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Abstract

Background: The a7 nicotinic acetylcholine receptors (nAChRs) play an important role in the pathophysiology of
neuropsychiatric diseases such as schizophrenia and Alzheimer’s disease. However, there are currently no suitable positron
emission tomography (PET) radioligands for imaging a7 nAChRs in the intact human brain. Here we report the novel PET
radioligand [11C]CHIBA-1001 for in vivo imaging of a7 nAChRs in the non-human primate brain.

Methodology/Principal Findings: A receptor binding assay showed that CHIBA-1001 was a highly selective ligand at a7
nAChRs. Using conscious monkeys, we found that the distribution of radioactivity in the monkey brain after intravenous
administration of [11C]CHIBA-1001 was consistent with the regional distribution of a7 nAChRs in the monkey brain. The
distribution of radioactivity in the brain regions after intravenous administration of [11C]CHIBA-1001 was blocked by
pretreatment with the selective a7 nAChR agonist SSR180711 (5.0 mg/kg). However, the distribution of [11C]CHIBA-1001
was not altered by pretreatment with the selective a4b2 nAChR agonist A85380 (1.0 mg/kg). Interestingly, the binding of
[11C]CHIBA-1001 in the frontal cortex of the monkey brain was significantly decreased by subchronic administration of the
N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (0.3 mg/kg, twice a day for 13 days); which is a non-
human primate model of schizophrenia.

Conclusions/Significance: The present findings suggest that [11C]CHIBA-1001 could be a novel useful PET ligand for in vivo
study of the receptor occupancy and pathophysiology of a7 nAChRs in the intact brain of patients with neuropsychiatric
diseases such as schizophrenia and Alzheimer’s disease.
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Introduction

The most of neuronal nicotinic acetylcholine receptors

(nAChRs) are ligand-gated ion channels composed of a and b
subunits that assemble to form pentamers with a variety of

physiological and pharmacological properties. Two major sub-

types exist in the brain, those comprised of a4b2 and those

comprised of a7 subunits [1,2]. The former contribute .90% of

the high affinity binding sites for nicotine in the rat brain, and the

low affinity binding sites (a7 subunits) for nicotine are recognized

by their nanomolar affinity for a-bungarotoxin. Several lines of

evidence suggest that a7 nAChRs play a role in the pathophys-

iology of neuropsychiatric diseases such as schizophrenia,

Alzheimer’s disease, anxiety, depression, and drug addiction,

and that a7 nAChRs are the most attractive therapeutic targets for

these diseases [3–11]. Studies using postmortem human brain

samples have demonstrated alterations in the levels of a7 nAChRs

in the brains of patients with schizophrenia [12,13] and

Alzheimer’s disease [14–16]. It is thus of great interest to examine

whether a7 nAChRs are altered in the living brain of patients with

neuropsychiatric diseases such as schizophrenia and Alzheimer’s

disease. It is also of interest to measure the receptor occupancy of

potential therapeutic a7 nAChR drugs in the intact human brain.

The distribution, density, and activity of receptors in the living

brain can be visualized noninvasively by radioligands labeled for

positron emission tomography (PET), and the receptor binding

can be quantified by appropriate tracer kinetic models, which can

be modified and simplified for particular applications [17–19].

The PET ligands ([11C]nicotine and 2-[18F]fluoro-A85380) for

a4b2 nAChRs have been used in clinical studies [20–22].

However, there have been no clinical studies using PET ligands

for a7 nAChRs in the human brain. Therefore, it is very
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important to develop a safe PET ligand for quantification of a7

nAChRs in the human brain. Very recently, researchers at Sanofi-

Aventis developed the novel selective a7 nAChR agonist

SSR180711 (4-bromophenyl 1,4-diazabicyclo(3.2.2) nonane-4-

carboxylate)(Figure 1) [23,24], which is under clinical study.

