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Abstract: [PdCl4]2− dianions are oriented within a crystal in such a way that a Cl of one unit
approaches the Pd of another from directly above. Quantum calculations find this interaction to be
highly repulsive with a large positive interaction energy. The placement of neutral ligands in their
vicinity reduces the repulsion, but the interaction remains highly endothermic. When the ligands
acquire a unit positive charge, the electrostatic component and the full interaction energy become
quite negative, signalling an exothermic association. Raising the charge on these counterions to +2
has little further stabilizing effect, and in fact reduces the electrostatic attraction. The ability of the
counterions to promote the interaction is attributed in part to the H-bonds which they form with both
dianions, acting as a sort of glue.

Keywords: π-hole; counterions; molecular electrostatic potential; AIM; energy decomposition

1. Introduction

More than a century of study of the hydrogen bond (HB) [1,2] has yielded a myriad
of facts, ideas, and principles concerning this crucial linker in the microscopic world. It
has been learned [3–25] that Coulombic forces are a critical factor, wherein the polarization
of the R-H covalent bond induces a partial positive charge on the H which attracts an
approaching nucleophile. This basic attraction is supplemented by a charge transfer
from the lone electron pair of the nucleophile to the antibonding σ*(R-H) orbital of the
acid. Other contributing factors arise from mutual polarization of the two subunits and
London dispersion. The HBs that result from this confluence of phenomena are both
ubiquitous and of enormous importance [7,12,14,26–30], essential for life, occurring within
such biomolecules as proteins or nucleic acids, enzymatic reaction pathways, catalytic
intermediates, and of course in water.

Of more recent interest are a number of other closely related noncovalent interactions,
where the bridging H of the HB is replaced by any of a long list of atoms that lie on the right
of the periodic table. These bonds are typically classified by the family of the bridging atom,
e.g., halogen, chalcogen, tetrel, pnicogen, and triel bonds. However, they share with the
HB many of the same contributing factors [31–33]. The bridging atom acquires a positive
region, differing from the H only in that this region is more localized, which can similarly
attract a nucleophile. Moreover, like the HB, these other noncovalent bonds are likewise
stabilized by charge transfer, polarization, and dispersion [34–42].

As a ubiquitous and powerful force, the HB contributes heavily to assembling and
preserving the architecture of supramolecular synthons [15,43–55]. Of the sorts of as-
semblies to which H-bonds contribute, among the most intriguing are those that contain
“like–like charge” interactions where ions of like charge lie adjacent to one another. These
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anion···anion [56–72] and cation···cation [72–77] interactions are counterintuitive and have
generated recent and extensive scrutiny [5,77–81], being called among other names an
“anti-electrostatic” hydrogen bond (AEHB) [78,82]. In one picture, the Coulombic repulsion
is overcome by resonance-type covalency represented by n→π*/n→σ* charge transfer [82].
Another view claims that the nominal point charge-point charge repulsion is oversim-
plified [83], and the full electrostatic term is more complicated, arising from the charge
distribution over the entire subunit, as well as charge penetration effects. Another factor
helping to overcome the implicit repulsion is the cooperativity of hydrogen bonding not
only in simple dimers, but also within larger clusters [73], with a supporting role played by
dispersion. Such cooperativity has been confirmed from both spectroscopic (IR, NMR) and
computational perspectives [73].

Our own group has extended the understanding of this question to anion–anion inter-
actions that involve π-holes [59–61,66–71]. These systems were stabilized by an assortment
of noncovalent bonds, including pnicogen, triel, spodium, noble gas, and alkali earth bonds.
The calculations showed that these complexes were metastable in the gas phase, wherein
the dissociation was impeded by an energy barrier, but were fully stable in solution, despite
their like charges. The innate attractive forces in systems such as tetrachloridopalladate(II)
or trichloridomercurate(II) units) [66,68] were demonstrated by AIM, NBO, and NCI analy-
ses, supported by experimental data. The results showed how the presence of counterions
could stabilize these anion–anion interactions, in large part through the attenuation of the
charges residing on the interacting anions.

