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Abstract: In the present study, mace-mediated silver nanoparticles (mace-AgNPs) were synthesized,
characterized, and evaluated against an array of pathogenic microorganisms. Mace, the arils of
Myristica fragrans, are a rich source of several bioactive compounds, including polyphenols and
aromatic compounds. During nano synthesis, the bioactive compounds in mace aqueous extracts
serve as excellent bio reductants, stabilizers, and capping agents. The UV-VIS spectroscopy of the
synthesized NPs showed an intense and broad SPR absorption peak at 456 nm. Dynamic light
scattering (DLS) analysis showed the size with a Z average of 50 nm, while transmission electron
microscopy (TEM) studies depicted the round shape and small size of the NPs, which ranged between
5–28 nm. The peaks related to important functional groups, such as phenols, alcohols, carbonyl
groups, amides, alkanes and alkenes, were obtained on a Fourier-transform infrared spectroscopy
(FTIR) spectrum. The peak at 3 keV on the energy dispersive X-ray spectrum (EDX) validated the
presence of silver (Ag). Mace-silver nanoparticles exhibited potent antifungal and antibacterial
activity against several pathogenic microorganisms. Additionally, the synthesized mace-AgNPs
displayed an excellent cytotoxic effect against the human cervical cancer cell line. The mace-AgNPs
demonstrated robust antibacterial, antifungal, and cytotoxic activity, indicating that the mace-AgNPs
might be used in the agrochemical industry, pharmaceutical industry, and biomedical applications.
However, future studies to understand its mode of action are needed.
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1. Introduction

Nanotechnology research and development, and its applications in agriculture and
medicine, is a contemporary and ongoing process. This technology has been explored by
various other sectors of bioscience with successful outputs. The success of nanoparticles lies
in their miniature size, which allows them to permeate and reach the targeted cell with great
ease. Globally, the past several years have shown a dramatic escalation in bacterial strains
that are resistant to a number of antibiotics. As a result, the medical and pharmaceutical
industries have been compelled to develop alternative, novel drugs to combat their spread
and proliferation [1]. Similarly, the food and crop production sectors are in dire need of
an alternative control method to fungicides, to combat tenacious and persistent fungal
plant pathogens. The indiscriminate use of synthetic pesticides and fungicides has resulted
in the emergence of several resistant fungal strains. As a result, the agri–food industry
is conducting extensive research into alternative biologicals, including green synthesized
nanomaterials. Huge losses in food commodities due to plant pathogenic fungi have
always hampered the anticipated food supply and agricultural produce for the growing
world population. The increasing demand for safe food supply has prompted scientists
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to explore and research healthier alternatives that impede the growth of phytopathogens,
thus increasing agricultural yields and food production [2,3]. Furthermore, the nutritive
value and quality of the food must be preserved [3].

Nanotechnology is an innovative technique that creates nanoparticles by employ-
ing several metals (zinc oxides, copper oxide, gold, and silver) [4,5]. Over the past few
years, there has been a significant upsurge in the application of biologically synthesized
nanoparticles (NPs) over nanoparticles synthesized through conventional methods, in-
cluding chemical and physical methods. The biological method of synthesis is quicker,
less expensive, and less toxic than other methods [5,6]. This method employs a variety of
biological materials, including fungi [7], algae [8], bacteria [9], plants [10], and biological
compounds [11]. Amongst them is the green synthesis of NPs, which uses plant materials
and their extracts. Green synthesis of NPs is also known as phyto-fabrication, because
it employs a variety of plant parts such as roots [12], stems [13], leaves [14], flowers [15],
fruits [16,17], and seeds [18] for the fabrication, using different metals and their oxides.
Previous research on the green synthesis of NPs has demonstrated that plant materials
are very appropriate and reliable for the bio-fabrication of metallic NPs [19]. Singh and
colleagues in 2010 [20] synthesized AgNPs from an aqueous leaf extract of Argimone maxi-
cana. They reported the rapid synthesis of NPs that were crystalline in nature and highly
stable, measuring 15–30 nm in dimension and exhibiting strong inhibitory activity against
bacterial test isolates. An aqueous leaf extract of Chenopodium album yielded NPs with
quasi-spherical shapes and sizes ranging from 10 to 30 nm [21]. According to a previous
study, AgNPs synthesized from extracts of thyme leaves and ginger rhizomes exhibited
strong antifungal activity against Candida albicans, when compared with the standard an-
tifungal fluconazole [22]. Silver and gold nanoparticles were synthesized from seed and
fruit extracts of Artocarpus heterophyllus Lam [18], Cuscuta japonica [23], Illicium verum [24],
Trigonella foenum-graecum L [25], and Emblica officinalis [26]. In a previous study, AgNPs
synthesized from aqueous seed extracts of Cuscuta japonica exhibited potent antibacterial
activity. The strong bacterial inhibition was attributed to several bioactive compounds
identified in the FTIR studies of both extracts, and AgNPs of C. japonica, which included
esters, alcohols, phenols, and carboxylic acids. Similarly, Artocarpus heterophyllus Lam
seed powder extracts were used to synthesize small AgNPs (3–25 nm) with very strong
antibacterial activity against both gram-positive and gram-negative bacteria, including
Staphylococcus aureus, Bacillus subtilis, and Escherichia coli. Phyto-fabrication is therefore
regarded as an excellent and simple approach for the fabrication of NPs, as it has opened
the path to more sustainable, cleaner, and safer nanoproducts [27].