Here, we developed two novel PET ligands, [76Br]SSR180711

and [11C]CHIBA-1001, for in vivo imaging of a7 nAChRs in the

human brain. Using conscious monkeys, we evaluated the two PET

ligands for in vivo imaging of a7 nAChRs in the non-human primate

brain. Furthermore, we evaluated the usefulness of [11C]CHIBA-

1001 in a non-human primate model of schizophrenia.

Results

Receptor affinity and specificity
SSR180711 displaced specific binding of [3H]a-bungarotoxin to

the rat and human a7 nAChRs with Ki values of 22 and 14 nM,

respectively [23], and SSR180711 (10 mM) was found to be devoid

of activity (inhibition lower than 50%) for a 100 standard receptor

binding profile [23]. In our assay, the IC50 values of SSR180711

and CHIBA-1001 for [125I]a-bungarotoxin (0.5 nM) binding to

the rat brain homogenates were 24.9 and 45.8 nM, respectively.

Furthermore, CHIBA-1001 (1 mM) was found to be devoid of

activity (inhibition lower than 50%) for a 28 standard receptor

binding profile (See Supplemental Table S1 and S2).

Synthesis of [76Br]SSR180711 and [11C]CHIBA1001
[76Br]SSR180711 and [11C]CHIBA-1001 were synthesized by

bromination and methylation of the precursor, respectively

(Figure 1). The radiochemical purity and specific activity of

[76Br]SSR180711 were approximately 100% and 8.1161.65

GBq/mmol (mean6SD of 9 experiments), respectively. The

radiochemical yields and yields of [76Br]SSR180711 were

16.766.14% and 0.2160.09 GBq (mean6SD of 9 experiments),

respectively. The radiochemical purity and specific activity of

[11C]CHIBA-1001 were 98.661.68% (mean6SD of 12 experi-

ments) and 343.7636.1 GBq/mmol (mean6SD of 12 experi-

ments), respectively. The radiochemical yields and yields of

[11C]CHIBA-1001 were 9.4961.45% and 1.8860.33 GBq

(mean6SD of 12 experiments), respectively.

Conscious monkey PET studies
Baseline PET scans showed rapid brain penetration and

accumulation of [76Br]SSR180711 in the monkey brain

(Figures 2–4). The peak time of radioactivity in the hippocampus

was about 60 min after administration of the radioligand.

Furthermore, the peak time of radioactivity in the other brain

regions (occipital cortex, temporal cortex, frontal cortex, striatum,

thalamus, and cerebellum) was about 30–40 min after adminis-

tration of the radioligand. The distribution of radioactivity in the

brain regions after administration of the radioligand was consistent

with the distribution of a7 nAChRs in the monkey brain [25–27].

Uptake of radioactivity in the brain regions after intravenous

administration of [76Br]SSR180711 was significantly decreased by

pretreatment with the a7 nAChR agonist SSR180711 (5.0 mg/kg,

i.v., 30 min)(Figures 2–4). Uptake of radioactivity (during 70–

91 min) in the brain regions except the cerebellum (low receptor

density) after intravenous administration of [76Br]SSR180711 was

significantly decreased by pretreatment with the a7 nAChR

agonist SSR180711 (5.0 mg/kg, i.v., 30 min)(Figures 4A). How-

ever, the distribution of radioactivity in the brain regions after

intravenous administration of [76Br]SSR180711 was not altered

by pretreatment with the selective a4b2 nAChR agonist A85380

(1.0 mg/kg, i.v., 30 min)[28,29](Figures 2, 3 and 4B).

