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Abstract
Background: Recent studies demonstrate that recombinant adeno-associated virus (rAAV)-based
antigen loading of dendritic cells (DCs) generates in vitro, significant and rapid cytotoxic T-
lymphocyte (CTL) responses against viral antigens.

Methods: We used the rAAV system to induce specific CTLs against CVM antigens for the
development of cytomegalovirus HCMV) gene therapy. As an extension of the versatility of the
rAAV system, we incorporated immediate-early 1 (IE1), expressed in HCMV. Our rAAV vector
induced a strong stimulation of CTLs directed against the HCMV antigen IE1. We then investigated
the efficiency of the CTLs in killing IE1 targeted cells.

Results: A significant MHC Class I-restricted, anti-IE1-specific CTL killing was demonstrated
against IE1 positive peripheral blood mononuclear cells (PBMC) after one, in vitro, stimulation.

Conclusion: In summary, single PBMC stimulation with rAAV/IE1 pulsed DCs induces strong
antigen specific-CTL generation. CTLs were capable to lyse low doses of peptides pulsed into
target cells. These data suggest that AAV-based antigen loading of DCs is highly effective for
generating human CTL responses against HCMV antigens.
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Background
Over the past few years, overwhelming evidence has come
to light that inflammation hidden deep in the body is a
common source of heart attacks, even when clogging of the
arteries by plaque is minimal [1]. A leading cause is infec-
tion by various microbes, in particular, the human cytome-
galovirus (HCMV), which historically has been linked to
heart/arterial disease [2-15]. Existing drugs for the treatment
or prevention of HCMV disease are only partially effective,
have a variety of side effects, and may fail because of drug
resistant mutations [12,16,17]. An effective HCMV gene
therapy would provide a great medical benefit and would
also result in annual savings in the cost of caring for persons
with HCMV disease. Although immunotherapeutic inter-
ventions are promising, current treatments to induce strong
immune responses against HCMV are still inadequate. In
order to develop a new method to induce strong immune
responses against HCMV, we used the rAAV-based antigen
loading of DCs to generate significant and specific CTL
responses against HCMV antigens. Several HCMV proteins
have been shown to serve as target antigens for the class I-
restricted CD8+ T cell responses against HCMV, including
the major immediate-early protein (IE) [18], glycoprotein B
(gB) [18], and non-envelope structural virion proteins, such
as the matrix protein pp65 [19]. Among the IE proteins, two
nuclear regulatory phosphoproteins, IE1 and IE2, are the
first and most abundantly expressed proteins and are syn-
thesized by differential splicing from the same complex
overlapping transcription unit within the major IE (MIE)
locus [20]. Early analyses of the CTL response in seroposi-
tive individuals have suggested that the 72-kDa immediate-
early protein IE1 was a dominant target for CD8+ CTLs [18].
IE1 is the major protein produced in the immediate-early
phase of the human HCMV replication cycle and has been
shown to be target for CD4+ and CD8+ T cells [21]. IE1 was
the first gene product identified to elicit CTL responses in
mice [22]. The role of IE1-recognizing CD8+ T cells will be
an interesting subject to study. DCs are professional antigen
presenting cells that are critical to prime a cellular immune
response [12,23-25]. There is evidence of several protocols
for loading DCs, based on the use of tumor antigens such as
peptides, lysed tumors, whole proteins, and genes expressed
on plasmids or viral vectors [26,27]. These new technolo-
gies permit in vitro manipulation of DCs for clinical studies
[12,28,29].

Recent studies demonstrate that recombinant rAAV-based
antigen loading of DCs generates significant and rapid
CTL responses in vitro [12,19,30]. rAAV has been widely
studied in applications to transduce DCs. rAAV lacks viral
coding sequences, therefore the transduced DCs only
express antigen proteins and not viral proteins [31]. Fur-
ther, rAAV does not elicit an immune response in its host,
therefore there is no secondary inflammation in the host
due to rAAV [31].

In the present study, IE1 genes were cloned into AAV to
test the ability of r-AAV loading of DCs to generate specific
CTL responses against IE1 positive cells.

Methods
Cell culture and patients material
The HEK293 cells were maintained and propagated in
complete DMEM supplemented with penicillin and strep-
tomycin (Mediatech Inc., Herndon, VA) and 10% FBS
(Gemini Bio-Products, West Sacramento, CA). Autolo-
gous peripheral blood mononuclear cells (PBMCs) and
were obtained from 3 female HLA-A2 restricted healthy
donors. All of the clinical materials were obtained with
the patient's consent and approval by the local ethics
committee.

