably, the increase in FC density and corresponding decrease

in FAs correlates precisely with the changes in motility evoked by

disrupting netrin function and measured using the microchemo-

taxis assay (Fig. 1). The absence of an effect of the DCC function-

blocking antibody provides evidence that DCC function is not

essential for this non-directional effect of netrin on motility,

consistent with the lack of an effect of disrupting DCC function on

the rate of cell migration (Fig. 1). That the addition of exogenous

netrin-1 protein did not influence FC or FA density suggests that

the relatively high level of netrin protein secreted by the cells is

sufficient to saturate the inhibitory response in the conditions

described here. These data are consistent with a mechanism in

which autocrine secretion of netrin promotes the maturation of

FCs into FAs, and that the accumulation of these adhesive

structures restrains cell movement.

Netrin and netrin receptors are localized to focal
adhesions, but not focal complexes

We next investigated the possibility that netrin and netrin

receptors might be localized to FCs or FAs and thereby directly

influence their maturation. U87, U343, and U373 cells were

labeled with antibodies against paxillin and one of DCC, netrin, or

UNC5 proteins. U87 cells were also labeled with anti-DCC and

anti-zyxin (Fig. 6). In U87 cells netrin (Fig. 6A–C), DCC (Fig. 6M–

O) and UNC5 (Fig. 6G–I) immunoreactivity colocalized with large

paxillin-positive foci characteristic of FAs (white arrowhead), but

not smaller paxillin-positive structures characteristic of FCs (black

arrowhead). In U343 and U373 cells that lack DCC expression,

netrin (Fig. 6D–F, P–R) and UNC5 (Fig. 6J–L, V–X) immuno-

reactivity was similarly localized to FAs but not FCs. Consistent

with localization to FAs, DCC and zyxin immunoreactivity

colocalized in U87 cells (Fig. 6S–U). Colocalization with markers

of FAs is consistent with netrins and netrin receptors regulating

cell-substrate adhesion and motility.

Discussion

Here we provide evidence that secreted netrins can function as

autocrine inhibitors of cell motility. Our findings support the

conclusion that DCC is required for cells to migrate directionally in

response to a gradient of netrin-1. Ectopic DCC expression

conferred on U343 and U373 cells the capacity to respond to a

gradient of netrin-1. DCC expression also slowed the rate of

spontaneous migration in these cells, consistent with DCC

restraining cell movement. The glioblastoma-derived cell lines tested

express either netrin-1 (U343, U373) or netrin-3 (U87). Disrupting

endogenous netrin-1 or netrin-3 function dramatically increased the

rate of U87 and U373 cell movement. U87 cells express DCC while

U373 cells do not, indicating that in addition to DCC slowing cell

migration, netrins must influence the motility of these cells through a

DCC-independent mechanism. Unc5 homologue netrin receptors

are required for axonal growth cone repulsion and collapse induced

by netrin-1, and co-expression of DCC often facilitates UNC5

function (reviewed by [1]). Our findings support the hypothesis that

UNC5 proteins, in collaboration with DCC, underlie the netrin-

mediated inhibition of motility described here; however the role of

UNC5 homologues in these cells remains to be tested directly.

Consistent with increasing the rate of cell motility, disrupting

endogenous netrin function increased the number of lammelipodial

FCs, immature adhesive contacts that are associated with cell

movement. Netrin, DCC, and UNC5 immunoreactivity was co-

localized with FA but not FC markers, suggesting that netrin may act

at the nascent FA itself to promote the maturation of FCs to FAs.