Baseline PET scans showed rapid brain penetration and

accumulation of [11C]CHIBA-1001 in the monkey brain

(Figures 5–7). The peak time of radioactivity in the other brain

regions (occipital cortex, temporal cortex, frontal cortex, striatum,

thalamus, and cerebellum) was about 10 min after administration

of [11C]CHIBA-1001, whereas the peak time of radioactivity in

the hippocampus was about 30 min after administration. The

distribution of radioactivity in the striatum, thalamus, hippocam-

pus, occipital cortex, temporal cortex, and frontal cortex 40–

60 min after administration of the radioligand was higher than

that in the cerebellum, consistent with the distribution of a7

nAChRs in the monkey brain [25–27]. Uptake of radioactivity

(during 70–91 min) in the brain regions except the cerebellum (low

receptor density) after intravenous administration of [11C]CHIBA-

1001 was decreased by pretreatment with SSR180711 (5.0 mg/kg)

although these differences failed to reach statistical significance

because of small number (n = 3) of monkey (Figures 7A).

Furthermore, a preliminary study indicated that the uptake of

radioactivity in the brain regions after intravenous administration

of [11C]CHIBA-1001 was also decreased by pretreatment with

another a7 nAChR agonist A844606 (5.0 mg/kg, i.v., 30 min

before) [30] (Supplemental Figure S1). However, the uptake of

radioactivity in the brain regions after intravenous administration

of [11C]CHIBA-1001 was not altered by pretreatment with the

Figure 1. Synthesis of [76Br[SSR180711 and [11C]CHIBA-1001.
doi:10.1371/journal.pone.0003231.g001

PET Ligand for a7 nAChRs
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Figure 2. Representative PET images in the brains of a rhesus monkey after intravenous administration of [76Br]SSR180711. Upper:
Control monkey (saline pre-treated). Middle: Pretreatment with SSR180711 (5.0 mg/kg, 30 min before). Lower: Pretreatment with A85380 (1.0 mg/kg,
30 min before)
doi:10.1371/journal.pone.0003231.g002

Figure 3. Representative time-activity curves of radioactivity (expressed as % Dose/mL) in several brain regions of a rhesus
monkey after intravenous administration of [76Br[SSR180711 in control (saline pre-treated) monkey, SSR180711 (5.0 mg/kg,
30 min before)-pretreated monkey, and A85380 (1.0 mg/kg, 30 min before)-pretreated monkey.
doi:10.1371/journal.pone.0003231.g003

PET Ligand for a7 nAChRs
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selective a4b2 nAChR agonist A85380 (1.0 mg/kg, i.v.,

30 min)[28,29](Figures 5, 6, and 7B).

In the described in discussion section, it is likely that

[11C]CHIBA-1001 is superior to [76Br]SSR180711 because of

high brain uptake and lower half-life of [11C]. Therefore,

[11C]CHIBA-1001 was used in the subsequent studies.

Phencyclidine (PCP)-treated monkeys
The N-methyl-D-aspartate (NMDA) receptor antagonist phen-

cyclidine (PCP) has been used as an animal model of schizophre-

nia, since it has been shown to cause schizophrenia-like symptoms

in humans [31–35]. We performed two PET scans, one before

(baseline) and one 1-day after subchronic administration of PCP

(0.3 mg/kg, twice a day for 13 days). Subchronic administration of

PCP did not alter the time-curve of the radioactivity or the

percentage of unmetabolized fraction in the plasma of monkeys

(Figure 8). Interestingly, subchronic administration of PCP

decreased the binding of [11C]CHIBA-1001 in several regions

(frontal cortex, temporal cortex, occipital cortex, striatum,

thalamus, and hippocampus) of the monkey brain; the difference

of binding in the frontal cortex was statistically significant (t = 5.73,

df = 3, p = 0.011) between the two groups (Figure 8C), consistent

with a previous report using mice [35].

Discussion

In the present study, we have developed two PET ligands,

[76Br]SSR180711 and [11C]CHIBA-1001. It is likely that

[11C]CHIBA-1001 is superior to [76Br]SSR180711 for the

following reasons. First, [11C]CHIBA-1001 can be synthesized

using an in house cyclotron, whereas [76Br]SSR180711 cannot.