One very recent study in particular [66] explored the interaction between a pair of
[PdCl4]2− dianions. The double charge on each makes for a particularly repulsive naked
Coulombic repulsion. Indeed, in the absence of any surrounding environment, these two
dianions strongly repel one another. However, the inclusion of a few of the surrounding
counterions, along with the H-bonds which they form to these dianions, enables the entire
system to be held together as seen in the crystal. In this case, the two dianions are held
together in part by a charge transfer from the Cl lone pair of one unit to the vacant Pd
π-orbitals lying above the plane of the other.

The present work is designed to explore the precise mechanism whereby this nominally
highly dianion–dianion repulsion can be overcome by such external species. What is the
relative importance of the charges on these surrounding molecules as compared to the
H-bonds which they form with the anions? Is this a purely electrostatic phenomenon, or
are there strong elements of polarization and charge dispersal which are important? Are
there any specific stabilizing interactions between the pair of [PdCl4]2− units which can act
to hold them together if the overall Coulombic repulsion can be overcome, and how might
these noncovalent bonds be affected by the surrounding molecules?

The analysis is designed to focus on a specific system whose crystal structure has been
determined as an example. Figure 1 displays the relevant portion of the NETMOO [84]
system, which shows some of the most important interactions. One can see the contact
between the Cl of the upper unit and the Pd of that below. Quantum calculations attributed
this arrangement to a π-hole bond wherein Cl lone pairs of one unit transfer charge to
vacant orbitals above the Pd center of its neighbor [66]. It is also apparent that the NH
groups of the counterion can engage in NH···Cl H-bonds with either of the dianions. As a
starting point, the two [PdCl4]2− anions are placed in the positions which they occupy in the
crystal. Then, various models, of various size and complexity, of the counterions are added
to the system in stages, monitoring the strength and nature of the interactions. The size
of the counterion is examined by the comparison of the full +NH3CH2CH2CH2CH2NH3

+

species which occurs in the crystal with shorter versions such as Ca2+. Not only is the
latter much smaller, but it is unable to engage in H-bonds. Other model ligands were
considered of charge +1 and 0 so as to monitor the effect of the overall ligand charge. For
example, removing a proton from +NH3CH2CH2CH2CH2NH3

+ yields the very similar
but monocationic +NH3CH2CH2CH2CH2NH2 whose effects can likewise be compared
with the much smaller NH4

+ and with K+ as a non-H-bonding cation. The models can be
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extended to those with no charge at all, such as NH2CH2CH2CH2CH2NH2, NH3, and Ar.
Lastly, one can isolate the effects of a purely electrostatic treatment by replacing any of
these species with a series of point charges, incapable of accepting any charge from any of
the participating units, or engaging in any noncovalent bonding of any sort.
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Figure 1. View of the crystal structure of the studied system (CSD REFCODE: NETMOO [84]).
(a): View of the PdCl42− anions (b) View of one unit-cell content showing the layered character of the
structure. In both views, the shortest hydrogen bonds are shown as dashed lines.

2. Computational Methods

Quantum calculations were carried out with the aid of the Gaussian 16, Rev. C.01
set of codes [85]. DFT computations employed the PBE0-D3 functional with the explicit
inclusion of dispersion corrections, along with the def2TZVP [86–88] basis set. The extrema
of the molecular electrostatic potentials (MEP) were measured on the 0.001 au isodensity
surface using the MultiWFN program [89,90]. NBO analysis (NBO 7.0 [91]) probed the
details of charge transfer and supplied natural atomic charges. Bader’s AIM methodol-
ogy [92] elucidated bond paths and quantitative measures of their strength via the AIMAll
suite of programs [93]. The decomposition of interaction energies was carried out at the
PBE0-D3/ZORA/TZ2P level of theory through the ADF-EDA procedure according to the
Morokuma–Ziegler scheme embedded in ADF software [94–96]. The solid-state geometries
were accessed through the Cambridge Structural Database (CSD, ver. 5.42 with updates)
and supporting CCDC software, Mercury and ConQuest [97,98]. Theoretical computations
were based on the NETMOO [84] crystal structure. Heavy atoms were fixed in their crystal
coordinates, and the H atom positions optimized. The basis set superposition error (BSSE)
was corrected via the standard counterpoise procedure [99].