Netrin, focal adhesions, and cell motility
Netrin-1 signaling through DCC directs the organization of F-

actin [25], regulating the activation of RhoGTPases, PAK1,

MAPK, FAK, and Src family kinases [25][37–44]. FAK and Src

are also activated downstream of UNC5 proteins in response to

netrin [45] [46]. FAs are sites of interaction for many proteins

[35]. Our evidence indicates that netrin and netrin receptors are

localized to FAs. We hypothesize that netrins may contribute to

restricting cell movement by promoting FA maturation. Numerous

proteins present in FAs have been implicated in signaling

downstream of netrin: FAK, Src, the Ena/VASP proteins [47],

Rho-family GTPases Cdc42, Rac, and RhoA [25][48][43] and the

GEF Trio [49]. FAK is activated by autophosphorylation that

creates a binding site for Src-family kinases. Association with FAK

initiates a FAK-Src signaling complex. Extensive tyrosine

phosphorylation is a key signaling event observed in focal

adhesions, as it is thought to create ‘docking’ sites for recruitment

of SH2 domain-containing proteins required for further signaling

events (reviewed by [50]). FAK and Src regulate the phosphor-

ylation of UNC5B on multiple tyrosine residues upon netrin

binding, and that following these phosphorylation events, Src

associates directly with UNC5B via its SH2 domain. Interestingly,

this is enhanced by, but does not absolutely require, DCC function

[46], perhaps reflecting that co-expression of DCC can facilitate

UNC5 function (reviewed by [51]). Notably, FAK is required for

the maturation of adhesive complexes [52], and, together with Src,

is essential for the normal turnover of FAs (reviewed by [50]). The

findings we present here provide a foundation for investigating the

role of netrin-1 in the formation of focal adhesions.

An emerging role for netrin in adhesion and tissue
morphogenesis

Netrin-1 and netrin-3 are secreted proteins, which raises the

question of how they may contribute to anchoring a cell to either the

substrate or another cell. The majority of netrin-1 protein in the
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Figure 5. Disrupting netrin function increases the number of FCs and reduces the number of FAs in lamellipodial protrusions of
U87 and U373, but not U343, cells. (A, F, K, P, U) U87 cells were labeled with antibodies against paxillin (green) and zyxin (red). FCs present in
lamellipodia of U87 cells were identified and quantified by subtracting zyxin immunoreactivity (C, H, M, R, W) from paxillin immunoreactivity (B, G, L,
Q, V), revealing localization of paxillin without zyxin (D, I, N, S, X). (Z) Density of paxillin+/zyxin- foci. FAs in U87 cell lamellipodia were identified and
quantified by generating images of paxillin and zyxin co-localization (E, J, O, T, Y) and determining the density of paxillin+/zyxin+ foci (AC). 25 mg/ml
control rabbit IgG (Rb IgG; K–O), 100 ng/ml netrin-1 (P–T) or 10 mg/ml DCCFB (U–Y) resulted in no change in FC or FA density relative to control
medium (A–E). 25 mg/ml NetFB (F–J) significantly increased the density of FCs (Z) and decreased FA density (AC). FCs and FAs of U373 cells were
similarly affected (AB, AE). FC of FA density was not altered by control antibody, netrin-1, or NetFB in U343 cells (AA and AD). 100x objective, scale bar
= 2 mm. * p,0.05 vs. control.
doi:10.1371/journal.pone.0025408.g005
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CNS is not freely diffusible, but is bound to cell surfaces and

extracellular matrix [5][53](reviewed by [51]). DCC binding

immobilized netrin-1 mediates cell-substrate adhesion, consistent

with a role for netrin mediating cell-matrix interactions [38][48].

Key roles for netrins and netrin receptors have been identified

during tissue morphogenesis (reviewed by [54]), including develop-

ment of the mammary epithelium [55], pancreas [56], lung [57],

lymphangiogenesis [58], and during angiogenesis [59] [60].

Furthermore, overexpression of netrin-1 by cells in the intestinal

epithelium of mice led to the formation of focal hyperplasias and

adenomas [61]. These authors concluded that the phenotype

induced was due to netrin-1 reducing cell death; however, our

findings raise the possibility that disruption of appropriate cell-cell

interactions as a result of netrin-1 overexpression may contribute to

the disorganization of normal epithelial structure.

How might secreted netrins influence tumor cell
migration in vivo?

