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Design of a Broadband Solar 
Thermal Absorber Using a Deep 
Neural Network and Experimental 
Demonstration of Its Performance
Junyong Seo1,3, Pil-Hoon Jung2,3, Mingeon Kim1, Sounghyeok Yang1, Ikjin Lee1, 
Jungchul Lee1, Heon Lee2* & Bong Jae Lee1*

In using nanostructures to design solar thermal absorbers, computational methods, such as rigorous 
coupled-wave analysis and the finite-difference time-domain method, are often employed to 
simulate light-structure interactions in the solar spectrum. However, those methods require heavy 
computational resources and CPU time. In this study, using a state-of-the-art modeling technique, i.e., 
deep learning, we demonstrate significant reduction of computational costs during the optimization 
processes. To minimize the number of samples obtained by actual simulation, only regulated amounts 
are prepared and used as a data set to train the deep neural network (DNN) model. Convergence of the 
constructed DNN model is carefully examined. Moreover, several analyses utilizing an evolutionary 
algorithm, which require a remarkable number of performance calculations, are performed using the 
trained DNN model. We show that deep learning effectively reduces the actual simulation counts 
compared to the case of a design process without a neural network model. Finally, the proposed solar 
thermal absorber is fabricated and its absorption performance is characterized.

In recent decades, clean and abundant solar energy has been considered to be a promising renewable energy 
source to help mitigate rising fossil fuel prices, global warming, and environmental pollution. One of the efficient 
ways to utilize solar energy is to use a solar thermal energy conversion system. Compared to conventional photo-
voltaics, the advantage of solar thermal energy conversion is the achievement of high energy conversion efficiency 
via broad-band absorption across the entire solar spectrum. To obtain the maximum conversion efficiency of 
solar radiation, the solar thermal absorber should be able to interact with a broad spectrum of solar radiation 
from the visible to the near-infrared (IR) spectral region, while suppressing mid-IR emission to minimize heat 
loss at high temperatures. However, it remains challenging to achieve a highly efficient solar absorber because of 
limitations in the fabrication of complicated nanostructures. To overcome this fabrication difficulty, we hereby 
propose a relatively simple subwavelength-sized nanostructure and perform design optimization to achieve high 
solar thermal conversion efficiency.

By inducing electromagnetic resonance, subwavelength-sized nanostructures have great potential for use in 
tailoring the radiative properties of system, especially the absorption spectrum1–4. Well-designed nanostruc-
tures with desirable radiative properties can be utilized as selective1,3,4 and broadband absorber5. In designing 
subwavelength-sized nanostructures, precise prediction of the corresponding radiative properties resulting from 
light-structure interactions is crucial. Computational electrodynamics methods, such as rigorous coupled-wave 
analysis6 (RCWA) or the finite-difference time-domain7 (FDTD) method, are often employed for this purpose. 
Because the optical resonance phenomena occurring with periodic nanostructures are complicated and highly 
correlated with the structural geometry, determining the structure that possesses the desired radiative properties 
cannot be accomplished via simple parametric studies. Rather, more systematic structural optimization and par-
ametric analysis are needed.
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Recently, design and analysis methods that do not consider input and output configurations have been stud-
ied8,9. Because these methods treat a problem as a black box, they are beneficial in that any problems can be 
investigated. Furthermore, problems can be solved globally instead of locally because the methods are applicable 
over entire problem domains. For instance, search based algorithms10 (simulated annealing, genetic algorithm, 
particle swarm optimization, etc.) have been used for global optimization. To explore the whole variable space, 
the proposed approaches are based on numerous performance computations. To design subwavelength-sized 
nanostructures by applying the algorithms listed above, significant reduction of performance computation time is 
necessary. In this research, a surrogate model based on sample training is employed to reduce the computational 
cost of solar thermal absorber design.