3. Results

The geometry of the model system, taken directly from the X-ray coordinates, is
exhibited in Figure 2a, which surrounds the PdCl42− dimer by four counterion ligands.
The reader should be aware that a finite excerpt from a full crystal structure is considered
here. There are a multitude of H-bonds connecting these counterions to the dianions. To
avoid overcomplication of the figure, only very short ones, with R(H···Cl) less than 2.4 Å,
are shown explicitly by the broken blue lines. Figure 2b focuses on the dianion dimer itself,
showing clearly that the Cl of the top unit approaches the Pd of the lower to within 3.217 Å.
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3.1. Direct Interactions between PdCl4 Units

The initial calculation focuses on the isolated PdCl42− dimer, in the absence of
any counterions. The first row of Table 1 documents the strong repulsion between the
two naked dianions. The interaction energy of the pair within their X-ray structure is
+212 kcal/mol. Most of that can be attributed to a highly repulsive electrostatic component
of +218 kcal/mol. Indeed, it would be difficult to generate any degree of attraction for
the negatively charged Cl atom when the maximum of the MEP above the Pd atom is
−371 kcal/mol, especially when coupled with the VS,min on the Cl of −387 kcal/mol.

Table 1. Interaction energy and its electrostatic component for interactions between subunits, and the
maximum and minimum of the MEP of the uncomplexed subunits (kcal/mol), and total charge (Q, e)
assigned to PdCl4 segment within complexes.

Eint EES Vs,max VS,min Q c

(PdCl4)2−
2 +212 +218 −371 −387 −2.00

neutral

+4 Ar +209 +206 −184 −202 −2.00

+4 NH3 +182 +173 −172 −194 −1.96

+4 L0,a +157 +159 −162 −185 −1.92

+4(PC)0,b +182 −2.00

+1

+4 K+ −97 −94 −58 −75 −1.91

+4 NH4
+ −111 −99 −56 −72 −1.80

+4 L+ −101 −94 −53 −70 −1.82

+4 (PC)+ −98 −2.00

+2

+2 Ca2+ −121 −44 −27 −63 −1.73

+2 L2+ −124 −64 −64 −84 −1.85

+2 (PC)2+ −108 −2.00
a L refers to the butyl ligands with amino groups on both ends. L0 has NH2 on both ends, L+ has NH3

+ on one
end near the PdCl4, L2+ has NH3

+ on both ends for total charge of +2. b PC refers to the constellation of point
charges that approximate L0, L+, or L2+, respectively. c total charge on each PdCl4 unit (average of two).
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The next rows of Table 1 indicate the effects of adding four neutral ligands around this
dianion pair. For the purposes of examining the interactions of the two principal dianions,
two of these ligands were assigned to each PdCl4 unit to compose a [PdCl4]2−L2 subunit.
The MEP was computed for each [PdCl4]2−L2 subunit, and the interaction energy between
them was computed as the energy of the dimerization reaction (1)

2 [PdCl4]2−L2 → [PdCl4]2−
2L4 (1)

The Ar atoms were placed at the positions of the proximate N atoms of the NH3-
(CH2)4-NH3

2+ counterions within the X-ray structure, as were the N atoms of the NH3
units. The H atoms of the latter were optimized and thus engaged in NH···Cl H-bonds with
the anions. The Ar atoms have essentially no effect on the repulsive energy between the
two anions, diminishing it by only 3 kcal/mol. The Ar atoms do reduce the negative value
of VS,max, lowering its magnitude from −371 to −184 kcal/mol. They also strongly reduce
the negative potential on Cl, lowering VS,min from −387 to −202 kcal/mol. However,
the electrostatic component of the interaction is little changed, dropping from +218 to
+206 kcal/mol. Nor does Ar absorb any of the negative charge of these anions, leaving their
total charge at −2.00.