Constructing the AAV/IE1 genome and generation of virus 
stocks
The AAV/IE1 genome was constructed as a plasmid as pre-
viously described [28,30]. Briefly, the IE1 gene was ampli-
fied by PCR from plasmid pCGN-IE1, which was kindly
provided by Dr. Thomas Shenk at the Department of
Molecular Biology, Princeton University. PCR amplifica-
tion for IE1 was carried out using the following primer
pair: upstream, 5'-GGTACCATGGAGTCCTCTGCCAAGA-
3'; downstream, 5'-CTCGAGGACCTTGTACTCATTACA-
CATTG-3'. AAV/IE1 virus stocks were generated using
complementary plasmids ins96-0.8 or pSH3, using
HEK293 cells as described previously [28,30,32]. Lysates
of HEK293 cells were used as virus-negative controls for
mock infections.

Immunofluorescence
HEK293 cells were spun in a cytospin column (5 × 104

cells/slide), fixed with SlideRite (Fisher, USA), and air
dried overnight. Each sample was permeabilized (P) in
PBS 1×/0.1% Triton X-100 for 15 minutes at 4°C not per-
meabilized (NP). Results were analyzed using an Olym-
pus IX71 inverted microscope equipped with a Fluoview
300 confocal laser system.

Real-time PCR for virus stock titration
The titer of virus stocks was determined by real-time PCR
as previously described [32]. Briefly, we used the plasmid
AAV/IE1 for the real-time PCR standards, respectively.
Concentration was measured by absorbance at 260 nm.

Generation and infection of monocyte-derived DCs
Autologous DCs (2 × 105 adherent monocytes) were gen-
erated and infected (0.5 mL virus [109 eg/mL]) as previ-
ously described [28,30]. Recombinant granulocyte
macrophage-colony-stimulating factor (GM-CSF) (R&D
Systems, Minneapolis, MN, USA), at a final concentration
of 800 IU/mL, was included in the medium throughout
the culture. To induce monocytes into DCs, human inter-
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leukin-4 (IL-4) (R&D Systems, Minneapolis, MN, USA) at
1000 IU/mL was added on day 3, after infection.

Generation of autologous 1E1-positive target cells
Non-adherent PBMCs, isolated from healthy donors, were
infected with AAV/IE1 virus at a multiplicity of infection
of 100, 4 days before the 51Cr release assay.

Lipofection using DOTAP
The recombinant IE1 protein was made as previous
described [33]. Lipofection was performed using the cati-
onic liposome-mediated transfection reagent, DOTAP
(Roche Diagnostics, Indianapolis, IN). IE1 protein was
mixed with the DOTAP reagent and serum-free media at
ratios following the manufacturer's recommendations.
The cells were then incubated in serum-free media con-
taining the lipofection mix for 4–6 hours. Final IE1 con-
centration was 100 nM for the DCs and PBMCs. After 4–6
hours of incubation, serum-supplemented DMEM was
added to cells. After 24 hours, all of the lipofection media
was replaced with fresh growth media for cells.

Generation and testing of 1E1-specific CTLs
CTL were generated from 3 normal donors (HLA
matched). Experiments were performed in quadruplicate
(experiments were preformed 4 times independently with
different ratios of responders to DCs from 5:1; 10:1; 20:1;
40:1 data not provided) [23,24]. For each experiment, the
non-adherent PBMCs were washed and re-suspended in
AIM-V at 10 to 20 × 106 cells per well in 6-well culture
plates with AAV/IE1-loaded autologous DCs (optimal
ratios of responders to DCs from 20:1). The cultures were
supplemented with GM-CSF (800 U/mL) and recom-
binant human IL-2 (10 U/mL). After 7 days of co-culture,
the cells were used for cytotoxicity assays in a 6-hour 51Cr
assay, as previously described [16,23,24]. To determine
the CTLs' HLA restriction, HLA-class I (W6/32) of anti-
bodies, at a concentration of 25 μg/mL, were pre-incu-
bated with the target cells for 30 minutes before addition
of the stimulated T-cells. K562 cells were used as targets to
observe natural killer (NK) cell activity. In all of these CTL
killing assays, spontaneous release of chromium never
exceeded 25% of the maximum release [23,24].

