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Improving the understanding of the molecular mechanism of tuberculous pleurisy is
required to develop diagnosis and new therapy strategies of targeted genes. The
purpose of this study is to identify important genes related to tuberculous pleurisy. In
this study, the expression profile obtained by sequencing the surgically resected pleural
tissue was used to explore the differentially co-expressed genes between tuberculous
pleurisy tissue and normal tissue. 29 differentially co-expressed genes were screened by
weighted gene co-expression network analysis (WGCNA) and differential gene expression
analysis methods. According to the functional annotation analysis of R clusterProfiler
software package, these genes are mainly enriched in nucleotide−sugar biosynthetic
process (biological process), ficolin−1−rich granule lumen (cell component), and electron
transfer activity (molecular function). In addition, in the protein-protein interaction (PPI)
network, 20 hub genes of DEGs and WCGNA genes were identified using the CytoHubba
plug-in of Cytoscape. In the end, RPL17 was identified as a gene that can be the biomarker
of tuberculous pleurisy. At the same time, there are seven genes that may have relationship
with the disease (UBA7, NDUFB8, UQCRFS1, JUNB, PSMC4, PHPT1, and MAPK11).
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INTRODUCTION

Tuberculosis is a very ancient disease, and some studies have pointed out that Mycobacterium
tuberculosis infected humans five thousand years ago (Sinha et al., 2021). Tuberculous pleurisy is a
kind of extrapulmonary tuberculosis, which also includes bone tuberculosis, lymphoid tuberculosis
and so on (Reichler et al., 2020). According to theWorld Health Organization’s 2019 global report on
tuberculosis, tuberculous pleurisy accounts for 30 per cent of all tuberculosis in developing countries
(WHO Global, 2019; Tuberculosis ProgrammeGlobal, 2020). But at present, there is still no more
accurate diagnostic means for tuberculous pleurisy, so it is impossible to achieve early diagnosis and
early treatment of tuberculous pleurisy (Tuberculosis ProgrammeGlobal, 2020).

With the development of genome technology, bioinformatics is widely used in gene expression profile
analysis (DeWelzen et al., 2017). Figure 1 shows the research design and workflow of this study. Disease-
specific biomarkers were found. Weighted gene co-expression network analysis of (WGCNA) is an
important method to understand gene function and gene association from genome-wide expression
(Langfelder and Horvath, 2008). WGCNA can be used to detect the co-expression modules of highly
related genes and interested modules related to clinical characteristics (Zhang and Horvath, 2005),
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providing great insight for predicting the function of co-expression
genes and finding genes that play a key role in human diseases (Li
et al., 2018). In addition, another powerful analysis in
transcriptomics is differential gene expression analysis, which
provides a way to study the molecular mechanisms of genomic
regulation and to find quantitative changes in expression levels
between the experimental group and the control group (Saris et al.,
2009; Yang et al., 2014; San Segundo-Val and Sanz-Lozano, 2016).
This difference in gene expression may lead to the discovery of
potential biomarkers for specific diseases. Therefore, two methods
are used, combinedwith the results ofWGCNAand differential gene
expression analysis, to improve the recognition ability of highly
related genes, which can be used as candidate biomarkers.

In this study, through the bioinformatics analysis of the
sequencing data of pleural tissue collected during the
operation, we hope to find the biomarkers that can be used
for early diagnosis or treatment of tuberculous pleurisy. To
contribute to the diagnosis and treatment of tuberculous pleurisy.

MATERIALS AND METHODS

The workflow for screening hub genes is shown in Figure 1. We
describe the screening process in detail in each section.

Acquisition of Transcriptome Sequencing
Data
All the patients signed the informed consent form and completed
the PET-CT examination before operation. During the operation
of each patient, we obtained the pleura with high metabolic
activity (PET-high) and low metabolic activity (PET-low)
according to FDG PET-CT. Total RNA of each sample was
extracted by TRIzol Reagent (Invitrogen, US) and RNeasy
Mini Kit (Qiagen, Germany) according to the instructions of
kit. Total RNA of each sample was quantified by Agilent 2100
Bioanalyzer (Agilent Technologies, United States), NanoDrop
(Thermo Fisher Scientific Inc., United States). Total RNA (1 μg)
with the value of RNA integrity number (RIN) > 7 was used for
library preparation, which conducted by the NEBNext Ultra II
Directional RNA Library Prep. Kit of Illumina. The rRNA was
depleted from total RNA using Ribo-Zero™ rRNA removal Kit
(Illumina, United States), and cDNA libraries were generated by
protocols. Then, libraries with different indices were multiplexed
and loaded on Illumina HiSeq instrument (Illumina,
United States) for 2 × 150 paired-end sequencing in the
Medical Laboratory of Nantong ZhongKe. Finally, the row
reads were transformed as gene expression matrix by
Trimmomatic (version 0.30), which was used to subsequently
analysis. A total of 15 samples were included in the study, of