The H-bonds connected with NH3 have a larger impact, albeit still fairly small. VS,max
drops a bit more, down to −172 kcal/mol, and VS,min is reduced as well, causing a drop in
EES to +173 kcal/mol. The NH3 units absorb a small amount of density, leaving the charges
on the PdCl4 dianions at −1.96. Nevertheless, the interaction energy remains high at
+182 kcal/mol. Extending the NH3 units to the full NH2(CH2)4NH2 ligands, likewise
capable of engaging in NH···Cl H-bonds, has a further stabilizing effect. These longer
species absorb a bit more of the anion’s charge, reducing it to −1.92, and raises VS,max
a small amount, up to −162 kcal/mol and also reducing the magnitude of VS,min. The
electrostatic component and interaction energy are accordingly reduced as well, both down
below +160 kcal/mol.

In order to distinguish the effects of this longer ligand arising from purely electro-
static considerations, from H-bonding, polarization, dispersion, and so on, these four
NH2(CH2)4NH2 ligands were each replaced by a series of point charges. There was a one-
to-one replacement of each atom of the ligand by such a charge, which was superimposed
on the atomic position, and was assigned the natural charge equal to that of the ligand
within the complex. The next row of Table 1 shows that this constellation of point charges
has a small stabilizing effect on the dianion repulsion, less than that of the true ligand,
and only roughly equivalent to the much smaller NH3 molecule. Of course, as simply a
collection of charges, these pseudoligands cannot absorb any charge, so that of each ligand
remains at −2.00. So, it is clear that the H-bonds connected with the full ligands, as well as
any charge which they can accept from the anions, have a significant effect on stabilizing
the anion pair, albeit far too small to make this interaction attractive.

A second iteration of this analysis would involve placing a positive charge on each
ligand. The simplest such counterion, and one incapable of engaging in a H-bond, would
be a monatomic cation such as K+. As exhibited in the next row of Table 1, the inclusion
of four such cations makes the interaction exothermic with negative values of Eint. The
presence of these cations also strongly reduces the negative values of both VS,max and
VS,min, both smaller in magnitude than−80 kcal/mol. These changes are partly responsible
for the negative, attractive electrostatic component at −94 kcal/mol.

The Eint of −97 kcal/mol is enhanced to −111 kcal/mol if the K+ is morphed into the
NH4

+ ion of roughly the same size, but with the added capability of forming NH···Cl H-
bonds. This mutation has a small reducing effect on the MEP extrema and drops the formal
charge on the PdCl4 unit to−1.80, adding to a slightly more negative EES, which contributes
to the more negative interaction energy. Enlarging the ammoniums to the much longer
NH2(CH2)4NH3

+ was done in such a way that it is the positively charged NH3
+ unit that

is placed close to the PdCl4 species. This counterion enlargement has a slightly deleterious
effect, increasing Eint from −111 to −101 kcal/mol, as well as dropping the electrostatic
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attraction energy by 5 kcal/mol. This rise in Eint may be due to the lesser concentration
of the positive charge in the larger cation. Each of these counterions, whether NH4

+ or
NH2(CH2)4NH3

+, involves itself in two NH··Cl H-bonds for a total of four such bonds
with each PdCl4 unit. The replacement of the ligand atoms by their corresponding point
charges is just slightly less effective, with Eint becoming less exothermic by 3 kcal/mol.

It may be noted further from Table 1 that the electrostatic components are all quite
attractive when any of these monocations are added, nearly −100 kcal/mol. On the other
hand, even with these counterions present, VS,max on Pd remains negative by between 53
and 58 kcal/mol. This contradiction argues against taking a positive VS,max as a condition
for an exothermic association. In sum, adding a +1 charge to the surrounding ligands
enables them to absorb a bit more of the (PdCl4)2− dianion’s negative charge. Most
effective in this regard is the set of four ammonium cations which drop the dianion’s charge
down to −1.80.

