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Abstract: Drug-induced liver injury (DILI) is a major cause of drug development failure and drug
withdrawal from the market after approval. The identification of human risk factors associated with
susceptibility to DILI is of paramount importance. Increasing evidence suggests that genetic variants
may lead to inter-individual differences in drug response; however, individual single-nucleotide
polymorphisms (SNPs) usually have limited power to predict human phenotypes such as DILI.
In this study, we aim to identify appropriate statistical methods to investigate gene–gene and/or
gene–environment interactions that impact DILI susceptibility. Three machine learning approaches,
including Multivariate Adaptive Regression Splines (MARS), Multifactor Dimensionality Reduction
(MDR), and logistic regression, were used. The simulation study suggested that all three methods
were robust and could identify the known SNP–SNP interaction when up to 4% of genotypes were
randomly permutated. When applied to a real-life DILI chronicity dataset, both MARS and MDR,
but not logistic regression, identified combined genetic variants having better associations with DILI
chronicity in comparison to the use of individual SNPs. Furthermore, a simple decision tree model
using the SNPs identified by MARS and MDR was developed to predict DILI chronicity, with fair
performance. Our study suggests that machine learning approaches may help identify gene–gene
interactions as potential risk factors for better assessing complicated diseases such as DILI chronicity.

Keywords: drug-induced liver injury; chronicity; machine learning; SNP; genotype; gene–gene
interactions; epistasis; splines

1. Introduction

As the primary organ responsible for metabolism, the liver is vulnerable to injury
caused by drugs and drug metabolites [1,2]. Drug-induced liver injury (DILI) is one of the
main reasons for halting drug development processes [3], and has caused over 50 approved
drugs to be withdrawn from the market [4,5]. Moreover, even when a drug is deemed
safe and approved for public use, a relatively small fraction of the population taking the
drug may experience liver damage, and therefore identifying risk factors is of particular
importance for preventing DILI [6,7]. The risk factors for DILI include age, sex, drug
properties, and genetic variations [8,9].

Genetic factors have attracted increasing attention, and recent studies have shown that
genetic variants in drug-metabolizing enzymes and human leukocyte antigen (HLA) were
associated with the occurrence of DILI [10–12]. Many efforts have focused on the genetic
risk factors of DILI, and several genetic variants such as single-nucleotide polymorphism
(SNP) and insertion/deletion have been identified as risk factors associated with the use
of specific drugs [13–16]. For example, carriers of HLA-B*57:01 are 80 times more likely
to develop flucloxacillin-induced DILI than those who do not carry the variant [17]. The
association of liver injury caused by specific drugs or groups of drugs with polymorphisms
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in HLA was also reported [18,19]. However, most of these studies investigated the associa-
tion of each SNP individually [20,21]; SNP–SNP interaction as a potential risk factor for
drug-induced liver injury was seldom reported.

Pairwise SNP–SNP interactions have been recognized to play a role in assessing dis-
ease susceptibility and drug responses [22,23]. Several statistical methods have been used
to identify SNP–SNP interactions [24]. For example, Cook et al. [25] employed classifica-
tion and regression trees and multivariate adaptive regression spline (MARS) models to
explore the presence of genetic interactions for ischemic stroke. Moore and Williams [26]
successfully applied the multifactor dimensionality reduction (MDR) method to iden-
tify gene–gene interactions in essential hypertension. Notably, SNPs themselves come in
large numbers, sometimes in the hundreds of thousands; including their interactions, the
number of factors which need to be considered could expand exponentially. The issue of
dimensionality becomes a challenge of statistical genetic data analysis, especially when the
sample size is relatively small compared to the number of factors. Certain SNPs tend to
occur together and are not statistically independent, which can complicate analysis. The
combination of SNPs that are preferably uncorrelated to each other may improve the clas-
sification performance [27]. Statistical genetic data analysis is generally computationally
intensive and time-consuming, and classical statistical methods such as regression are less
feasible for use with such high-dimensional data. Thus, appropriate statistical/machine
learning methodologies are critical for overcoming the challenges of analyzing gene–gene
interactions.