FIGURE 1 | Study design and workflow of this study.
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which nine samples were PET-high and six samples were PET-
low. This study was approved by the Ethics Committee of the
Shanghai Public Health Clinical Center.

Identification of Co-Expression Module
Based on WGCNA
Co-expression network is a gene screeningmethod which is based
network that can be used to screen possible biomarkers and
therapeutic targets. In this study, we constructed a co-expression
network based on gene expression matrix and implemented it
using R-package WGCNA (Langfelder and Horvath, 2008).
WGCNA was used to explore the modules of highly correlated
genes among samples for relating modules to external sample
traits. To build a scale-free network, soft powers β � 3 and 20 were
selected using the function pickSoftThreshold. Next, the
adjacency matrix was created by the following formula:

aij � ∣
∣
∣
∣Sij

∣
∣
∣
∣β

aij: adjacency matrix between gene i and gene j

Sij: similarity matrix which is done by Pearson correlation of all gene pairs
β: softpower value,

and was transformed into a topological overlap matrix (TOM) as
well as the corresponding dissimilarity (1-TOM). Afterwards, a
hierarchical clustering dendrogram of the 1-TOM matrix was
constructed to classify the similar gene expressions into different
gene co-expression modules. To further identify functional
modules in a co-expression network, the module-trait
associations between modules, and clinical trait information
were calculated according to the clinical data (Wang et al.,
2019). Therefore, modules with high correlation coefficient
were considered candidates relevant to clinical traits, and were
selected for subsequent analysis.

Identification of DEGs and Interaction With
the Modules
We used R-package limma to screen DEGs, and DEGs were
screened based on gene expression matrix (Ritchie et al., 2015).
The limma package was used to analyze sequencing data and
microarray data, and was a commonly used tool in
bioinformatics. The screening criterion of DEGs were as
follows: p-value < 0.05 and｜logFC｜ > 1. The DEGs were
visualized as a volcano plot and heatmap by using the R
package ggplot2 and pheatmap. Subsequently, the overlapping
genes between DEGs and co-expression genes that were extracted
from the co-expression network were used to identify potential
valueable genes, which were presented as a Venn diagram using
the R package VennDiagram (Chen and Boutros, 2011).

Functional Annotation for Genes
In order to describe the function and pathway of the selected
gene, we conducted analysis using R package clusterProfiler (Yu
et al., 2012), with a cut-off criterion of adjusted p < 0.05. Gene
Ontology (GO) analysis consists of three different parts,
biological process (BP), cellular component (CC), and

molecular function (MF), which can accurately describe the
function of the gene. Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis describes the pathways involved in
genes (Balachandran et al., 2015; Kanehisa et al., 2017).

Construction of PPI and Screening of Hub
Genes
In our study, we used the STRING (Search Tool for the Retrieval
of Interacting Genes) online tool, which is designed for predicting
protein–protein interactions (PPI), to construct a PPI network of
selected genes (Szklarczyk et al., 2015). Using the STRING
database, genes with a score ≥0.4 were chosen to build a
network model visualized by Cytoscape (v3.8.0) (Smoot et al.,
2011). In PPI network, Maximal Clique Centrality (MCC)
algorithm was reported to be the most effective method of
finding hub nodes. The MCC of each node was calculated by
CytoHubba (Chin et al., 2014), a plugin in Cytoscape. In this
study, the genes with the top 20 MCC values were considered as
hub genes. Subsequently, we used the R package VennDiagram to
identify key genes related to tuberculosis pleurisy.

RESULTS

Identification of Weighted Gene
Co-Expression Modules
In order to find the gene-set most related to the tissue with PET-
high, we established a gene weighted co-expression network. Each
gene set was treated as a module, and each module was assigned a
different color. A total of 15 modules were identified (Figure 2A),
and then we drew a module-phenotypic relationship heatmap to
evaluate the relationship between modules and clinical
phenotypes. The results of the model-phenotypic relationship
were shown in Figure 2B, indicating that the grey module in the
gene matrix has the highest correlation with the tissue with PET-
high.