Flow cytometry analysis
This protocol was adapted from that described by Pala et
al. and modified [24,28]. Cell surface marker analysis of T
cells and DCs was conducted using fluorescence-activated
cell scanning (FACS) (FACScan; BD Biosciences-PharMin-
gen, Franklin Lakes, NJ), as described previously [24,28].

Statistical analysis
All results are expressed as mean ± SD. Data were analyzed
using nonparametric analysis of variance (ANOVA). Dif-
ferences were considered significant if P < 0.05.

Results
Construction of AAV/IE1 Recombinant Viruses
The goal of this study was to determine whether rAAV-
based gene loading of IE1 genes into DCs could elicit a
significant CTL response against IE1-positive target cell
lines. This was the first time that the gene encoding IE1
was inserted into the AAV vector. First, the IE1 gene was
amplified by PCR from plasmid pCGN-IE1. The IE1 cDNA
obtained from pCGN-IE1 was inserted into the gutted
AAV vector to generate AAV/IE1 as described in the mate-
rials and methods section. Figure 1A shows a structural
map of the AAV/IE1 vector. In this vector, the IE1 gene was
expressed from the AAV p5 promoter, which is known to
be active in DCs [31]. After rAAV vector generation, we
evaluated their ability to infect HEK293 cells. The rAAV-
vector infected cells expressed the target antigens, as con-
firmed by immunofluorecence labeling, which showed
the expression of IE1 transduced HEK293 cells. (Figure 1)

Titration of AAV/IE1 virus stocks using real-time PCR 
assays
Virus stock titers were determined by real-time PCR (Fig-
ure 2). We assessed the linearity of the real-time PCR by
using a dilution row of the AAV/IE1 plasmid that would
serve as standard curve in all further experiments. The
obtained fragments corresponded to the expected size and
no additional bands could be detected by gel electro-
phoresis, showing the specificity and selectivity of the
PCR. We did not observe signals from the template sam-
ple in either the amplification plot or the agarose gel pho-
tograph (data not shown).

AAV/IE1-transduced DCs express 1E1
Protocols for generating DCs by differentiating PBMCs
usually involve the use of GM-CSF and IL-4 during adher-

Immunofluorescence on HEK293 cellsFigure 1
Immunofluorescence on HEK293 cells. Microphoto-
graphs show fluorescent labeling for AAV/IE1 (A, B) in 
HEK293 cells. A: original magnification: 20×; B: original mag-
nification: 63×.
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ent monocyte culturing. We modified this protocol to
promote AAV vector transduction in DC precursor mono-
cytes by treating adherent monocytes just after AAV infec-
tion with GM-CSF alone, adding IL-4 on day 3. This
method allowed higher levels of AAV transduction [34].
Figure 1B shows a schematic diagram of the experimental
protocol. Monocyte/DC population transduction was
confirmed by measuring polyadenylated RNA expression
of the AAV/IE1 transgene. At day 10, polyadenylated RNA
was isolated from AAV/IE1-infected and mock-infected
DC cultures. The mRNA levels were analyzed by RT-PCR
for AAV/IE1 expression. A cellular housekeeping gene,
TFIIB, was included as a control. IE1 mRNA expression
took place only in the infected DCs (Figure 3). A PCR-only
control (no RT step) failed to generate a product, indicat-
ing that there was no DNA contamination in our samples.

AAV/IE1-transduced DCs stimulated AAV/IE1-specific CTLs
We analyzed the ability of the AAV/IE1 vectors to generate
IE1 specific-CTLs (optimal ratio E:T; 1:20). To analyze
CTL activity, we used the following 5 target cell types for
the 51Cr release assays (Figures 4, 5, 6): 1) Autologous
PBMCs. Because late B cells are only a small percentage of
PBMCs, PBMCs served as an autologous, antigen-negative
control; 2) PBMCs transfected with AAV/IE1 expression
plasmid; 3) PBMCs transfected with AAV only and AAV/
GFP, as a negative controls; 4) PBMCs transfected with E6,
as a control; 5) PBMCs transfected with IE1 protein.