The last few rows of Table 1 refer to the addition of two dications instead of the four
monocations. (The smaller number of the former is necessary in order to maintain overall
electroneutrality. Equation (1) must be modified to describe each subunit as [PdCl4]2−L2+).
Despite the reduction in their number, the dications prove more effective at promoting
a more exothermic association. Whether the small monatomic Ca2+ or the much larger
NH3(CH2)4NH3

2+ dications, Eint drops below −120 kcal/mol. Even the collection of point
charges designed to mimic the long ligand dication is effective in this regard, with Eint of
–108 kcal/mol. The comparison of the Ca2+ and the L2+ systems enables some assessment
of H-bonds, which are only possible for the latter. It is intriguing that although the H-
bonding ligands leave both VS,max and VS,min more negative, the total electrostatic term is
nonetheless more attractive when compared to Ca2+.

In fact, upon moving the analysis to the dications, the electrostatic component diverges
substantially from the full Eint. These two quantities differ by some 60–80 kcal/mol. More
specifically, while the transition from monatomic K+ monocation to Ca2+ dication makes
Eint more negative, and the same sort of change can be seen from L+ to L2+, it has the
opposite effect on EES, which becomes substantially less negative. This change to a less
attractive electrostatic term contrasts with the less negative VS,max quantities associated
with the monatomic ions. Despite their smaller number, the Ca2+ dications are much better
at dispersing the negative charge on the central dianions than K+, dropping this charge
down to −1.73. There is much less distinction between the longer ligands, where the
dications are slightly poorer at absorbing this charge than the monocations.

3.2. Secondary Interactions

It must be understood that the interaction energy between the two subunits is not
wholly due to the Pd···Cl bond. The electrostatic term arises from interactions between
the entire charge distributions of each subunit, which includes not only the central PdCl4
but also any ligands appended to it. There are also polarization and dispersion energies
that involve the entire electron clouds. Added to that are a number of specific noncovalent
contacts as well. For example, the NH groups on the small NH3 and NH4

+ entities on one
subunit can engage in H-bonds with the Cl atoms of the PdCl4 of the other, but also NH··N
H-bonds with one another. The same is true of the larger ligands comprised of NH and
CH proton donors. Even the monatomic counterions, such as K+ and Ca2+, are capable of
forming specific bonding contacts with the Cl atoms of the opposite subunit.

One can elucidate such interactions via the examination of AIM bond paths. In order to
convey some sense of the number of these bonds, the AIM diagram of the system containing
four full monocationic ligands is provided in Figure 3. There is a multitude of H-bonds
and other noncovalent interactions between these ligands and both PdCl4 units, and even
between one another. The inset to Figure 3 focuses on the dianion pair and one of these
ligands for greater clarity. Figure 4 places clearly in evidence the various H-bonds that
arise when these ligands are replaced by the smaller NH4

+, NH3, and K+ species. The chief
markers of the strengths of these various interactions are contained in Table 2. The first



Molecules 2022, 27, 2144 7 of 12

column displays the density of the Pd···Cl bond path between the two subunits, which
seems to be relatively constant at 0.013 au. This nearly fixed amount is not surprising
in view of the fact that the intermolecular Pd···Cl distance was held constant at its X-ray
value regardless of the addition of any ligands, and ρBCP has been shown repeatedly in the
literature [12,100,101] to be very sensitive to this interatomic distance. Prior works in the
literature [102] have found and used a relationship that ties the energy of a noncovalent
bond to 1

2 V, where V represents the potential energy density at the bond critical point.
The use of this relationship leads to an estimate of the Pd··Cl bond energy as roughly
3 kcal/mol, as listed in the penultimate column of Table 2.
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The other two columns of Table 2 report the bond critical point density and potential
energy density as a sum of all bond paths that stretch between the two subunits, exclusive
of Pd···Cl. These values suggest that the Pd···Cl bond is only part of the story, and that in a
number of cases, AIM would suggest that the sum of the other noncovalent interactions
exceeds this primary component. This energy sum from the last column of Table 2 shows
a clear progression from monatomic species, such as Ar and K+, to the small H-bonding
NH3 and NH4

+, up to the largest ligands containing the connecting butyl chain. Notice
also that this auxiliary sum drops off for the dicationic species.
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Table 2. AIM properties of bond critical points between subunits in complexes.