Furthermore, green synthesis is a highly sought-after process in biological synthesis
because it does not necessitate the use of growth culture media or special conditions to
support and maintain the growth of biological organisms [6]. Besides, the raw material for
green synthesis (plant material) is abundant in nature, and inexpensive. Their synthesis is
relatively faster, resulting in pure, environmentally friendly, and safe nanoparticles with an
enhanced performance. Plants, as enormous reservoirs of diverse chemical compounds,
play a pivotal role in providing several drugs to the pharmaceutical industry, which are used
as therapeutic agents for several illnesses. Plant extracts contain phytocompounds such as
carbonyl compounds, alkaloids, flavonoids, terpenes, polyphenols, and several proteins
that act as capping, reducing, and stabilizing agents during the synthesis of NPs [28,29].

Among all the metals, silver is the most widely used, especially in the fabrication of
NPs. AgNPs are already established and are extensively used in diverse fields such as nano
fertilizers [30], nano pesticides [31], nanomedicine [32], drug delivery [33], as anti-microbial
products [34] and in several biomedical applications. In spite of a few reports that point
out the adverse toxicity effects of AgNPs, they have received considerable approval as an
antibacterial, antifungal agent, and disinfectant [35].

Myristica fragrans Houtt is an aromatic evergreen tropical plant and a member of the
family Myristicaceae. The seed of this plant is commonly referred to as nutmeg, while
the arils are known as mace. The arils appear as a network around the seed. Both the
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seed and the arils are commonly used spices in a variety of cuisines [36]. In many parts of
Asia, mace is referred to as javitri or bisbasah. In Unani medicine, Ayurvedic, and Chinese
traditional medicine, mace is commonly used for treating peptic ulcers, flatulence, stomach
discomfort, gastrointestinal symptoms, and anxiety [36–38]. Very few reports have shown
the antibacterial activity and anti-inflammatory properties of mace extracts. However, to
our knowledge, there are no reports on the antifungal and antibacterial activity of silver
nanoparticles synthesized from mace aqueous extracts. Hence, the present study aimed
to green-synthesize silver nanoparticles using the arils of M. fragrans and evaluate their
cytotoxic and antimicrobial activity against a wide array of pathogenic microorganisms.

2. Results and Discussions
2.1. Synthesis of Mace-AgNPs from Aqueous Extracts of Mace (Arils of Myristica Fragrans)

The formation of AgNPs from plant material is a quick and productive method that
can be easily implemented in a standard laboratory setting with minimal effort. An aqueous
extract was prepared by adding crushed reddish-brown arils of Myristica fragrans (mace)
to distilled water. The mixture was boiled for 20 min and left at room temperature for 24 h.
After that, it was filtered, centrifuged, and the supernatant was used for the preparation of
mace-AgNPs.

To create silver nanoparticles, the aqueous extract of the arils (mace) was added to a
colorless solution of AgNO3, which resulted in a yellowish reaction mixture. The reaction
mixture was exposed to sunlight. After 24 min in direct sunlight, the mixture started to
change its color to a pale, brownish solution. The entire nucleation process, as indicated by
the deep brown color caused by the formation of AgNPs, took 30 min (Figure 1). Aside
from the visual examination, the formation of mace-AgNPs was authenticated by the
absorption spectrum of AgNPs obtained by the UV-VIS spectrophotometer. An LSPR
band was clearly visible after 26 min. The band intensity increased until 30 min and then
settled with no further changes, indicating complete reduction of Ag+ and the completion
of green synthesis (Figure 2). The color change and subsequent LSPR band at 456 nm show
the harmonious oscillations of electrons in silver nitrate in resonance with light waves,
resulting in an SPR band [39,40]. Similarly, LSPR absorption peaks between 420 and 478 nm
have been reported earlier in the AgNPs synthesized from nutmeg (seeds of Myristica
fragrans) [41,42].