In this study, we aim to investigate SNP–SNP interaction as a potential risk factor
for predicting DILI chronicity using machine learning approaches. We briefly introduce
three machine learning methods, including MARS, MDR, and logistic regression. Then, we
use simulated data with known pairwise SNP–SNP interactions to evaluate the accuracies
and robustness of these methods. Next, we apply the three methods to identify SNP
interactions associated with chronic DILI. Finally, we evaluate the predictive performance
of the identified SNPs by using a simple decision tree model to assess whether the presence
of these SNP–SNP interactions is associated with an increased risk of DILI chronicity.

2. Materials and Methods
2.1. DILI Chronicity Cohort

Cases in this study were collected by International Serious Adverse Event Consortium
(iSAEC), a large international collaborative study, including partnerships with the United
Kingdom, Sweden, Spain, Germany, France, Switzerland, the Netherlands, Australia,
and Finland. The study protocols were approved by local ethics committees, and the
informed consent was obtained from all subjects involved in the study. Inclusion criteria
for DILI cases followed the clinical chemistry criteria defined [28]. Specifically, a case
must have either alanine aminotransferase elevated ≥5× the upper level of normal, or
elevated alkaline phosphatase ≥2× the upper level of normal, or elevated levels of alanine
aminotransferase ≥3× the upper level of normal while bilirubin concentrations are also
two-fold higher than the upper level of normal. Causality assessment was conducted
using the Roussel Uclaf Causality Assessment Method scoring system and expert review,
consisting of a panel of three hepatologists. Only cases with a causality scale of probable
with a score of greater than or equal to six were included. Cases with preexisting liver
disease were excluded. DILI chronicity was determined by the time of patient recovery,
which was defined as the days from the medication stop date until the date that the patient’s
serum liver biochemistries returned to normal. For this dataset, chronic DILI is defined as
liver injury without recovery for six months or more, termed chronic; acute DILI is defined
as liver injury with recovery within six months, termed acute.

A dataset with 271 patients (33 chronic versus 238 acute DILI) were used to assess the
three machine learning methods for identifying SNP–SNP interaction as a risk factor for
chronic DILI. DNA preparation is described here [29] and standard quality control proce-
dures were followed [30]. Samples were genotyped using the HumanOmniExpressExome-
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8v1 or the Illumina HumanCoreExome-12 v1.0 BeadChip, from which 872 SNPs associated
with the genes in bile acid pathways were retrieved for analysis. Bile acid pathways were
downloaded from the Molecular Signature Database (MSigDB) [31] and included pathways
involved in bile acid synthesis, recycling, and transport.

2.2. Machine Learning Approaches to Identify SNP–SNP Interactions

Assuming Y is the phenotype, such as chronic DILI (binary; chronic or acute); P(Y = 1) = p,
A is an SNP, B is another SNP, and A × B is an SNP–SNP interaction factor, the parametric
model for the logistic regression is as follows:

log
(

p
1 − p

)
= β0 + β1 A + β2B + β3 A × B (1)

by contrast, the non-parametric statistical method model is:

Y = f (A, B) (2)

The statistical methodologies for identifying gene–gene interactions were reviewed
thoroughly [22,23]. Here, three frequently used methods including MARS [32], MDR [33,34],
and logistic regression [35] were selected for evaluation based on availability and use.

2.2.1. MARS Approach

The MARS approach is an adaptive algorithm for identifying SNP–SNP interactions,
which fits models using flexible regression modeling, including non-linear components and
interactions [32]. It was reported to perform better than typical logistic regression methods
when applied to the discovery of interactions among genes without strong marginal
effects [25].