Second, the radiation exposure dose in humans by [11C]CHIBA-

1001 PET study is lower than that of [76Br]SSR180711 because of

the short half-life (the half-lives of [11C] and [76Br] are 20.4 min

and 16.2 hours, respectively). Third, the short half life allows

several repetitions of [11C]CHIBA-1001 PET in a single day.

Fourth, brain uptake of [11C]CHIBA-1001 is higher than that of

[76Br]SSR180711.

Figure 4. Effects of SSR180711 and A85380 on the uptake of the radioactivity in the monkey brain after intravenous administration
of [76Br[SSR180711. (A): Uptake values (expressed as % Dose/mL) of [76Br[SSR180711 in several brain regions under control (saline pre-treated)
group (during 70–91 min post-injection) and SSR180711 (5.0 mg/kg, 30 min before) treated groups. Data were the mean6S.D. of three monkeys.
*p,0.05, **p,0.01 as compared to control group (Paired t-test). (B): Uptake values (expressed as % Dose/mL) of [76Br[SSR180711 in several brain
regions under control (saline pre-treated) group (during 70–91 min post-injection) and A85380 (1.0 mg/kg, 30 min before) treated groups. Data were
the mean6S.D. of three monkeys. CERE: cerebellum, HIPP: hippocampus, OCC: occipital cortex, STR: striatum, THA: thalamus, TEM: temporal cortex,
FC: frontal cortex
doi:10.1371/journal.pone.0003231.g004
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We have demonstrated that [11C]CHIBA-1001 is a novel PET

ligands for in vivo imaging of a7 nAChRs in the non-human

primate brain. First, an in vitro receptor binding study showed that

CHIBA-1001 is a highly selective ligand at a7 nAChRs, since this

ligand was found to be devoid of activity for the standard receptor

binding profile. Second, an in vivo PET study using conscious

monkeys demonstrated a high accumulation into the brain after

intravenous administration of [11C]CHIBA-1001. The regional

Figure 5. Representative PET images in the brains of a rhesus monkey after intravenous administration of [11C]CHIBA-1001. Upper:
Control monkey (saline pre-treated). Middle: Pretreatment with SSR180711 (5.0 mg/kg, 30 min before). Lower: Pretreatment with A85380 (1.0 mg/kg,
30 min before)
doi:10.1371/journal.pone.0003231.g005

Figure 6. Representative time-activity curves of radioactivity (expressed as % Dose/mL) in several brain regions of a rhesus
monkey after intravenous administration of [11C]CHIBA-1001 in control (saline pre-treated) monkey, SSR180711 (5.0 mg/kg,
30 min before)-pretreated monkey, and A85380 (1.0 mg/kg, 30 min before)-pretreated monkey.
doi:10.1371/journal.pone.0003231.g006

PET Ligand for a7 nAChRs
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distribution of radioactivity in the monkey brain after intravenous

administration of [11C]CHIBA-1001 is consistent with the

distribution of a7 nAChRs in the monkey brain [25–27].

Furthermore, the uptake of radioactivity in the monkey brain

regions was blocked by pretreatment with the selective a7 nAChR

agonist SSR180711 and A844606, but not the selective a4b2

nAChR agonist A85380. Third, we found a reduction of

[11C]CHIBA-1001 binding in the frontal cortex of the monkey

brain after subchronic administration of PCP.

Recently, we reported that the repeated administration of PCP

(10 mg/kg/day for 10 days) significantly decreased the density of

a7 nAChRs in the frontal cortex of the mouse brain [35],

consistent with our monkey data. The precise mechanism(s)

underlying how repeated PCP administration could modulate a7

nAChRs in the brain are currently unknown. It has been reported

that the immunoreactivity of a7 nAChRs in the prefrontal cortex

of schizophrenics was significantly decreased compared to that in

normal controls [36]. Interestingly, a7 nAChR agonists can

increase the release of glutamate from the presynaptic terminals,

resulting in stimulation of the NMDA receptors on the

postsynaptic neurons, suggesting that stimulation at a7 nAChRs

may potentiate the NMDA receptors [7,37,38]. Taken together,

these findings suggest that a7 nAChRs may interact with the

NMDA receptors in the brain, although further study on the cross-

talk between a7 nAChRs and NMDA receptors in the brain is

necessary [7,37,38].