The rapid color change of the reaction mixture mediated by sunlight and the sub-
sequent development of an absorption peak at 456 nm in the UV-Vis spectrum clearly
indicated the formation of mace-AgNPs. Similar to our findings, rapid sunlight-mediated
synthesis of AgNPs from Polygonatum graminifolium (30 min) and Sida retusa leaf extracts
(60 min) was reported in earlier studies [43,44]. A previous study had proposed a compre-
hensive mechanism for the role of UV light and the influence of electromagnetic irradiation
on the creation or synthesis of AgNPs [45]. Another point of view is that UV light from the
sun cannot pass through the glass tubes and instruments used in the synthesis of NPs [46].
Hence, the blue light of the visible spectrum could play a major role during the reduction
of Ag+ to Ag [46,47]. Recently, Nguyen and colleagues in 2020 [48] proposed that the
blue light causes the flavonoids in the plant extracts to convert from enol to keto form
(tautomerize), resulting in the release of hydrogen atoms, which could possibly influence
the reduction process of Ag+ ions.



Molecules 2021, 26, 7709 4 of 21Molecules 2021, 26, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. The production of mace-AgNPs using mace aqueous extracts. 1—silver nitrate, (AgNO3); 
2—aqueous mace extract; 3—the colloidal solution of synthesized mace-AgNPs. 

 
Figure 2. UV-VIS spectrum showing the LSPR peak of synthesized mace-AgNPs at 456 nm. MA-
mace aqueous extract, MA NP-mace AgNPs. 

 

Figure 1. The production of mace-AgNPs using mace aqueous extracts. 1—silver nitrate, (AgNO3);
2—aqueous mace extract; 3—the colloidal solution of synthesized mace-AgNPs.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. The production of mace-AgNPs using mace aqueous extracts. 1—silver nitrate, (AgNO3); 
2—aqueous mace extract; 3—the colloidal solution of synthesized mace-AgNPs. 

 
Figure 2. UV-VIS spectrum showing the LSPR peak of synthesized mace-AgNPs at 456 nm. MA-
mace aqueous extract, MA NP-mace AgNPs. 

 

Figure 2. UV-VIS spectrum showing the LSPR peak of synthesized mace-AgNPs at 456 nm. MA-mace
aqueous extract, MA NP-mace AgNPs.



Molecules 2021, 26, 7709 5 of 21

2.2. Dynamic Light Scattering Analysis (DLS)

A Zeta sizer (Zeta sizer-ZEN-3600) was employed to establish the size distribution of
the synthesized Mace-AgNPs. The DLS spectrum depicts the size distribution of nanopar-
ticles in a hydrodynamic state, which is intensity weighted (Figure 3). The mace-AgNPs
had an average size of 50.70 nm and a polydiversity index (PDI) of 0.220. A lower PDI
value, less than 0.7, indicates good quality of synthesized nanoparticles with a narrow
size distribution range [49]. The coating of plant extract around synthesized nanoparticles
influences their hydrodynamic diameter [50]. Green nanoparticles in the same range with a
low PDI value have previously been reported [51].
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2.3. Transmission Electron Microscopy Study of the Synthesized Mace-AgNPs

The DLS spectrum gives precisely the size and distribution of NPs in aqueous solutions,
but TEM provides a clear picture of the morphological characteristics of NPs, such as their
size and shape. The microphotographs depict the nanoparticles as being well separated
and spherical (Figure 4). Figure 4 also shows a few spheroidal NPs. The particle size ranged
from 5 to 28 nm. Similar to our findings, a previous report on AgNPs synthesized from
nutmeg measured between 5 and 20 nm [52]. Small-sized nanoparticles are indicative of
excellent biological activity [53]. The variation in the size of the mace-AgNPs between
DLS and TEM is because the NPs are measured in a dry state in TEM, whereas in DLS
they are measured in a hydrodynamic state, which includes the size of the biomolecules,
including the organic surface coatings that are made up of the tightly adhering solvent
molecules and the metal core [54]. Furthermore, the DLS observations rely heavily on
Rayleigh scattering caused by NPs suspended in fluids [55]. Additionally, the larger size of
NPs in DLS measurements could be due to the influence of Brownian movements as the
NPs are dispersed in liquid [56].
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synthesized mace-AgNPs.