Intersection Between DEGs and
Co-Expression Modules
Based on the cut-off criteria of |logFC| ≥ 1.0 and p < 0.05, a
total of 62 DEGs in the gene matrix were found to be
dysregulated in tissues with PET-high by the limma package
(Figures 3A,B). As shown in Figure 3C, 1178 co-expression
genes were found in the grey module in gene matrix. In total,
the 29 overlapping genes were extracted as key genes in tissues
with PET-high (Figure 3C).

Functional Enrichment Analyses for
Selected Genes
In order to further understand the functions and pathways of the
co-expression module (Supplementary Table S1), DEGs
(Supplementary Table S2) and 29 overlapping genes
(Supplementary Table S3), we used clusterProfiler R package
for functional enrichment analysis. After screening of GO
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enrichment analysis, we observed several enriched gene sets
shown in Figure 4A; Tables 1, 2. The genes in grey module
mainly enriched in cell activation involved in immune response,
cellular protein catabolic process and protein domain specific
binding. The DEGs mainly enriched in regulation of
inflammatory response, regulation of hemopoiesis and negative
regulation of immune system process. The 29 overlapping genes
mainly enriched in neutrophil degranulation, neutrophil
activation involved in immune response and neutrophil

activation. After screening of KEGG enrichment analysis, we
observed several enriched gene sets shown in Figure 4B;Tables 3,
4. The genes in grey module mainly enriched in Endocytosis,
Epstein-Barr virus infection and Human T-cell leukemia virus 1
infection. The DEGs mainly enriched in Complement and
coagulation cascades, Proteasome and Arginine and proline
metabolism. The 29 overlapping genes mainly enriched in
Pathways of neurodegeneration-multiple diseases, Prion
disease and Amyotrophic lateral sclerosis.

FIGURE 2 | Identification of modules associated with the clinical information in the dataset. (A) The Cluster dendrogram of co-expression network modules was
ordered by a hierarchical clustering of genes based on the 1-TOM matrix. Each module was assigned different colors. Each module contains genes that belong to the
same center in a weighted co-expression network. These genes in module had the same expression profiles. (B)Module-trait relationships. Each row corresponds to a
color module and column corresponds to a clinical trait (TB and normal). Each cell contains the corresponding correlation and p-value. The module with the highest
correlation coefficient had the greatest association with tuberculous pleurisy.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7304914

Shi et al. Tuberculous Pleurisy by Integrated Bioinformatics Analysis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


PPI Network Construction and Hub Genes
Identification
The PPI network of the greymodule and DEGs was established by
using the STRING database. The hub genes selected from the PPI
network using the MCC algorithm of CytoHubba plugin were
shown in Figures 5A,B. Then, the top 20 MCC scores genes were
identified as hub genes. The intersection among hub genes in grey
module, hub genes of DEGs and 29 overlapping genes was used to
screen key genes as biomarker (Figure 5C). Finally, one gene
named RPL17 was the candidate biomarker, and seven genes
included UBA7, NDUFB8, UQCRFS1, JUNB, PSMC4, PHPT1,
and MAPK11 can also be the candidate biomarkers.

DISCUSSION

Tuberculous pleurisy is an uncommon type of tuberculosis in
developed countries, but it is more common in developing
countries. According to the global report on tuberculosis of the
World Health Organization, tuberculous pleurisy accounts for only
3% tuberculosis in developed countries, more than 30% in India and
20% in China. Pleural effusion caused by tuberculous pleurisy can

lead to shortness of breath, fever, and other clinical symptoms.
However, there are still difficulties in the diagnosis and treatment of
tuberculous pleurisy. In this study, through transcriptome
sequencing and bioinformatics analysis of surgically resected
pleural tissue, we hope to find a biomarker that can be used in
the diagnosis and treatment of tuberculous pleurisy. A total of eight
possible biomarkers of tuberculous pleurisy were screened (RPL17,
UBA7, NDUFB8, UQCRFS1, JUNB, PSMC4, PHPT1, and
MAPK11). Through GO analysis and KEGG analysis of these
genes, we found that the main functions of these genes were
immune response and protein synthesis. In addition, we
conducted MCC analysis, and the intersection of the three gene
sets was screened out. In the intersection there was only one gene,
that is, RPL17. Finally, we determined that RPL17 may be a
biomarker of tuberculous pleurisy.