Our findings suggest that loss of netrin function may lead to

disruption of appropriate cell-cell and cell-matrix interactions. We

have provided evidence that in the presence of laminin-1, netrin-1

becomes a repellent for U87 cell migration, and that this requires

DCC (Fig. 3). Importantly, the combined action of netrin-1 and

laminin-1 may influence glioblastoma cell migration in vivo. Laminin-

1 is restricted to basement membranes and capillary walls in

developing and mature CNS [62–64]. Although deregulated cell

migration makes an important contribution to the dissemination of

tumor cells within the brain, metastasis of brain tumor cells outside

the CNS is rare. Glioma cells are attracted to endothelial capillaries

in vitro [65] and glioblastoma cells migrate in close association with

capillary walls as they disseminate within the brain [66]. Laminin-1

may facilitate this as it promotes glioma cell migration [67] [68].

Based on our evidence that laminin-1 biases cells to respond to

netrin-1 as a repellent (Fig. 3, see also [26]), the basal lamina may

inhibit the migration of glioma cells expressing netrin-1 and DCC.

In contrast, in the absence of netrin function, our findings predict

that deregulation of this inhibition of migration will lead to laminin-1

in the basal lamina of blood vessels becoming a permissive substrate

that promotes tumor cell migration and dissemination to other brain

regions. Correlated loss of DCC expression with tumor progression

suggests that netrin and DCC may play an important role in tissue

maintenance in adulthood. We propose that appropriate cellular

organization may be stabilized by autocrine and paracrine actions of

netrin. Our findings suggest that loss of effective netrin signaling may

disinhibit a mechanism that normally restrains cell migration. In the

absence of netrin-mediated inhibition, local cues such as laminin, are

predicted to become potent promoters of migration.

Numerous cell types expressing both netrin and netrin receptors

in vivo have been described. We provide evidence that autocrine

expression of netrin can restrain cell migration, and promote the

maturation of focal complexes into focal adhesions. These findings

identify a novel netrin function that may contribute to the

formation and maintenance of tissue organization, and identify

netrin and its receptors as potential therapeutic targets to inhibit

tumor cell migration and dispersion.

Materials and Methods

Cells and cell culture
Human glioblastoma cell lines, U87, U343, U373 (ATCC,

Rockville, MD) and astrocytes isolated from newborn mouse brain

Figure 6. Netrin and netrin receptors are localized to FAs but not FCs. U87, U343, and U373 cells were labeled with antibodies against
paxillin (green) and netrin, DCC, and UNC5 proteins (red; all panels except S–U) or zyxin (green) and DCC (red; S–U), and lamellipodia imaged. In U87
cells, small, paxillin-positive FCs localized at the lamellipodial edge were not netrin-positive (black arrowhead). Netrin immunoreactivity co-localizes
with larger paxillin-positive structures located away from the lamellipodial edge (white arrowhead), consistent with FAs (A–C). UNC5 (G–I) and DCC
(M–O) immunoreactivity were similarly localized to FAs in U87 cells. DCC immunoreactivity also co-localized with zyxin-positive FAs (S–U). Similarly, in
U343 and U373 cells, netrin (D–F, P–R) and UNC5 proteins (J–L, V–X) co-localize with FAs, but not FCs. 100x objective, scale bar = 2 mm.
doi:10.1371/journal.pone.0025408.g006
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were grown as monolayer cultures in DMEM (Invitrogen,

Burlington, ON), 10% heat-inactivated fetal bovine serum (FBS,

Invitrogen), 1% glutamax-1 (Invitrogen) and 1% penicillin/

streptomycin. All procedures using animals were performed in

accordance with the Canadian Council on Animal Care guidelines

for the use of animals in research, and were approved by the

animal care review board of the Montreal Neurological Institute

(approval ID # 4330).