2.4. The Elemental Analysis of Synthesized Mace-AgNPs (FESEM-EDS)

The elemental analysis of synthesized mace-AgNPs showed several peaks on the EDS
spectrum, including the typical peak of silver, as shown in Figure 5. At 3 keV, an intense
LSPR absorption peak very peculiar to silver was clearly visible, and a weaker silver peak
at 2.7 keV was also seen in the spectrum. The amount of nano silver in the sample was
estimated to be 47.7% (wt%). The peak at 3 keV arising from silver suggests the synthesis
of AgNPs [57]. Other elements recorded and clearly visible on the spectrum included: Si
(15%); Zr (16%); S (6%); K (4%); Cl (3%), Zn (3%); Na (1%); Al (0.8%), and Ti (1.7 percent).
Some elements, such as S, K, Na, Cl, and Al, may have been present in the mace extract,
and become lodged in the AgNPs during nano synthesis. Similar to the present study, a
recent study showed an intense peak at 3 keV in the EDX spectrum of AgNPs prepared
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from nutmeg extracts. In addition, they reported elements such as Na, Zn, K, and Ca
in the elemental profile and referred to these as micronutrients or biomolecules of the
nutmeg extract [41].
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2.5. The FTIR Spectrum of Mace Extract and Synthesized Mace-AgNPs

The FTIR spectrum of both the mace extract and the mace-AgNPs exhibited sev-
eral peaks that are characteristics of important bioactive compounds, indicating the pres-
ence of phenols, alcohols, aromatic compounds, alkaloids, amines, and carboxylic acids
(Figures 6 and 7). The FTIR spectrum of mace aqueous extract showed peaks at 3410 cm−1,
2930 cm−1, 2366 cm−1, 1622 cm−1, 1415 cm−1, 1239 cm−1, and 1075 cm−1, and peaks in the
fingerprint region (Figure 6). However, the IR spectrum of mace-AgNPs showed slight
shifts in peak positions. The peaks were observed at 3753 cm−1, 3428 cm−1, 2930 cm−1,
2369 cm−1, 1632 cm−1, 1388 cm−1, and 1075 cm−1 (Figure 7). Strong and sharp peaks
between 3400 and 3753 cm−1, and a weak broad peak at 2930 cm−1 in both the extracts,
and synthesized mace-AgNPs, indicated the presence of alcohols and phenols arising from
OH stretching vibrations due to the CH asymmetric stretching of alkanes. The peaks
at 1415 cm−1, 1239 cm−1, and 1075 cm−1 corresponded with the C-N skeletal stretching
vibrations of amines. The weak and sharp peaks at 1622 cm−1 and 1632 cm−1 corresponded
with the carbonyl stretch of amides in proteins. Similar to our findings, previous reports
have shown the presence of carbonyl groups, alcohols, phenols, and alkene-related peaks
in the FTIR spectrum of mace, nutmeg extract, and synthesized NPs [42,52,58]. The shifts
in the positions of bands and the disappearance of some peaks in the IR spectrum of
synthesized mace-AgNPs indicated the role of OH (hydroxyl) phenols, alcohols, and the
carbonyl group of amines in the capping and reduction of silver ions to AgNPs. Carbonyl
groups in proteins and hydroxyl groups in alcohols have a strong ability to bind to metals,
implying the formation of a layer around the metal NPs [42,59], resulting in capping and
preventing the agglomeration of NPs [59,60].
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Mace extracts and synthesized copper NPs showed the presence of aromatic rings,
esters, phenols, and carboxylic acids [61]. The aforementioned bioactive compounds found
in mace are typical biomolecule markers present in the FTIR spectrum of green synthesized
nanoparticles [62]. Very similar to our findings, these biomolecules were reported earlier
from M. fragrans arils, seed extracts, AgNPs and essential oils [42,63,64]. Sasidharan and
colleagues, in 2020 [41], synthesized silver and copper NPS from the pericarp of M. fragrans
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fruits. They identified identical compounds in FTIR studies as reported in the present study,
and suggested the involvement of eugenol, phenolic compounds, and fatty acids in the
synthesis of nanoparticles.