RPL17, also known as ribosomal protein L17, belongs to the L22P
family of ribosomal proteins. Ribosome is an important unit
involved in protein synthesis, which is composed of 40s subunit,
60s subunit and ribosomal RNA. RPL17 encodes a ribosomal
protein in the 60s subunit (Smolock et al., 2012; Zhang et al.,
2013). The expression of RPL17 is significantly increased in
organs with increased protein synthesis, such as ovaries, bone

FIGURE 3 | Identification of differentially expressed genes (DEGs) in the datasets with the cut-off criteria of |logFC| ≥ 1.0 and p < 0.05. (A) Volcano plot of DEGs. (B)
Heatmap of DEGs. (C) The Venn diagram of genes among DEG list and co-expression module. In total, 29 overlapping genes in the intersection of DEG lists and co-
expression module.
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marrow, and lymph nodes (Wang et al., 2015; Huang et al., 2016).
Some studies have pointed out that under the pathological condition,
the protein synthesis and metabolism of some organs will be

enhanced, which is consistent with our research results (Yuan
et al., 2018; Jahejo et al., 2020). However, a study has suggested
that RPL17 may act outside the ribosome. A study from the

FIGURE 4 | (A) Gene Ontology (GO) enrichment analysis for the 29 genes. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for 29
genes. The color represents the adjusted p-values (BH), and the size of the bars represents the gene number.
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TABLE 1 | GO analysis of DEGs.

GO Category Description Count p-value

GO:0050727 GO Biological Processes regulation of inflammatory response 12 <0.001
GO:1903706 GO Biological Processes regulation of hemopoiesis 11 <0.001
GO:0002683 GO Biological Processes negative regulation of immune system process 9 <0.001
GO:0008285 GO Biological Processes negative regulation of cell proliferation 11 <0.001
GO:0101,002 GO Cellular Components ficolin-1-rich granule 6 <0.001
GO:0046651 GO Biological Processes lymphocyte proliferation 7 <0.001
GO:0044106 GO Biological Processes cellular amine metabolic process 5 <0.001
GO:0030336 GO Biological Processes negative regulation of cell migration 7 <0.001
GO:0071889 GO Molecular Functions 14-3-3 protein binding 3 <0.001
GO:0090100 GO Biological Processes positive regulation of transmembrane receptor protein serine/threonine kinase signaling pathway 4 <0.001
GO:0071417 GO Biological Processes cellular response to organonitrogen compound 8 <0.001
GO:0001667 GO Biological Processes ameboidal-type cell migration 7 <0.001
GO:0051384 GO Biological Processes response to glucocorticoid 4 <0.001
GO:0008233 GO Molecular Functions peptidase activity 8 <0.001
GO:0033013 GO Biological Processes tetrapyrrole metabolic process 3 <0.001
GO:0055114 GO Biological Processes oxidation-reduction process 7 <0.001
GO:0070972 GO Biological Processes protein localization to endoplasmic reticulum 4 <0.001
GO:0000781 GO Cellular Components chromosome, telomeric region 4 0.002
GO:0005581 GO Cellular Components collagen trimer 3 0.002
GO:0001227 GO Molecular Functions DNA-binding transcription repressor activity, RNA polymerase II-specific 5 0.002

TABLE 2 | KEGG analysis of DEGs.

GO Category Description Count p-value

ko04610 KEGG Pathway Complement and coagulation cascades 4 <0.001
ko03050 KEGG Pathway Proteasome 3 <0.001
ko00330 KEGG Pathway Arginine and proline metabolism 3 <0.001
ko04932 KEGG Pathway Non-alcoholic fatty liver disease (NAFLD) 4 0.002
ko04657 KEGG Pathway IL-17 signaling pathway 3 0.003
ko05145 KEGG Pathway Toxoplasmosis 3 0.005
hsa04068 KEGG Pathway foxo signaling pathway 3 0.009

TABLE 3 | GO analysis of WCGNA grey module.