To determine the ability of AAV/IE1-transduced DCs to
stimulate IE1-specific CTLs, we performed a standard 6-
hour51Cr assay on day 7 using a 1:20 (ratio: Effector:Tar-
get) (Figure 5) using the T-cell populations primed in co-
culture with the rAAV-transduced DCs [30]. We generated
autologous targets by infecting donor PBMCs with AAV/
IE1 virus 4 days before the CTL assay. AAV/IE1-infected
PBMCs were found to express IE1 by RT-PCR analysis,
whereas unaltered PBMCs and K562 cells did not express
IE1 (data not shown). T-cells incubated with AAV/IE1-
loaded DCs were able to kill the IE1-positive autologous
target cells. These data are consistent with a strong anti-
gen-specific CTL response. Figure 7 shows that CTL killing
activity was dose-dependent and MHC class I restricted. In
this experiment, 2 different doses of AAV/IE1 vector were
used for DC loading and a zero virus control (PBMC
only). The cytotoxicity of the stimulated T-cells directly
correlated with the amount of AAV/IE1 used to load the

Virus stock titersFigure 2
Virus stock titers. DNA extracted from the purified virus 
of AAV/IE1 was used as the template of PCR. The DNA from 
1000 μl, 500 μl and 250 μl purified virus was tested, respec-
tively. We used three blank wells, with water, as negative 
controls. EG = encapsulated genomes.

IE1 expression in infected DCsFigure 3
IE1 expression in infected DCs. Total RNA was isolated 
from mock-infected and AAV/IE1-infected adherent mono-
cytes at 72 hours after infection. These samples were ana-
lyzed by RT-PCR and PCR, as indicated, for the presence of 
IE1 RNA. PCR product resulting from using the AAV/IE1 vec-
tor plasmids as templates was the positive controls. RT-PCR 
analysis for the cellular TFIIB mRNA was considered as fur-
ther control. Note that only cDNA from cells infected with 
AAV/IE1 virus resulted in an appropriate RT-PCR sized prod-
uct, whereas mock-infected cells did not.

Cytotoxicity assayFigure 4
Cytotoxicity assay. Multiple AAV vectors for DC loading 
and the autologous targets generated using the IE1 sub-
genes. Targets were generated by viral loading of the IE1 sub-
genes into PBMC. Resulting CTL killing is shown. Note that T 
cells stimulated by mock-infected (no Ag) loaded DCs, AAV 
only-loaded DCs AAV/GFP-loaded DCs AAV/E6-loaded DCs 
did not kill IE1-positive targets. However, T cells stimulated 
by AAV/GFP/IE1-loaded DCs did kill IE1-positive target cells. 
These data strongly suggest high antigen-loading specificity of 
the CTLs generated by AAV/GFP/IE1 infection of DCs.
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DCs at day 0. Alternately, the addition of anti-class I anti-
bodies significantly inhibited the killing activity (P <
0.05), suggesting that CTLs were MHC class I restricted.
The CTL stimulation performed by AAV/IE1 loaded DCs
was superior to the one performed by IE1 protein lipofec-
tion (P < 0.05). The negative controls (K562 and the tar-
gets pre-incubated with anti-MHC class I antibodies) did
not induce significant killing activity. These data showed
CTLs to be highly AAV/IE1 specific and MHC class I
restricted. Figure 7 demonstrates that the use of AAV/GFP/

IE1 loading DCs resulted in a higher delivery effect (80%)
than IE1 protein lipofected DCs did (15%).

Discussion
To achieve effective antivirus responses, recent emphasis
has been placed on approaches that stimulate strong cel-
lular immune responses, which are mediated by T-cells
and particularly by CTLs. CTLs are believed to be the crit-
ical immune effector arm in mediating potential antivirus
immunity. CD8+ CTLs play a major role in protection
against HCMV and in maintenance of its latency [35-38].
It has been hypothesized that antigen gene delivery into
DCs [23,24] may be more efficient for generating CTLs
than by antigen delivery as a lipofected, exogenous pro-
tein [23,24,28]. Although there is some controversy as to
AAV effectiveness in transducing DCs and other hemat-
opoietic cells, donor monocytes/DCs have been shown to
be successfully transduced with AAV-2 [23,24,28,30]. Fur-
thermore, in various studies, AAV has been shown to be
an effective gene-delivery system for immortalized tissue-
cultured cells and primary hematopoietic cells [34,39-41].
The AAV vectors were found to transduce up to 85% of
DCs [12,19,23,24]. The transduced DCs displayed higher
levels of CD80, CD83, CD86, and CD1a over controls. In
fact, the DC-loading technique was found to be highly
effective in generating significant CTLs with only one DC-
T-cell co-incubation and in a time frame of only 1 week.
We confirm that rAAV-infected monocytes with GM-CSF
only and then adding IL-4 after 3 days induces DCs' differ-
entiation [23,24]. Previous studies showed that rAAV-
loading DCs can rapidly generate antigen-specific CTLs
against viral antigens [16]. The IE1 protein has been pro-
posed as a target for immunotherapy. The IE genes are the
first ones to be expressed in the replicative cycle, and their
expression does not depend on prior viral protein synthe-
sis. Together with some virion proteins, the IE products
activate viral genes and alter the infected cell to generate
an appropriate milieu that favors viral replication [42].