2.6. Antifungal Activity of Mace Aqueous Extracts and Synthesized AgNPs

The antifungal activity of mace aqueous extracts and synthesized AgNPs was assessed
against several phytopathogenic fungi. Figure 8 clearly depicts the significant mycelial
growth inhibition of A. alternata, F. oxysporum, and P. magniferae when treated with extracts
and AgNPs. However, T. harzianum exhibited poor inhibition by both the extract and the
synthesized AgNPs. It was observed that the AgNPs inhibited the growth and proliferation
of mycelium more strongly than the extracts. The extracts caused inhibition of mycelial
growth in a variable manner. Figure 9 shows the diameter of the fungal colonies; conse-
quently, Figure 10 depicts the percentage mycelial inhibition of test fungi, which are as
follows: P. magniferae (50%), followed by A. alternata (13.70%) and F. oxysporum (23.75%). In
comparison, the AgNPs were more effective as the inhibition was stronger. P. magniferae
demonstrated the highest radial growth inhibition, when treated with mace-AgNPs (89%),
followed by A. alternata (83%) and F. oxysporum (76%). There is very little data available on
the antifungal activity of green-synthesized NPs. To our knowledge, there are no reports
that demonstrate the antifungal activity of AgNPs against phytopathogenic fungi. How-
ever, a recent study by Fernando and Senevirathne showed the complete inhibition of the
growth of F. oxysporum when treated with organic extracts of mace [65]. Yet, another study
demonstrated the significant antifungal activity of three lignans isolated from nutmeg. The
lignans showed the significant inhibition of a wide variety of plant pathogenic fungi that
cause tomato blight, wheat rut, barley powdery mildews, and rice blast [66]. The excellent
antimicrobial properties shown by nutmeg seeds could be due to compounds such as
carvacrol, b-caryophyllene, p-cymene, and α-pinene, present in the nutmeg seeds [67].

2.7. Antibacterial Activity of Aqueous Extracts and AgNPs Synthesized from Mace

The antibacterial activity of mace extracts and AgNPs is depicted in Figures 11 and 12.
The antibacterial study showed that mace-AgNPs were highly effective in inhibiting the
bacterial test isolates, whereas the mace aqueous extract was the least inhibitory, as none of
the test isolates showed inhibitory zones, indicating the poor inhibitory activity of mace
extracts. S. aureus showed the biggest zone of inhibition (22 ± 1.25) when treated with
mace-AgNPs, followed by E. coli (20 ± 0.75) and B. subtilis (19 ± 1.58), respectively. AgNO3
also showed weak inhibition of some B. subtilis and E. coli. Similar to the findings of this
study, previous research has shown that aqueous extracts of nutmeg did not inhibit the
bacterial test isolates, S. aureus and E. coli, but the synthesized NPs showed significant
growth inhibition of the aforementioned bacterial species [52]. Recent studies have shown
the excellent antibacterial activity of silver AgNPs and CuNPs, synthesized from the seeds
of M. fragrans against S. aureus, E. coli, P. aeruginosa, B. subtilis, and Salmonella typhi [41,42,52].
Gram-negative bacteria are more susceptible to Ag ion penetration than gram-positive
bacteria due to the differences in cell wall composition and structural organization [68].
However, in the present study, P. aeruginosa exhibited poor antibacterial activity. Similar to
our findings, in a previous study, hospital strains of P. aeruginosa showed resistance towards
AgNPs and tested antibiotics [69]. The possible reasons for the resistance shown could be
the result of the decreased permeability of the cell membrane, alterations in the structure of
porins, or the activity of efflux pumps [69].
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Figure 9. Diameter of the mycelial growth of fungal isolates treated with mace aqueous extracts,
mace-AgNPs, AgNO3 and the fungicide (M+C). All values shown in the graph are means of three in-
dependent experimental replicates (±SD). Significant difference in means (p ≥ 0.05) were determined
by analysis of variance (ANOVA) and Tukey’s HSD.
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As early as 1987, Woo and colleagues [70] isolated two lignans (Macelignan and Meso-
dihydroguaiaretic acid) for the first time from mace. Lignans isolated from mace and seeds
of M. fragrans showed strong antifungal activity against several plant pathogenic fungi,
including Agrobacterium tumefaciens, Alternaria alternata, Colletotrichum gloeosporioides, C.
coccodes, and Magnaporthe grisea [66]. Similarly, dihydroguaiaretic acid from mace arils
exhibited strong inhibition of Helicobacter pylori at a low MIC of 100 µg/mL [71]. Another
study isolated and identified two compounds, malabaricone B and malabaricone C, from
mace extract [72]. These compounds were found to have potent antifungal and antibacterial
properties against Staphylococcus aureus, Bacillus subtilis, and Candida albicans [72]. Previous
research has confirmed the presence of neolignans, lignans, phenylpropanoids, flavonoids,
esters, and phenolic constituents [73–77] in the aqueous and organic solvent extracts of
mace. Mace oils have also shown the presence of several terpenes, and its derivatives [78].
All the compounds referenced above have demonstrated a broad spectrum of antimicrobial
activity. Mace licarins caused the complete growth arrest of bacteria that cause dental caries,
i.e., Streptococcus mutans [79]. Essential oils extracted from mace showed the presence
of quite a few monoterpene hydrocarbons and oxygenated monoterpenes, that included
limonene, -pinene, -terpinene, -pinene, linalool, terpinene-4-ol, and α-terpineol. The mace
oils also demonstrated strong antibacterial and antifungal activity, which was attributed to
their terpene composition [80].