A postmortem human brain study demonstrated decreased

expression of hippocampal a7 nAChRs in schizophrenic patients

[12], suggesting that schizophrenic patients have fewer a7

nAChRs in the hippocampus, a condition which may lead to

Figure 7. Effects of SSR180711 and A85380 on the uptake of the radioactivity in the monkey brain after intravenous administration
of [11C]CHIBA-1001. (A): Uptake values (expressed as % Dose/mL) of [11C]CHIBA-1001 in several brain regions under control (saline pre-treated)
group (during 70–91 min post-injection) and SSR180711 (5.0 mg/kg, 30 min before) treated groups. Data were the mean6S.D. of three monkeys. (B):
Uptake values (expressed as % Dose/mL) of [11C]CHIBA-1001 in several brain regions under control (saline pre-treated) group (during 70–91 min post-
injection) and A85380 (1.0 mg/kg, 30 min before) treated groups. Data were the mean6S.D. of three monkeys. CERE: cerebellum, HIPP:
hippocampus, OCC: occipital cortex, STR: striatum, THA: thalamus, TEM: temporal cortex, FC: frontal cortex
doi:10.1371/journal.pone.0003231.g007

PET Ligand for a7 nAChRs
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the failure of cholinergic activation of the inhibitory interneurons,

manifesting clinically as decreased gating of responses to sensory

stimulation [12]. Deficient inhibitory processing of the P50

auditory evoked potential is a pathophysiological feature of

schizophrenia [3,39–41] and Alzheimer’s disease [42], and it has

been suggested that a7 nAChRs play a critical role in this

phenomenon [40,41,43,44]. In the present study, using

[11C]CHIBA-1001 and PET, we could detect the reduction of

a7 nAChRs in the frontal cortex in a non-human primate PCP

model of schizophrenia although semi-quantitative analysis using

Logan plot analysis was performed in this study. Taken together,

these results suggest that it would be of great interest to examine

whether a7 nAChRs are altered in the intact brain of patients with

schizophrenia and Alzheimer’s disease by using [11C]CHIBA-

1001 and PET.

Based on the above findings, a7 nAChRs are the most attractive

target for potential therapeutic drugs in several neuropsychiatric

diseases [3–11,43,44]. A number of pharmaceutical industries

have developed selective a7 nAChR agonists for the treatment of

neuropsychiatric diseases, including schizophrenia and Alzhei-

mer’s disease, and clinical trials of some drugs have been started.

Using [11C]CHIBA-1001 and PET, it will be possible to measure

the relationship between the receptor occupancy and the dose of

a7 nAChR agonists in the human brain, since this radioligand can

be used for quantitative occupancy assessment of a7 nAChRs.

In conclusion, the present study presents the successful in vivo

characterization of a7 nAChRs in the conscious monkey brain

using [11C]CHIBA-1001 and PET. Therefore, in vivo PET imaging

of a7 nAChRs in the intact human brain provides a method for

quantitative study of a7 nAChR-related pathophysiology in

neuropsychiatric diseases. In addition, the in vivo determination

of receptor occupancy allows for the demonstration of target

engagement and assessment of titration for potential dose

regimens. A clinical PET study in healthy human subjects using

[11C]CHIBA-1001 is currently underway.

Materials and Methods

Synthesis of the precursor and CHIBA-1001
SSR180711, CHIBA-1001 and the precursor, 4-(tributylstan-

nyl)phenyl 2,5- diazabicyclo[3.2.2]nonane -2-carboxylate (Figure 1),

were synthesized as described in the Supplemental Method S1.