Antibodies, conditioned media, cell lysates, western
blotting, and PCR

Antibodies against the following were used: cleaved caspase-3

(Asp175, mouse, Cell Signaling Technology, Beverly, MA); DCC

(DCCIN, mouse, G97-449; BD Biosciences Pharmingen, San Jose,

CA; DCCGT, goat, A-20; Santa Cruz Biotechnology, Santa Cruz,

CA; function-blocking, DCCFB, mouse, AF5; Calbiochem, La

Jolla, CA); netrin-1 and 3 (PN2, rabbit [5]); netrin function-

blocking (NetFB, PN3, rabbit [5]); neogenin (rabbit, Santa Cruz

Biotechnology); paxillin (mouse, BD Biosciences Pharmingen);

Unc5C (rabbit [45], provided by Dr. Tony Pawson, Mount Sinai

Hospital, Toronto, ON; isotype control rabbit IgGs (RbIgG;

Invitrogen); and zyxin (rabbit, Abcam, Cambridge, MA).

Cultures were grown to 80% confluence and conditioned media

collected following 48 hrs in serum-free DMEM. For lysates, cells were

grown to 80% confluence, rinsed with PBS and lysed in 1 ml of hot

sample buffer (60 mM Tris/HCl, pH 6.8, 2% SDS, 10% glycerol,

100 mM DTT). For western blot analysis of cleaved caspase-3, cells

were cultured at a density of 120,000 cells/well in a 12-well tissue

culture plate. Nitrocellulose immunoblots were probed with DCCIN

(0.5 mg/ml), PN2 anti-netrin (4 mg/ml), anti-cleaved caspase-3

(1:1000), or anti-neogenin (0.4 mg/ml). After washing, membranes

were incubated with HRP-coupled secondary antibodies and

immunoreactivity visualized using chemiluminescence (NEN, MA).

PCR was carried out using standard methods. Total RNA was

isolated from glioblastoma cells using Trizol (Life Technologies,

MD) and cDNA prepared using SuperScript II reverse transcrip-

tase (Invitrogen). Primers were annealed at 60uC to amplify netrin-1

(527 bp), netrin-3 (429 bp) and dcc (434 bp), 58uC for neogenin

(545 bp) and unc5C (530 bp), and 55uC for unc5A (215 bp), unc5B

(350 bp), and unc5D (324 bp).

human netrin-1 F: 59GCCGCCACTGCCATTACTGC 39

R: 59GAGGGGCTTGATTTTGGGACACTT 39,

human netrin-3 F: 59CCGCTGGGCTTCTTCTCC 39

R: 59GCAGCGGCCGCAGTCAGG39,

human dcc F: 59CAAGTGCCCCGCCTCAGAACG 39

R: 59GCTCCCAACGCCATAACCGATAAT 39,

human neogenin F: 59 TGGCCCAGCACCTAACCT 39

R: 59TTGCCGGGCCTGTACCATTGATTG 39

human unc5a F: 59 TCGTCAAGAACAAGCCAGTG 39

R: 59 GCACTGGCACCAGTATTC 39

human unc5b F: 59 TCCAGCTGCATACCACTCTG 39

R: 59 AGCCACCAGCATCTCACTCT 39

human unc5c F: 59 GCCAGCAAGTGGAAGAACTC 39

R: 59 CACACTCTGCCCTTCACAGA 39

human unc5d F: 59 ATATTCCCCCATTCCTCTGG 39

R: 59 TAGCACAAATCCGCTGTCGTCTG 39

Transfilter chemotaxis assay
Cells were plated at a density of 46105 cells/ml on

polycarbonate transwell culture inserts (6.5 mm diameter with

8 mm pore size, Corning). 100 ml of cell suspension was applied to

the upper surface of the filter, and the filters placed in the wells of a

24-well plate over 600 ml of medium. DMEM with 0.2% BSA,

100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM gluta-

max was the base medium used for all assay conditions. Following

migration, cells on the upper side of the filter were scraped off, and

the cells attached to the lower side of the filter fixed with 4%

paraformaldehyde (PFA)/0.1% glutaraldehyde (30 min, 4uC).