A surrogate model can, based on training data, predict the behavior of an actual system. To construct a more 
precise surrogate model, machine learning has recently been used as a modeling technique11–13. In particular, 
deep learning, which is a machine learning method that uses a deep neural network (DNN) as a model, has been 
broadly applied to solving mechanical problems. DNNs have been applied for estimating certain properties and/
or the performance of a system11,12, or for predicting the future behavior of a system13. For instance, Sajedian et 
al.12 predicted the resonant properties of a plasmonic metamaterial using a DNN; they also predicted the shape 
of a structure possessing an arbitrary absorption spectrum. Most works, however, are focused on precise output 
prediction with respect to input only, even though any network that makes good predictions can be used as a sur-
rogate model. By considering the model as an alternative to an actual system, further investigation of the system, 
e.g., optimization can be conducted based on the model. In addition, because a surrogate model can reduce the 
computational cost by directly predicting an output from an input, analysis methods requiring heavy computa-
tional resources can also be applied.

In the present study, we demonstrate first a surrogate design process utilizing a surrogate DNN model to 
reduce the time required for estimating the radiative properties of subwavelength-sized nanostructures. As an 
example, we propose a new design for a broadband solar thermal absorber based on a simple two-dimensional 
grating14. After successful training, Various optimizations and sensitivity analysis will be conducted with the 
trained network model replacing the original RCWA calculations. For optimization, particle swarm optimiza-
tion15 (PSO) and multi-objective optimization16 (MOO) methods will be employed to find deterministic, robust17, 
and constrained optima. Furthermore, we will also fabricate the broadband solar thermal absorber, made of an 
embedded Cr grating, by nanoimprint lithography (NIL) and measure its solar absorptance.

Modeling
Because the solar spectrum covers from 280 nm to 4,000 nm, a broadband absorber is necessary to fully utilize 
solar energy. Although complicated nanostructures have been proposed as efficient solar thermal absorbers2,18,19, 
a simple fishnet design is proposed here to simplify the fabrication process while maintaining high solar absorp-
tion performance. As an absorbing material, we chose Cr because it has stronger intrinsic absorption than many 
novel metals and can also support plasmonic resonance in the visible spectrum20. As shown in Fig. 1, the pro-
posed structure includes a fishnet grating (made of Cr), which is embedded in a SiO2 layer. The topmost SiO2 layer 
is intentionally added to prevent physical damage of the grating structure, as well as to induce an anti-reflection 
effect21. In Fig. 1, the dimensional parameters (i.e., period Λ, grating width w, grating thickness dg, thickness 
of topmost SiO2 layer duf, and thickness of bottom SiO2 film dbf) and polar (φ) and azimuthal angles (θ) of the 
incident radiation are depicted. As a reference, based on the results reported in our earlier publication14, we set 
Λ = 600 nm, w = 50 nm, dg = 200 nm, duf = 100 nm, and dbf = 100 nm. For simplicity, both φ and θ are set to 

Figure 1.  Schematic of a Cr embedded-grating solar absorber.

https://doi.org/10.1038/s41598-019-51407-2


3Scientific Reports |         (2019) 9:15028  | https://doi.org/10.1038/s41598-019-51407-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

zero. Since the grating structure is symmetric along both the x- and y-axes, only the transverse magnetic (TM) 
polarization, in which the electric field oscillates in the x-direction, is considered. The open-source RCWA soft-
ware package22 is employed to calculate the spectral absorptance αλ. With respect to the optical constants of the 
constitutive materials, the Lorentz-Drude model20 is used for Cr, and tabulated data23 are used for SiO2. Using the 
spectral absorptance, the solar absorptance αsol is calculated as
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where Gdsi(λ) is the direct solar irradiance spectrum. A total of 221 data points (each with 10-nm intervals) are 
calculated in the wavelength region of 300 nm to 2,500 nm, where approximately 99% of solar energy is radiated. 
The RCWA code was executed using a workstation with an Intel Xeon processor (eight cores with 2.70 GHz); it 
took approximately 20 min to obtain each αλ spectrum.