Figure 8. Effects of subchronic administration of PCP on the binding in monkey brain after intravenous administration of
[11C]CHIBA-1001. (A): Radioactivity in the plasma of control (baseline; n = 4) and PCP-treated (n = 4) groups after intravenous administration of
[11C]CHIBA-1001. Data were the mean6S.D. of four monkeys. (B): Percentage of unmetabolized fraction in the plasma of control and PCP-treated
groups after intravenous administration of [11C]CHIBA-1001. Data were the mean6S.D. of four monkeys. (C): Receptor binding in the several brain
regions of control and PCP-treated groups. Data were the mean6S.D. of four monkeys. *p,0.05 as compared to control (baseline) group (Paired t-
test).
doi:10.1371/journal.pone.0003231.g008

PET Ligand for a7 nAChRs
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[125I]a-Bungarotoxin binding
The binding assay using [125I]a-bungarotoxin was performed as

described in a previous report [45] with a slight modification (See

Supplemental Method S2).

Synthesis of [75Br]SSR180711 and [11C]CHIBA-1001
[76Br]SSR180711 and [11C]CHIBA-1001 were synthesized by

bromination and methylation of the precursor, respectively (See

Supplemental Method S3).

Subjects
Eleven young-adult male rhesus monkeys (Macaca mulatta)

weighing from 4 to 6 kg were used for PET measurements. The

monkeys were maintained and handled in accordance with the

recommendations of the US National Institutes of Health and also

the guidelines of the Central Research Laboratory, Hamamatsu

Photonics (Hamamatsu, Shizuoka, Japan). The animal experi-

mental procedure was approved by the Animal Care and Use

Committee of Hamamatsu Photonics and Chiba University. Over

the course of 3 months, the monkeys were trained to sit on a chair

twice a week. The magnetic resonance images (MRI) of all

monkeys were obtained with a Toshiba MRT-50A/II (0.5T)

under anesthesia with pentobarbital. The stereotactic coordinates

of PET and MRI were adjusted based on the orbitomeatal (OM)

line with monkeys secured in a specially designed head holder

[46]. At least 1 month before the PET study, an acrylic plate, with

which the monkey was fixed to the monkey chair, was attached to

the head under pentobarbital anesthesia as described previously

[47].

PET scans
PET data were collected on a high-resolution PET scanner

(SHR-7700; Hamamatsu Photonics K.K., Hamamatsu, Japan)

with a transaxial resolution of 2.6-mm full-width at half-maximum

(FWHM) and a center-to-center distance of 3.6 mm [48]. The

PET camera allowed 31 slices for imaging to be recorded

simultaneously. After an overnight fast, animals were fixed to

the monkey chair with stereotactic coordinates aligned parallel to

the OM line. A cannula was implanted in the posterior tibial vein

of the monkey for administration of [76Br]SSR180711 or

[11C]CHIBA-1001. [76Br]SSR180711 or [11C]CHIBA-1001 was

injected through the posterior tibial vein cannula 30 min after

administration of saline (control), SSR180711 (5.0 mg/kg, i.v.), or

A85380 (1.0 mg/kg, i.v.; Sigma-Aldrich Co., Ltd., St Louis, MO).

PET images were acquired over 91 min (10 s66 frames, 30 s66

frames, 1 min612 frames, and 3 min625 frames). Summation

images from 70 to 91 min postinjection were constructed. PET

scans were reconstructed using filtered backprojection in a

1006100 matrix, with a voxel size of 1.2 mm61.2 mm63.6 mm.

Each MRI was coregistered to a summation image. Due to the

very short half-life of 11C (20.4 min), a time lag of at least 3 hr

between scans provided sufficient decay time of radioactivity in

monkeys (approximately 1/400 of the injected dose). Therefore,

the level of radioactivity associated with the previous injection of

labeled compound would not interfere with the next scan as

previously reported [49,50].