Filters were rinsed with PBS, and cell nuclei stained with Hoechst

dye. Four transwells were used per condition. Four images of each

filter were captured using a 10 X objective and nuclei counted

using Northern Eclipse software (Empix Imaging, TO). Where

pooled results are presented, the value ‘percent migration vs.

control’ for a given trial represents the number of cells migrated in

that condition expressed as a percentage of the mean number of

cells migrating in control conditions. Recombinant netrin-1

protein was purified as described [38] and used at a concentration

of 100 ng/ml. Laminin-1 was used at 10 mg/ml (BD Biosciences,

Bedford, MA). NetFB and rabbit isotype control IgG (used as a

control) were added at a concentration of 25 mg/ml. DCCFB was

added at a concentration of 10 mg/ml. Statistical significance was

calculated using Student’s t-test and error bars represent S.E.M.

Plasmids and transfection
U343 and U373 cells were transfected using lipofectamine

(Invitrogen) with expression constructs encoding either green

fluorescent protein (GFP) alone or DCC tagged at its C-terminus

with GFP [25]. Seventy-two hrs after transfection, the medium was

changed to selection medium containing Geneticin (Invitrogen).

Confocal image analysis
104 cells were plated per well in chamber slides (Fisher) coated

with 20 mg/ml poly-D-lysine (Sigma) at 4uC overnight, washed

with Hanks buffered salt solution (Invitrogen) and allowed to dry.

Cells were fixed in 4% PFA, 4% sucrose in PBS, and

permeabilized with 0.25% Triton X-100 in PBS. Blocking was

performed in 3% heat-inactivated normal goat serum, 2% BSA,

and 0.125% Triton X-100 in PBS. Cells were then incubated with

anti-paxillin and anti-zyxin (Fig. 5), anti-paxillin and one of anti-

netrin PN2, anti-UNC5, or anti-DCCGT, or anti-zyxin and anti-

DCCGT (Fig. 6) diluted in blocking solution. Primary antibodies

were detected with secondary antibodies coupled to Alexa 546 or

Alexa 488 (Molecular Probes).

For imaging adhesive complexes, single confocal optical slices

through the base of lamellipodia were collected. Identical settings

were used for each condition examined for a given cell line. The

outermost region of individual lamellipodial protrusions (excluding

regions of paxillin or zyxin immunoreactivity contiguous with

adhesive structures in the cell body) was outlined using Image J

software [69]. Mask images were then generated representing

either the regions staining with both paxillin and zyxin (using the

‘AND’ function) or representing the difference between the

paxillin and zyxin images (the zyxin signal subtracted from the

paxillin image). Images were adjusted to eliminate signal below a

minimum value that was held constant across all images for each

cell line. Signal in the ‘AND’ image corresponds to the area of

each lamellipodium occupied by mature FAs that contain both

paxillin and zyxin. To quantify FCs, the subtracted image

representing paxillin staining without zyxin was filtered to exclude

structures smaller than 3 pixels or larger than 40 pixels. The

number of individual adhesions was then counted and the density

of adhesions within each lamellipodium calculated. Netrin-1 was

used at 100 ng/ml, NetFB and rabbit preimmune IgG (as a

control) at 25 mg/ml, and DCCFB at 10 mg/ml.

Analysis of cell number and apoptosis
To investigate changes in cell survival or proliferation, cells were

plated at a density of 30,000 cells per well in 8-well chamber slides
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(Fisher), allowed to settle for 2 hrs, treated as described for 16 hrs,

fixed and stained with Alexa-488 conjugated phalloidin and

Hoechst, and the number of live cells per 20 X field counted. To

measure levels of apoptosis in these cultures, 120,000 cells were

cultured in each well of a 12-well tissue culture plate, allowed to

settle for 2 hrs, and treated as described for either 16 or 48 hrs. In

all cases, the base medium used was DMEM with 2% FBS,

penicillin/streptomycin, and glutamax-1. Statistical significance

was calculated using Student’s t-test and error bars represent

S.E.M.
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