To construct a surrogate model that can predict the solar absorptance of Cr embedded-grating structures with 
various geometric parameters, a DNN was employed. Because the effects of the number and size of hidden layers 
are not clearly known24, various numbers of nodes and layers of a DNN structure were studied. To achieve high 
accuracy, the DNN structure was constructed as complicated as possible because the functional relationship 
between the input and output variables cannot be known a priori. To train the DNN model, a training data set, 
i.e., {Input:(Λ, w, dg, duf, dbf)→Output:αsol}, was first generated. To achieve unbiased sampling, a Latin-Hypercube 
(LH) sampling25 spread within the parametric boundaries (Table 1) was adopted. Training of the DNN model was 
started with 300 training data set. A validation accuracy of the DNN model was measured by the root mean 
square error (RMSE) between the true αsol (i.e., directly obtained from the RCWA calculation) and the α

sol pre-
dicted from the DNN model of additional 100 LH samples, which were not included in the training data set. If the 
calculated RMSE did not reach a certain criterion (set to be 0.01 in this work), we added more samples to the 
training data set. At each step of validation, from 50 to 100 samples were added to the training data set until the 
convergence criterion is satisfied. In addition to the validation data set, we also compared the predicted optimum 
value with validated optimum value to make sure that the DNN model captures response of the system in the 
extrema. As a result, we achieved the RMSE of 0.003 with a total of 1,566 training data set. Furthermore, a regu-
larization process26 along with the validation was also applied to prevent the over-fitting effect of an excessively 
complex model. In the present study, we designed a structure of DNN as five hidden layers with ten nodes in each 
layer. All of the nodes are fully connected, and it took approximately a minute to train our DNN model. As we 
aimed earlier, the DNN model had lower validation error than the other surrogate modeling methods (see 
Supplementary information, Figure S1).

For the deterministic and constrained optimization, particle swarm optimization (PSO)15, which utilizes 
swarm intelligence, was applied over the network to determine the globally optimal design of the solar absorber. 
Because LH samples are distributed uniformly inside the variable range, over/underestimation problems occurred 
because of the lack of samples near the boundaries. To resolve this issue, additional data on near-boundary sam-
ples should be included in the training data set. As listed in Table 2, an additional 288 near-boundary samples 
were trained. In addition to the deterministic optimization, we also conducted robust optimization17 to find an 
absorber design that was relatively insensitive to fabrication errors. A multi-objective genetic algorithm16 was 
used for the robust optimization19; that is, the one objective function was to maximize the solar absorptance, and 
the other was to minimize the variation of the solar absorptance (i.e., standard deviation σsol) arising because of 
fabrication errors. In this work, the fabrication errors were assumed to follow a Gaussian distribution within the 
following uncertainty ranges27: 50 nm for Λ, 25 nm for w, 5 nm for dg, and 10 nm for both duf and dbf. Please note 
that the optimization algorithms employed here (i.e., PSO and GA) explore the continuous variable space using 
vectorized searching rules15,16. After each iteration (or generation for GA) of the algorithm, optimization process 
will be terminated by a certain termination criterion. Here, our optimization algorithms stop when the optimal 
value stalled at least subsequent 50 iterations (or generations for GA).

Parameter Λ (nm) w (nm) dg (nm) duf (nm) dbf (nm)

Lower Bound 300 50 5 50 50

Upper Bound 600 Λ - 50 200 150 150

Table 1.  Range of dimensional variables.

Parameter Near-boundary Dimension (nm)

Λ 300/400/500/600

w 50/(Λ−50)

dg 5/10, 195/200

duf 50/100/150

dbf 50/100/150

Table 2.  Near-boundary dimensions for samples to overcome divergence problems.
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Results and Discussion
First, we compare the solar absorptance of the reference design and the deterministic optima. One can simply 
regard the reference design as an arbitrary case because its geometry was simply adopted from an earlier work 
(i.e., Λ = 600 nm, w = 50 nm, dg = 200 nm, duf = 100 nm, and dbf = 100 nm)14 without carrying out an optimiza-
tion process. As shown in Table 3, the deterministic optimization boosts up the solar absorptance value to approx-
imately 0.95. The difference between the value predicted by the DNN model (i.e., α

sol) and the exact value 
obtained by RCWA calculation (i.e., αsol) is only 0.002, indicating the excellent convergence of the surrogate 
model.