The mode of action of AgNPs against microorganisms still needs a deeper understand-
ing. However, several researchers have documented their findings in this regard, and have
stated that the most probable reason for the robust inhibitory activity of AgNPs against
both fungi and bacteria could be their competence to physically integrate with the cell
membrane [81,82]. The most probable mechanism of antimicrobial activity is still debatable,
as some researchers attribute it to AgNPs while others credit it to silver ions (Ag+). It
was proposed that the AgNPs make direct contact with the cell wall, adhere strongly,
and finally penetrate the microbial cell [82]. Close contact of AgNPs with the bacterial
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cell wall and their penetration into the cell cytoplasm impairs the cell membrane, which
results in cell leakage, leading to cell death [83,84]. Additionally, once in the cytoplasm, the
AgNPs interact with several molecules in the cell, similar to lipids, DNA, and proteins. The
interaction of NPs with the respiratory enzyme system results in the generation of ROS
and free radicals that induce oxidative stress, and interfere with vital metabolic functions
by damaging nucleic acids and cell proteins [85]. Reports also suggest that the free radicals
along with the NPs cause substantial damage to the cell membrane by forming several
pores, disturbing the integrity of the cell membrane, and resulting in disintegration [67].
Another view is that the penetration of NPs results in the disruption of cell integration,
inhibits vital processes including respiration, protein synthesis, and ion transport, and
finally leads to cell death [86,87]. Previous studies have reported that NPs disrupt the er-
gosterol of the fungal cell membrane, disturb the osmotic balance through downregulation
of oxidative enzymes, and the generation of ROS [88]. Such disturbances often cause cell
instability and ultimately culminate in cell death [89]. Another study reported that AgNPs
disturbs the lipid bilayer of the cell membrane due to altered permeability, resulting in the
leakage of cell materials and cell death [90].

Contrary to the aforementioned view, the antibacterial activity of AgNPs is believed to
be due to the silver ions, which are released continuously from AgNPs [91]. Metals oxidize
in aqueous solutions to release metal ions. Hence, AgNPs yield Ag+ ions in aqueous solu-
tions [92,93]. Due to the affinity and electrostatic attraction of silver ions towards sulphur
proteins that are bound to the cell wall, the silver ions strongly adhere to the cell wall and
cell membrane, thereby enhancing the permeability of the cell membrane and damaging
the cell envelope [93,94]. Their entry into the cytoplasm deactivates the respiratory en-
zymes and generates ROS (reactive oxygen species), which incites the disruption of the
cell membrane and inhibits ATP production and protein synthesis, besides damaging the
DNA by interacting with phosphorus and sulphur [94,95], ultimately leading to cell death.
Another view is that the antibacterial activity is the result of a synergistic effect of both the
proposed antibacterial mechanisms. The direct contact and adherence of AgNPs to the cell
membrane stimulates the release of Ag+ ions and their uptake by cells [96].

Hence, the potent inhibitory activity of mace-AgNPs on the growth of bacterial and
fungal isolates could be accredited to the very small dimensions of the AgNPs and the bioac-
tive molecules like carbonyl compounds, esters, and phenols attached to them. Previous
findings have documented mace as a rich source of phenolic compounds, ester, aromatic
rings, alkanes, methyl ester, alkenes, carbonyl groups, and aldehydes [58,61]