GO Category Description Count p-value

GO:0002263 GO Biological Processes cell activation involved in immune response 92 <0.001
GO:0044257 GO Biological Processes cellular protein catabolic process 90 <0.001
GO:0019904 GO Molecular Functions protein domain specific binding 82 <0.001
GO:0070161 GO Cellular Components anchoring junction 72 <0.001
GO:0044440 GO Cellular Components endosomal part 69 <0.001
GO:0072594 GO Biological Processes establishment of protein localization to organelle 68 <0.001
GO:0005773 GO Cellular Components vacuole 85 <0.001
GO:0030659 GO Cellular Components cytoplasmic vesicle membrane 82 <0.001
GO:1903827 GO Biological Processes regulation of cellular protein localization 63 <0.001
GO:0046700 GO Biological Processes heterocycle catabolic process 75 <0.001
GO:1901137 GO Biological Processes carbohydrate derivative biosynthetic process 78 <0.001
GO:1990234 GO Cellular Components transferase complex 77 <0.001
GO:0003682 GO Molecular Functions chromatin binding 62 <0.001
GO:0019900 GO Molecular Functions kinase binding 74 <0.001
GO:0043043 GO Biological Processes peptide biosynthetic process 72 <0.001
GO:0030135 GO Cellular Components coated vesicle 40 <0.001
GO:0000139 GO Cellular Components Golgi membrane 73 <0.001
GO:0051347 GO Biological Processes positive regulation of transferase activity 67 <0.001
GO:0051129 GO Biological Processes negative regulation of cellular component organization 73 <0.001
GO:0006091 GO Biological Processes generation of precursor metabolites and energy 55 <0.001
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TABLE 4 | KEGG analysis of WCGNA grey module.

GO Category Description Count p-value

hsa04144 KEGG Pathway Endocytosis 38 <0.001
ko05169 KEGG Pathway Epstein-Barr virus infection 31 <0.001
hsa05166 KEGG Pathway Human T-cell leukemia virus 1 infection 38 <0.001
ko04962 KEGG Pathway Vasopressin-regulated water reabsorption 12 <0.001
hsa04931 KEGG Pathway insulin resistance 19 <0.001
ko04141 KEGG Pathway Protein processing in endoplasmic reticulum 23 <0.001
hsa04714 KEGG Pathway thermogenesis 31 <0.001
hsa05200 KEGG Pathway Pathways in cancer 49 <0.001
hsa05163 KEGG Pathway human cytomegalovirus infection 27 <0.001
hsa04668 KEGG Pathway TNF signaling pathway 17 <0.001
hsa05165 KEGG Pathway human papillomavirus infection 34 <0.001
hsa04066 KEGG Pathway HIF-1 signaling pathway 17 <0.001
hsa00514 KEGG Pathway Other types of O-glycan biosynthesis 7 <0.001
ko03015 KEGG Pathway mRNA surveillance pathway 14 <0.001
hsa04210 KEGG Pathway Apoptosis 18 <0.001
ko03010 KEGG Pathway Ribosome 18 <0.001
hsa04621 KEGG Pathway NOD-like receptor signaling pathway 20 <0.001
hsa05133 KEGG Pathway Pertussis 12 <0.001
hsa05205 KEGG Pathway Proteoglycans in cancer 22 <0.001
hsa05146 KEGG Pathway Amoebiasis 14 <0.001

FIGURE 5 | Visualization of the protein-protein interaction (PPI) network and the candidate hub genes. (A) PPI network of the hub genes of DEGs list. (B)
Identification of the hub genes of WGCNA grey module from the PPI network using maximal clique centrality (MCC) algorithm. Edges represent the protein-protein
associations. The red nodes represent genes with a high MCC sores, while the yellow node represent genes with a low MCC sore. (C) The venn diagram among
intersection gene list, WGCNA hub gens and DEG hub genes.
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United States showed that RPL17 is an inhibitor of vascular smooth
muscle cell growth and can inhibit the formation of the inner lining
of the internal carotid artery (Smolock et al., 2012). This suggests that
RPL17 is not restricted to acting within the ribosome. It is possible
that there is also an extra-ribosomal mechanism of RPL17 in
tuberculous pleurisy, which requires further studies to confirm. In
tuberculous pleurisy, the enhancement of protein anabolism may be
an important mechanism of fibrosis, which is closely related to the
diagnosis and treatment of tuberculous pleurisy.

There are several shortcomings in this study. First of all, RPL17 as
a diagnostic or therapeutic biomarker requires a large number of
blood samples for verification. Secondly, the detailed biomolecular
mechanism of RPL17 still needs a lot of experiments to explore.
Finally, although we have performed a detailed bioinformatics
analysis, some genes that play a key role in the occurrence and
development of tuberculous pleurisy may still be missed.We hope to
solve the above problems step by step in the follow-up study.

In summary, by integrating WGCNA with differential gene
expression analysis, our study generated the significant gene
RPL17 that has potential for diagnosis and treatment in
tuberculous pleurisy.
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