Figure 2(a) shows the calculated spectral absorptance in the solar spectrum as well as in the mid-IR spectral 
region. It is clear that the particle swarm optimization (i.e., deterministic optimum) results in near-unity spectral 
absorptance in a range from 400 nm to 1,000 nm, where a large portion of the solar irradiance is located. The 
corresponding absorptance spectrum of the deterministic optimum matches well with that of the solar spectrum. 
The spectrum indicated as robust optimum will be discussed later. It is interesting to note that only 9-nm-thick 
Cr grating can yield such a high αsol value in the deterministic optimum. Recall that the DNN model is the most 
accurate one among other considered surrogate models, as noted in Figure S1 of Supplementary Information. 
Additionally, the DNN model can predict the performance of solar absorber in any points on the continuous 
variable space (i.e., five-dimensional space with Λ, w, dg, duf, and dbf). Therefore, we can find the “global” optimi-
zation point within the design space defined by Table 1 not simply selecting the best-performing configuration 
out of the training data set.

In Fig. 2(b), the absorption contribution of each layer in the deterministic optimum is further analyzed. Here, 
the absorption of the upper SiO2 layer is not shown in the figure because it is negligible. It can be clearly seen from 
the figure that the 9-nm-thick Cr grating indeed dominantly contributes (i.e., 0.736) to the solar absorptance; that 
is, about 78% of the total absorption takes place inside the grating region. Note that total solar absorption of the 
deterministic optimum (i.e., αsol = 0.947) can be obtained simply by summing all contributions of each layers; that 
is, αsol = 0.736(grating) + 0.021(bottom SiO2 film) + 0.190(Cr substrate) = 0.947.

To elucidate the mechanisms of absorption enhancement, we investigate the effects of the topmost SiO2 layer 
as well as the Cr grating in the deterministic optimum. As shown in Fig. 2(c), the upper SiO2 layer certainly 
plays a role in enhancing the solar absorptance. As mentioned earlier, the upper SiO2 layer is expected to lead to 
a gradual increase in the refractive indices and cause an anti-reflection effect21, boosting the solar absorptance 
value from 0.842 to 0.947. If there is no Cr grating pattern (i.e., replacing the Cr grating by a smooth 9-nm Cr thin 
film, w = Λ), the resulting absorptance spectrum exhibits slightly lower performance (i.e., approximately 95% of 
the deterministic optimum), especially in the wavelength region from 400 nm to 1,000 nm. In terms of the solar 
absorptance, the Cr thin-film structure results in αsol = 0.901, which is 5% smaller than that of the deterministic 
optimum. Notice that the Cr thin-film structure is nothing but a Fabry-Pérot structure made of a refractory 
metal28, which can also exhibit an excellent absorption performance in the solar spectrum. By opening about 21% 
of the surface area in the Cr film (i.e., [1 − w/Λ]2), we can achieve a 5% enhancement of the solar absorptance, 
suggesting that the enhanced absorption by employing the Cr pattern is due to the near-field interaction of dif-
fracted evanescent waves with the subwavelength-sized nanostructures5,14.

We now consider the potential performance degradation of a real sample caused by inevitable fabrication 
errors. In Table 3, σsol indicates the standard deviation of α

sol at the given design point as a result of random vari-
ations in the dimensional variables. At the deterministic optimum point, where the corresponding α = .


0 949sol , 

the resulting σsol = 0.057, which is approximately 6% of the α
sol value. At the robust optimum point, the solar 

absorptance is slightly reduced to α = .


0 919sol , but its standard deviation becomes σsol = 0.017, which is only 1.8% 
of the α

sol value and comparably lower than one of the deterministic optimum. It can be seen from Fig. 2(a) that 
the robust optimum weakens primarily the short-wavelength absorptance (less than 500 nm). Nevertheless, by 
compromising the solar absorptance by 3%, we can come up with a nanostructure that is substantially less sensi-
tive to the variations of design variables.

To quantify the robustness, the probability density distribution of the solar absorptance is plotted in Fig. 3. The 
region of α ± .


0 01sol opt,  is compared for the deterministic and robust optima. Although only 18% of samples are 

included in the absorptance range between 0.939 and 0.959 for the deterministic optimum, the robust optimum 
includes 57% of the samples in the range of α. < < .


0 909 0 929sol . Since the deterministic optimum obtained 

from PSO corresponds to the global optimum, fabrication errors will always deteriorate the performance. For the 
robust optimum, however, 9.6% of the fabricated samples can show better absorptance values than the target 
value (i.e., α = .