Next, we examined the effects of subchronic administration of

the NMDA receptor antagonist phencyclidine (PCP: 0.3 mg/kg,

i.m., twice a day for 13 days) on the distribution of [11C]CHIBA-

1001 binding in the monkey brain. In the control (n = 4), PET

scans were performed before PCP administration. One day after

subchronic administration of PCP, PET scans were performed as

described above.

To assess the semi-quantitative analysis of PET data, arterial

samples were obtained every 8 s from injection to 64 s, and then

again at 1.5, 2.5, 4, 6, 10, 20, 30, 45, 60, and 90 min after

[11C]CHIBA-1001 injection. Blood samples of [11C]CHIBA-1001

were centrifuged to separate the plasma, weighed, and subjected to

radioactivity measurement. For metabolite analysis, methanol was

added to some plasma samples, the resulting solutions were

centrifuged, and the supernatants were developed with a thin-layer

chromatography (TLC) plate (AL SIL G/UV; Whatman, Kent,

UK) using a mobile phase of dichloromethane:diethyl ether:etha-

nol:triethylamine (20:20:2:2). At each sampling time point for

analysis, the ratio of radioactivity in the unmetabolized fraction to

that in the total plasma (metabolite plus unmetabolite) was

determined using a phosphoimaging plate (BAS-1500 MAC; Fuji

Film Co., Tokyo, Japan). The metabolite-corrected plasma curve

was obtained.

Kinetic analysis
Time-activity curves of radioactivity in each region of interest

(ROI) in the brain and metabolite-corrected arterial plasma were

determined. Analysis of the Logan plot provides the linear function

of the free receptor concentration, which is known as the

distribution volume [51]. In reversibly labeled compounds, the

Logan plot becomes linear after a certain period of time with a

slope (K) that is equal to the steady-state distribution volume. In

the preliminary semi-quantitative analysis, the ratios of K in each

ROI (K (ROI)) to K in the cerebellum (K (CE)) were calculated to

determine the binding of a7 nAChRs in the monkey brain.

Statistical analysis
Statistical analysis of the control (baseline) and drug

(SSR180711 or A85380) -treated groups was performed by paired

t-test. Statistical analysis of the control (baseline) and PCP-treated

groups was also performed by paired t-test. Significance was set at

p,0.05.

Supporting Information

Figure S1 Effects of the another alpha7 nAChR agonist

A844606 on the uptake of the radioactivity in the monkey brain

after intravenous administration of [11C]CHIBA-1001. Repre-

sentative time-activity curves of radioactivity (expressed as %

Dose/mL) in several brain regions of a rhesus monkey after

intravenous administration of [11C]CHIBA-1001 in control

(saline pre-treated) monkey, and A844606 (1.0 mg/kg, 30 min

before)-pretreated monkey.

Found at: doi:10.1371/journal.pone.0003231.s001 (0.14 MB TIF)

Method S1 Preparation of SSR180711, CHIBA-1001 and

precursor.

Found at: doi:10.1371/journal.pone.0003231.s002 (0.08 MB

DOC)

Method S2 [125I]alpha-Bungarotoxin binding

Found at: doi:10.1371/journal.pone.0003231.s003 (0.03 MB

DOC)

Method S3 Synthesis of [75Br]SSR180711 and [11C]CHIBA-

1001

Found at: doi:10.1371/journal.pone.0003231.s004 (0.03 MB

DOC)

Table S1 Inhibition effect of CHIBA-1001 (10 uM) on

radioligand binding to various receptors

Found at: doi:10.1371/journal.pone.0003231.s005 (0.07 MB

DOC)
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Table S2 Inhibition effect of CHIBA-1001 (1 mM) on radioli-

gand binding to various receptors

Found at: doi:10.1371/journal.pone.0003231.s006 (0.04 MB

DOC)
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