2.8. Cytotoxic Studies of Mace-AgNPs against the HeLa Cancer Cell Line

Cytotoxicity assessment with the sequential dilution of mace-AgNPs (3.125–100 µg/mL)
was tested against the HeLa cell line and a dose-dependent curve was plotted, as depicted
in Figure 13. The figure clearly displays that the viable cells markedly decreased as the
concentration of mace-AgNPs increased, with an IC50 value of 18.05 ± 0.97 mL/100 mL. The
significant cytotoxic activity of mace-AgNPs could possibly be a result of the synergy of the
bioactive compounds (flavonoids, phenols, and amides) with the AgNPs and their ability to
penetrate the cells, disrupt the ETS function, alter cell permeability, and cause cell death [97].
Secondary metabolites, including phenols and flavonoids, inhibit transcription and activate
the generation of ROS, resulting in a surge of oxygen free radicals [98]. Consequently, oxidative
stress increases, which is supposedly designated as the primary toxicity method of silver
nanoparticles against cancer cells. The significant outcomes of the cytotoxicity of mace-AgNPs
in this study are in complete concurrence with a previous finding that validates the cytotoxic
activity of green-synthesized AgNPs against the cervical cancer cell line HeLa [99–101]. Recent
research has added to the knowledge of the therapeutic use of green-synthesized AgNPs, but
their mode of action and effects on normal cells still needs to be addressed.
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3. Materials and Methods
3.1. Chemical Reagents

Various chemicals, reagents, and culture media were used to prepare the solutions and
extract. All of them were of analytical grade and pure (99% purity). Silver nitrate, Potato
dextrose agar and Nutrient agar were purchased from either Sigma Aldrich-Merck KGaA,
Darmstadt, Germany or Thermo Fischer Scientific-Inc., Waltham, MA, USA.

3.2. Microorganisms

Four bacterial isolates and four fungal isolates were chosen for antimicrobial activity.
The bacterial isolates (Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, and Staphylo-
coccus aureus) were kindly provided by the university hospital, the King Khaled hospital
in Riyadh, Saudi Arabia. The fungal isolates (Alternaria alternata, Pestalotiopsis mangiferae,
Fusarium oxysporum, and Trichoderma harzianum) were procured from the Department of
Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh,
Saudi Arabia.

3.3. Plant Material and Aqueous Extract Preparation

Mace was purchased from a local Unani store in Hyderabad, Telangana, India. Mace
arils were roughly hand-crushed and employed for the aqueous extract preparation, as
mentioned earlier [14]. Concisely, the crushed arils (10 g) were added to 100 mL of distilled
water and boiled at 80 ◦C for 20 min. Then, the mixture was left for 24 h and allowed to
cool at room temperature. After 24 h, it was filtered through Whatman’s filter paper (No. 1).
The filtrate was then centrifuged at 5000 rpm (10 min), and the supernatant was collected to
be employed for the preparation of silver nanoparticles, and for other experimental studies.

3.4. Synthesis of AgNPs Using Aqueous Mace Extracts

A solution of 1 mM silver nitrate (AgNO3) was prepared by mixing a fixed amount of
silver nitrate powder to distil water. A reaction mixture of AgNO3 and mace extract was
prepared by adding 45 mL of freshly prepared AgNO3 solution to 5 mL of aqueous mace
extract. The reaction mixture changed to a brown from the initial buff color in 21 min. The
color change indicated the formation of mace-AgNPs through reduction of Ag ions [85].
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3.5. Characterization

UV-VIS spectroscopic analysis of the mace-AgNPs was conducted with an ultraviolet
visible spectrophotometer (UV-VIS-Shimadzu, Japan-model No-1800). The dynamic light
scattering analyzer (DLS) Model-Nano Series-Zeta sizer-ZEN-3600, Malvern, UK, was em-
ployed to ascertain the hydrodynamic size, polydiversity index (PDI), and the distribution
of the synthesized nanoparticles. The mace nanoparticles were further screened for their
elemental composition and the EDX spectrum was obtained. The field emission scanning
electron microscope model JSM-7610F-Japan with an energy dispersive X-ray detector
(EDS) was used to screen the elements in the nanoparticles and the spectrum was collected
at an accelerating voltage of 30 kV. Furthermore, the shape and size of the mace-AgNPs
were captured on a transmission electron microscope (TEM-JEOL JEM-Plus-1400, Tokyo,
Japan). Preparation of all the samples for the analysis purpose was performed according
to the manufacturer’s instructions. The synthesized nanoparticles were further screened
with a Fourier transform infrared spectroscope in the scan range of 400–4000 cm (Thermo
Scientific, USA, Model-Nicolet-6700) using a KBr pellet. Mace extracts were also subjected
to FTIR analysis.