0 919sol ). Although it is not shown here (see Supplementary Information, Figure S2), we also have 

employed Monte Carlo-based global sensitivity analysis29 to determine a solar absorptance is the most sensitive 
to which dimensional variable. The grating width (w) is found to be the most affecting, and the thickness of the 

Category Λ (nm) w (nm) dg (nm) duf (nm) dbf(nm) α∼sol αsol σsol

Reference design 600 50 200 100 100 0.819 0.817 0.029

Deterministic optimum 330 161 9 94 91 0.949 0.947 0.057

Robust optimum 426 88 190 92 113 0.919 0.918 0.017

Constrained optimum 600 300 8 91 95 0.916 0.918 0.051

Table 3.  Optimization results for the DNN model trained with 1566 data set. α
sol is the solar absorptance 

predicted by DNN. αsol is the solar absorptance calculated by RCWA for validation. σsol is the standard deviation 
of the distributed α

sol due to fabrication uncertainty of each dimensional variables.
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grating (dg) is the second most affecting factor. This is the reason why the w and dg values of the robust optimum 
vary widely from those of the deterministic optimum (refer to Table 3).

For the deterministic optimization process using PSO, a swarm comprising 50 individuals communicated 
with each other, and their fitness values (i.e. α

sol) were compared. As a result, approximately 60 iterations took 
place during the optimization process (i.e., the DNN estimation occurred about 3,000 times on average). 
Multi-objective optimization for the robust optimization process to compare the multiple fitness values was more 
complicated. To compute one σsol, 100,000 estimations of α

sol around the target point were necessary. Moreover, 
about 100 iterations were needed to find the multiple solutions of the MOO process. In other words, approxi-
mately 500 million (i.e., 5,000 × (100,000 + 1)) estimations of α

sol were made to find the robust optimum. For the 
sensitivity analysis, Monte-Carlo estimation with 100,000 samples was required for each variable set. Therefore, a 
total of 3.2 million (i.e., 25 × 100,000) DNN estimations were required. Although enormous numbers of perfor-
mance estimation were required in the aforementioned processes, the entire calculation time was not overly long 
with the use of the surrogate model. By replacing the electrodynamic simulation of αsol with the DNN estimation 
(i.e., α

sol), the time for required for the performance estimation took less than 0.1 sec; the original RCWA simula-
tion took approximately 20 min. Furthermore, the DNN is suitable for massive numbers of sample computations 
because it is based on the matrix representation. Thus, even though about 500 million estimations were required, 
the entire optimization process could be finished within an hour. Please refer to Figure S3 in Supplementary 
Information for more clear comparison between RCWA computation requirements.

Experiments
Before fabricating the proposed solar absorber, a constrained optimization process was also conducted to opti-
mize the structure under the physical limitations associated with fabrication, for example, patternable structures 
using available masks. In this work, Λ- and w-constrained optimization was performed as noted in Table 3. With 
fixed lateral dimensions of Λ = 600 nm and w = 300 nm, the performance can be maximized by changing other 
parameters (i.e., dg, duf, and dbf). Since w, which was found to affect the solar absorptance most, is fixed now, the 
resulting optimum is expected to be less absorbing than the previously conducted deterministic optimum. 

Figure 2.  (a) Absorption spectra of reference design (black), deterministic optimum (red dotted), and robust 
optimum structures (blue with circle); (b) Separate contribution of each layer in the deterministic optimum 
(orange for grating, blue for Cr substrate, and green for bottom SiO2 film layer) compared to that of a planar Cr 
substrate (blue dotted); and (c) Effect of the upper SiO2 film (blue) or Cr grating (green) in the deterministic 
optimum. The open-source RCWA software package22 was used for calculation of spectral absortance.

Figure 3.  Population histogram of the solar absorptance at deterministic and robust optima. For comparison, 
population density for the reference design is also shown.
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Surprisingly, the constrained optimization resulted in the solar absorptance of α = .