Cytotoxicity assayFigure 5
Cytotoxicity assay. AAV/GFP/IE1 vectors for DC loading 
and multiple targets generated using various vectors. Targets 
were generated by IE1 positive and negative vector loading 
into PBMC. Resulting CTL killing is shown. IE1 negative 
PBMCs (no Ag) and K562 cells were not killed, indicating 
strong antigen specificity for the CTLs generated by AAV/IE1 
loading.

Cytotoxicity assayFigure 6
Cytotoxicity assay. Killing was stimulated in a dose-
dependent manner. Killing activity was significantly inhibited 
when target cells were pre-incubated with anti-class I anti-
bodies (P < 0.05). Similarly, the killing activity of DC trans-
duced with AAV/GFP/IE1 showed a significant higher (P < 
0.05) than IE1 protein lipofection using DOTAP did.

Flow cytometric characterizationFigure 7
Flow cytometric characterization. Shown are the 
results of FACS analysis for the antigen delivery. Note that 
the use of AAV/GFP/IE1 loading DC resulted in a higher 
delivery effect (80%) than IE1 protein lipofected DC did 
(15%).
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Human cytomegalovirus (HCMV) IE1, the most abun-
dant IE product, plays an accessory role in the IE2-medi-
ated activation of HCMV early and late genes [43,44].
Interaction of HCMV IE1 with a number of cellular regu-
latory proteins has also been described previously [45]. In
addition to their regulatory activities, HCMV IE1 is
involved in perturbing a variety of other cellular proc-
esses, including cell cycle regulation [46,47], apoptosis
[48], and cell architecture. The IE1 protein of HCMV is a
major source of CD8 T-cell epitopes for HLA molecules
represented in a large proportion of the human popula-
tion, and plays a significant role in the control of HCMV
disease [49]. The previous study led to the identification
of several new classes of I MHC-restricted CTL epitopes
against IE1 antigens [50]. This result was confirmed by
another study in which several IE1 HLA class I epitopes
were detected and no IE1 class II epitopes were identified
[51].

Here we have demonstrated that rAAV-loading of DCs
with IE1 can generate antigen-specific CTLs in substantial
numbers, only 1 week after stimulation. Based on this and
our previous studies, we hypothesize that the AAV vector
causes a fundamental change in DC performance, perhaps
by modifying their co-stimulatory ligand expression,
resulting in more efficient generation of antigen-specific
CTLs [28]. We hypothesized that the AAV/IE1 would be
superior to IE1 protein in stimulating CTL killing. Our
experiments show that AAV/IE1 was much more efficient
in stimulating the killing of target cells than IE1 protein (P
< 0.05). Our controls (Figures 5, 6, 7) show strong antigen
specificity and MHC class I restriction. For example, Fig-
ure 5 shows that autologous PBMCs were not targeted for
killing unless these target were preloaded with the anti-
gen. Without loading the antigen, there is no significant
killing. Furthermore, K562 cells are shown in Figures 4, 5,
6 to be insignificant targets.

This same report [51] suggested that IE1 is directly related
to CTL killing and the importance of MHC class I mole-
cules as a restriction element in HCMV. Our results prove
a direct link between the IE1 protein and CTL recognition.
We believe it is likely that there are multiple reasons why
AAV loading of DCs is effective. One reason is the high
transduction frequency we have observed. A second rea-
son could be the increased expression of CD80, CD86,
and CD40 that may also contribute to generating the
robust CTL response.

Conclusion
In summary, our results demonstrate that the delivery of
IE1 antigen by an AAV vector is a good strategy for gener-
ating anti-IE1 CTLs. Our data suggest that AAV-based anti-
gen loading of DCs is highly effective for generating a CTL
response against HCMV.
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