In MARS, the entire dataset was divided into multiple smaller regression subsets
through automatic dataset-determined knots. Each of these subsets comes with a basis
function (usually a linear spline function), and all significant basis functions are aggregated
to obtain the overall regression model. MARS gives a regression-like output model with
certain basis functions of the predictors. It builds models of the following equation form:

f̂ = ∑k
i=1 CiBi(x) (3)

where each Ci is the coefficient multiplying a basis function Bi(x), k is the number of knots,
and f̂ is the model estimation.

The regression model of MARS is derived directly from the data, through a data-driven
automatic set of basis functions with their corresponding coefficients. These basis functions
are derived based on automatic data-driven hinge values in the data, also referred to as
knots. As a specific linear relationship between the response and predictors in a data subset
is being modeled, the knot automatically identifies the point of direction change from that
relationship. This point of change becomes a starting point for a new subset of another
relationship, and the process continues to the end with new knots and relationships. In
this way, the model captures both linear and non-linear relationships, with corresponding
interactions.

The MARS model is built using a forward-and-backward selection process in the
following way: the forward selection first combines all significant basis regression functions,
and their interactions, and then backward selection prevents overfitting by pruning the
result from the forward selection, removing basis functions one at a time, and selecting the
model with the lowest Generalized-Cross-Validation (GCV) score. This process will yield
the optimized final model. The GCV equation is written as follows:

GCV =
∑N

i=1 (yi − f̂ )
2

(1 − C/N)2 (4)



Int. J. Environ. Res. Public Health 2021, 18, 10603 4 of 12

where C = 1 + p ∗ k with k as independent number of base functions and p as the penalty
for adding a base function. Here, yi (i = 1 to N) is the value of phenotype for the observation
i, and N is number of observations, and f̂ is from the Equation (3).

2.2.2. MDR Approach

The MDR approach is a non-parametric dimension-reducing method that was created
primarily to detect gene–gene and/or gene–environment interactions [33,34,36]. Compared
with MARS and other statistical methods which usually handle interactions between two
factors, MDR has the power to identify statistically significant high-order interactions
among three or more factors [33]. Its central concept is to utilize a specially designed
strategy to transform multilocus information to a one-dimensional model. In this strategy,
a subset of n genetic factors are first selected, and then these n-genetic factors and their
possible multifactor classes are represented by n-dimensional space, in which each multi-
factor cell will be labeled as high-risk or low-risk group. In this way, the case-control model
for multilocus genotypes will be converted into classifications of highrisk and low-risk,
which reduces the n-dimensional model to a one-dimensional model. In the next step,
the prediction error estimated through cross-validation is used to evaluate the selected
n-genetic factor. For each n-genetic factor combination, a single model that minimizes the
average classification error in the cross-validation training sets is selected. This will result
in a list of best models, one for each value of n-genetic factor. Among these classification
models, the combination of the genetic factors and the model they built that minimizes the
average prediction error across the prediction errors in the cross-validation testing sets will
be selected as the final one.

2.2.3. Logistic Regression Approach

Logistic regression is the mostly used method for identifying gene–gene interaction;
however, it is not so successful in its handling of the datasets with a large number of SNPs
to consider, and weak or no marginal effects of SNPs [37]. Here, Random Forest was used
together with logistic regression approach [38]. This approach used multiple decision trees
as a learning ensemble to give a single output. Each tree acts on random bootstrap subsets
of the data, as well as random subsets of the SNP predictors to make predictions. Each
predictor represents the node of a tree, and a route links a sequence of predictors from
the roots to the leaves. The predictions from each of these trees are then aggregated to
give the overall output prediction. Majority voting is employed in classification. Random
Forest produces a table ranking of the SNP predictors in the order of importance of their
contributions to the phenotype. Logistic regression is then applied to the first few variables
to determine the interacting SNPs that are linked to the phenotype.