0 916sol , which is lower by 3% 
only than the deterministic optimum although the number of dimensional variables is reduced from five to three. 
Note that the constrained optimum structure has two great advantages regarding fabrication. One is the ease of 
fabrication, as its lateral size is larger; the other is the lower fabrication cost, as the NIL mask for the pattern is 
already available (as imposed by the constraints).

As illustrated in Fig. 4(a), we further simplified the structure by changing the square hole in the Cr grating to a 
circular hole, which will greatly reduce the fabrication uncertainty. As can be seen from Fig. 4(b), the absorptance 
spectra of the two structures (one with a square hole and the other with a circular hole) are nearly the same. 
Thus, the Cr grating with a circular hole was fabricated as briefly summarized below [also refer to Fig. 4(c)]. 
First, Cr (300 nm) and SiO2 (100 nm) thin films were fabricated on a Si substrate using an e-beam evaporator and 
plasma-enhanced chemical vapor deposition (PECVD) equipment. A 200-nm-thick lift-off layer (LOL, PMGI 
SF6) was spin-coated on the SiO2/Cr-deposited Si substrate. Then, calculated pillar-shaped patterns were formed 
with hydrogen silsesquioxane (HSQ) material using a prepared polydimethylsiloxane (PDMS) mold and NIL 
technology. The PDMS mold was duplicated by a Si master stamp that was fabricated through a series of pro-
cesses, including photolithography and reactive ion etching. Next, the residual HSQ layer was removed by reactive 
ion etching. After the deposited SiO2 was etched, Cr was evaporated, and the LOL was removed using dimethyl-
formamide. Note that e-beam evaporation offers simplicity in the deposition process with excellent control of the 
deposition rates as low as 1 nm per minute30. Therefore, thickness of the pillar side can be precisely controlled. 
Finally, the SiO2 layer was deposited using PECVD equipment. The TEM image in Fig. 4(d) clearly indicates that 
the Cr grating pattern is embedded in the SiO2 film. It can be also concluded from the HAADF-STEM images in 
Fig. 4(e–g) that the Cr embedded-grating structure was successfully fabricated. We fabricated 2 × 2 cm2 samples 
for the spectroscopic measurements.

Figure 5(a) shows a comparison of the spectral absorptance of the Cr grating structure and 200-nm-thick Cr 
film at room temperature. The radiation penetration depth of Cr is less than 10 nm in the solar spectrum; thus, the 
200-nm-thick Cr film and fabricated grating structure can be treated as semi-infinite, opaque medium. Therefore, 
the spectral absorptance can be obtained from αλ = 1 − ρλ 

21. In this work, we have employed two spectrometers 
with an integrating sphere to measure the normal-hemispherical reflectance. A UV-VIS spectrometer (Shimadzu, 
UV-3600 plus) was used to measure the normal-hemispherical reflectance in the wavelength region from 0.3 μm 
to 2.0 μm, and a FT-IR spectrometer (ABB Bomem, FTLA 2000 series) is used in the wavelength region from 
3 μm to 15 μm. Because of low signal-to-noise ratio of the FT-IR spectrometer, spectral absorptance cannot be 
measured between 2.0 and 3.0 μm. The measured αsol of the Cr-grating structure is nearly twice that of the planar 

Figure 4.  (a) Original square hole and alternative circular hole grating design; (b) Absorption spectra 
(calculated by the open-source RCWA software package22) of constrained optimum for proposed fishnet grating 
structure (blue with circle) and alternative nanodisk structure (red); (c) Fabrication processes of Cr embedded-
grating solar absorber using NIL; (d) TEM-SEM image of fabricated Cr embedded-grating solar absorber 
structure; and (e–g) HAADF-STEM cross-sectional image and EDs elemental mapping image of Cr embedded-
grating structures: Cr (red), Si (green), and O (blue).
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Cr film. The calculated absorptance spectrum of the Cr-grating structure captures general features of the meas-
ured spectrum, but little discrepancy exists between the simulation and the experiment. As also noted from 
Fig. 5(a), the simulated and measured absorptance spectra of the plane Cr film show non-negligible differences 
in the solar spectrum. These differences can be attributed to the difference in optical constants for Cr between 
simulation and experiment.