ρ, au − 1
2 V, kcal/mol

Pd···Cl Σothers a Pd···Cl Σothers a

(PdCl4)2−
2 0.014 - 2.67 -

neutral

+4 Ar 0.013 0.027 2.73 4.81

+4 NH3 0.013 0.053 2.77 8.93

+4 L0,a 0.013 0.058 2.80 10.03

+4(PC)0,b 0.013 - 2.74 -

+1

+4 K+ 0.014 0.028 3.00 4.54

+4 NH4
+ 0.014 0.066 3.01 10.79

+4 L+ 0.014 0.071 3.01 11.60

+4 (PC)+ 0.014 - 2.97 -

+2

+2 Ca2+ 0.014 0.012 2.89 1.69

+2 L2+ 0.014 0.033 2.84 5.90

+2 (PC)2+ 0.013 - 2.81 -
a between [PdCl4]2−Ln units, n = 2 for neutral and monocationic ligands, 1 for dications. b PC refers to the
constellation of point charges that approximate L0, L+, or L2+, respectively.

Given the magnitude of the collective auxiliary noncovalent bonds within these com-
plexes, it is perhaps not surprising that neither the total interaction energy nor even the full
electrostatic term in Table 1 can always be closely related to the magnitudes of the MEP
extrema on the Pd and Cl atoms, which concern only one of several noncovalent bonds.
The ability of the counterions within the crystal structure to stabilize the entire lattice is
mainly due to their effects on the PdCl4 units. Moreover, these ligands also act as a glue
between PdCl4 units by forming H-bonds with both. This glue is further augmented by
H-bonds between the counterions themselves.

As the electrostatic is the leading force stabilizing the current crystal, it is worth
comparing the bonding between adjacent, oppositely charged atoms here with that which
occurs within a common salt such as NaCl. The atoms of the [PdCl4]2− dianions that come
closest to one another are the Cl of one unit and the Pd of the other. This R(Pd···Cl) distance
is 3.217 Å in the system described above, which is considerably shorter than 3.97 Å which
corresponds to the sum of Pd and Cl vdW radii [103]. In NaCl, the R(Na···Cl) distance is
only 2.8 Å in the crystal, also smaller than their vdW radii sum of 4.3 Å, so in this sense
NaCl offers local attractive behavior that is parallel to that in the system under investigation
here. If one now extracts a structure similar to the crystallographic arrangement of two
[PdCl4]2− from the NaCl lattice, i.e., a [NaCl4]3−···[NaCl4]3− arrangement on lattice sites,
it will become repulsive between the two units, just like in the Pd case. Adding neutral
solvents will not cure this, but adding counterions will. So, qualitatively, a simple salt
crystal will behave similarly to the Pd dianion system upon increasing the fragments
investigated. Of course, the covalency of the PdCl bonds in the dianions along with the
presence of the hydrogen bonds make a difference, but only on a quantitative level, which
is explored in this work.

4. Conclusions

The interaction between the two naked PdCl42− dianions is clearly highly repulsive.
The introduction of neutral ligands reduces the magnitudes of the negative MEP maxima
and minima, which helps lower the electrostatic repulsion energy, but the interaction en-
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ergy remains quite positive nonetheless, roughly equal to its total electrostatic component.
Adding a positive charge to the ligands further reduces the magnitudes of the MEP extrema,
although they remain negative. Nevertheless, these cations reverse the sign of the elec-
trostatic and interaction energies, turning the latter exothermic by roughly 100 kcal/mol.
Changing from four monocationic ligands to two dications reduces the total electrostatic
attractive component but makes the total interaction energy a bit more exothermic. The
stabilizing effect of the counterions is only partly due to the dispersal of the negative
charges on the PdCl42− units or the reduction of the negative value of the π-hole on Pd.
In a more global sense, the addition of the cationic ligands changes the formal charge on
the entire subunit from −2 for naked PdCl42− unit to 0 after their introduction. The ability
of these counterions to engage in H-bonds with both PdCl4 units further acts as a glue
holding them together. A partial contribution to this structure cohesion is achieved via
NH···Cl hydrogen bonds.
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