3.6. Antibacterial Activity

The antibacterial activity of the mace extract, mace-AgNPs, and AgNO3 was eval-
uated against the aforementioned bacterial isolates by following the agar well-diffusion
method [102]. All the bacterial isolates were cultured separately in nutrient broth for 24 h
to obtain a bacterial suspension corresponding to 0.5 Mac Farland suspension (∼106 per
mL-CFU-colony-forming unit). One hundred microliters (100 µL) of bacterial suspension
were added to a solidified nutrient agar plate, and gently spread on the surface of the
nutrient agar. After an hour, three wells with a diameter of 4 mm were punched in each
plate. The wells were filled with 100 µL of either mace extract, mace-AgNPs, or AgNO3.
All the bacterial isolates were screened in the similar manner mentioned above, and were
incubated for a day (24 h) at 37 ◦C. Separately, for positive control, all the bacterial test
isolates were screened in a similar manner against antibiotic discs (Tetracycline 30 µg). The
antibacterial inhibitory activity was evaluated by measuring the clear zone around each
well, which indicated the absence of growth. The diameter of each inhibition zone was
measured (mm) and documented. The assay was carried out in triplicates.

3.7. Antifungal Activity

Pure cultures of plant pathogenic fungi were obtained by subculturing them for 7 days.
A 6-mm disc of the fungal colony was removed with a sterile cork borer, and transferred to
a PDA plate that had been amended with 500 µL of either mace extract, mace-AgNPs, or
AgNO3. The PDA plates were modified by first adding a fixed amount of the test solutions
(mace extract, mace-AgNPs, or AgNO3) to a sterile petri plate, followed by the addition
of the molten PDA. The contents were thoroughly mixed and then allowed to solidify.
Finally, the inoculated petri plates were incubated for 7 days at 28 ◦C. Mycelial growth
was measured after 9 days, and the percentage mycelial inhibition was calculated [103].
The fungicides Mancozeb and Carbendazim (0.1%) were used as a positive control. All the
fungal isolates were screened in a similar manner in triplicates.

3.8. Cytotoxic Effect of Mace-AgNPs on the HeLa Cancer Cell Line

Different concentrations of mace-AgNPs were tested for their in vitro cytotoxic activity
against the HeLa cancer cell line by using the MTT assay. The HeLa cancer cell line (human
cervical cancer cell line) was obtained from the American Type Culture Collection (USA).
Concisely, to a 96-well plate, HeLa cells were added at a density of 1 × 104 cells/well
in 90 µL of DMEM (Dulbecco’s Modified Eagle’s Medium). After 24 h, the cells were
treated with Mace-AgNPs (3.125–100 µg mL−1). The various concentrations were prepared
by two-fold dilutions. The treated cells in the 96-well plate were further incubated for
24 h. After 24 h, MTT was added, and the plates were incubated for another 4 h. The
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treated plates were incubated for 24 h and MTT was added, after which the plates were
incubated for another 4 h. Cell viability was determined by a colorimetric method and the
percentage of cells viable was calculated with a microplate reader (SunRise, TECAN, Inc.,
San Bruno, CA, USA). The cytotoxic effect of standard drugs was also determined. The
negative control (untreated) showed 100% of the cells viable. The IC 50 value was assessed
by plotting a dose-dependent curve, plotted using Graph Pad Prism (version 7-San Diego,
CA, USA) [103].

3.9. Statistical Analysis

The data and values presented in the present study were analyzed by standard de-
viation, and analysis of variance (ANOVA) and Tukey’s HSD test were implemented for
significant differences (p ≤ 0.05). The statistical tests were run on XLSTAT (software version
1 January 2020) and Graph pad prism version-8.4.3.686.

4. Conclusions

Green nanotechnology is an excellent, environmentally friendly approach to the
synthesis of NPs using plants and other biological sources. This process, besides being cost-
effective, is associated with minimal toxicity. Mace arils are a rich source of phenols, safrole,
myristic acid, minerals, bioactive compounds, myristicin, and antioxidants. The present
study demonstrated the significant reducing and stabilizing potential of biomolecules
belonging to phenols and carbonyl groups that assisted in the nucleation and formation of
small-sized AgNPs. The potent antibacterial, antifungal, and cytotoxic activity of mace-
AgNPs in the present study could be ascribed to the small size and spherical shape of NPs
that measure between 5–28 nm, as observed in TEM studies. The strong antimicrobial
and cytotoxic activities suggest that the mace-AgNPs have good scope to be used in a
variety of applications, including the agrochemical sector, pharmaceutical industry, and
several biomedical applications. However, studies to establish the toxicity effects on cells
are required.
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