Finally, we performed a photo-thermal conversion experiment to quantitatively compare the absorptance per-
formance of fabricated samples. Here, we consider a plane Si wafer (approximately 500 μm thick), a 200-nm-thick 
Cr film coated on a Si wafer, and the constrained optimum Cr grating structure fabricated on a Si wafer. The 
temperature increment rate of the substrate was measured using an IR camera (Fluke, TiS20) and a K-type ther-
mocouple while samples were exposed to one-sun conditions (Mc Science, K201 Xe55), as shown in Fig. 5(b). It 
can be seen from Fig. 5(c) that the Cr grating structure reaches the highest temperature, 80.7ºC while the plane 
Si sample has the lowest temperature. With a solar absorptance of 47%, the 200-nm-thick Cr film can reach tem-
peratures as high as 65.5ºC. The temperature difference between ambient conditions (25ºC) for the Cr grating 
structure is approximately 56ºC, while that of the Cr film is 41ºC. Theoretically, the temperature difference should 
be proportional to the energy input (i.e. solar absorptance, αsol). In this experiment, the ratio between tempera-
ture differences is 1.37 (56/41), while the ratio between solar absorption is 1.94 (0.910/0.470). That is, heat loss 
caused by conduction between the sample mounter and IR emission caused the steady-state temperature of the Cr 
grating structure to be lower than expected. Nevertheless, a structure with higher absorption should be designed 
since heat loss will be minimized in practical usage of solar thermal absorption system. For instance, evacuated 
space could be employed between absorbing surface and package surrounding it. With properly designed solar 
absorber system, the achievable temperature of the optimized structure will be proportionally high to its solar 
absorptance. Moreover, the time to reach the maximum temperature for the Cr grating absorber is the shortest 
because of its highest absorption, confirming its excellent absorption performance.

Statistical analysis.  From the learning procedure of networks to the optimization process, all calculations 
were performed with MATLAB global optimization toolbox.

Conclusion
To summarize this study, deep learning, a state-of-the-art modeling technique, has been employed to accu-
rately model the performance of subwavelength-sized nanostructures. Deep learning significantly enhances the 
scope of the investigation by reducing the overall calculation time. For example, recently, studies of performance 
computation-based analysis techniques have been carried out, such as search-based optimization (particle swarm 
optimization, genetic algorithm) and Monte Carlo estimation. These processes are practical and concise; however, 
they require enormous amounts of time for the performance computations regarding the overall solution space. 
It is impossible to apply these methods directly to our original problem because of the heavy computational cost. 
Deep learning successfully makes it possible using only 1,566 iterations of RCWA simulation, and an infinitesimal 
time for performance estimation. Moreover, the performance of the optimized result has been validated through 
actual fabrication and experiments. Hence, our new approach requires fewer performance calculations than 
methods without deep learning (i.e. 3,000 to 500 million RCWA computations were originally needed), while 
maintaining the estimation accuracy higher than other modeling techniques and being able to predict unknown 
performance beyond ordinary intuition.

With the constructed DNN model, we conducted three optimization processes: (1) deterministic optimiza-
tion; (2) robust optimization; and (3) constrained optimization. The deterministic optimization process is to find 
the globally best performance (i.e. maximal αsol), which can be served as a reference for other two optimization 
processes. The robust optimization is to find the structure whose solar absorptance is close (i.e., slightly less) 
to the deterministic optimization but shows great robustness to the fabrication uncertainties. Finally, the con-
strained optimization is to find the best performance under the constraint on some of the design parameters, 
which is usually determined by considering fabrication feasibility (or fabrication easiness). The optimization 

Figure 5.  (a) Simulated spectral absorptance (by the open-source RCWA software package22) of Cr grating 
(red dotted) and plane 200-nm-thick Cr film (blue dotted), and measured spectral absorptance of Cr grating 
(red) and plane 200-nm-thick Cr film (blue); (b) Setup of the photo-thermal conversion experiment; and (c) 
Temperature changes of Si, 200-nm-thick Cr film and Cr grating during 600 sec under the one-sun condition.
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methods introduced in this work using the data science techniques can be effectively employed for designing 
nanostructures with desirable spectral radiative properties.

Data availability
All data that support the findings of this study are available from the corresponding author upon request.
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