2.3. Data Analysis

Here, we firstly employed a simulated dataset with known SNP–SNP interactions
to evaluate the performance and robustness of these machine learning methods. The
simulated dataset was modified from the dataset retrieved from the MDR software package.
The dataset contains 250 observations, including 125 positive and negative phenotype
responses, respectively, and 25 SNPs, of which SNP4 and SNP9 are a pair of known
SNP interaction. The frequencies of the minority genotypes of SNP4 and SNP9 are 21%
(52/250) and 23% (57/250). To test the robustness of the methodologies, we permutated the
genotypes of 23 SNPs, except SNP4 and SNP9. In the first test, two of the 250 observations
were selected for permutation, while in the second test 10 observations were permutated.
Each analysis includes 100 permutations.

We also applied these machine learning approaches to a real-life DILI chronicity
dataset. Figure 1 briefly illustrated the pipeline for identifying SNP–SNP interactions as
potential risk factors which are associated with chronic drug-induced liver injury. Firstly,
based on the dataset of 271 patients and 872 SNPs, three machine learning methods
including MARS, MDR and Random Forest plus logistic regression were utilized to identify
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SNP–SNP interactions linked to DILI chronicity. Next, only the SNP–SNP interactions have
the better associations with DILI chronicity, which is measured by odds ratio, than the
individual SNPs were considered. Finally, The SNPs from the selected interactions were
pooled together as candidate predictors, and then a decision tree model using classification
and regression trees (CART) algorithm is developed.
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Figure 1. The diagram of the working flow to identify SNP–SNP interaction as a potential risk factor for chronic drug-
induced liver injury. Specifically, multivariate adaptive regression spline (MARS), multifactor dimensionality reduction
(MDR) and Random Forest plus logistic regression (RF-LR) were used to identify the SNP–SNP interaction terms linked to
chronic DILI. Only the SNP–SNP interactions which had better association with DILI chronicity than individual SNPs were
kept. All these SNPs of the selected interactions were pooled together as the candidate predictors, and a decision tree model
is developed using classification and regression trees algorithm.

All analyses except those specifically mentioned were performed using R (version
3.6.1) [39] and the MDR package [40] for multifactor dimensionality reduction approach,
the randomForest package [41] for Random Forest algorithm, the Rpart package [42] for
decision tree model, and the Stats package for logistic regression and Fisher exact test.
Multivariate adaptive regression spline approach was implemented using the MARS engine
of Salford Predictive Modeler 8.0 from MinTab [43].

3. Results
3.1. Simulation Analysis

Three machine learning methods were evaluated using the simulated dataset with
a known SNP–SNP interaction (SNP4 + SNP9). As shown in Table 1, all three methods
successfully identified the known SNP interaction. We further conducted a permutation
analysis to test the robustness of the three methods. In the first test, the genotypes of two
observations randomly selected from 250 observations were permutated. As a result, all
three methods successfully identified the known SNP interaction. Even when the number
of permutated observations was increased from 2 to 10 of 250 observations, MDR slightly
decreased in recovery rate and correctly identified the known SNP–SNP interactions
among 97% of 100 permutations, while logistic regression and MARS still maintained a
100% recovery rate of the known SNP–SNP interaction. In other words, these machine
learning approaches were robust when up to 4% (or 10 of 250) of the observations were
permutated.
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Table 1. Recovery rate of the known SNP4–SNP9 interaction by using three machine learning
approaches in the original simulation dataset and permutation tests.

Recovery Rate of the Known SNPs Interaction

MARS * MDR * RF-LR *

Original simulation dataset 100% 100% 100%

Permutation test 1
(2 of 250 observations permutated)

100%
(100/100)

100%
(100/100)

100%
(100/100)

Permutation test 2
(10 of 250 observations permutated)

100%
(100/100)

97%
(97/100)

100%
(100/100)

* MARS: Multivariate Adaptive Regression Splines; MDR: Multifactor Dimensionality Reduction; RF-LR: Random
Forest plus Logistic Regression.

3.2. Chronic DILI Data Analysis

We first checked the association of DILI chronicity with individual SNPs using the
Fisher exact test. Five individual SNPs from SNP–SNP pairs selected by the machine
learning methods below were tested. As shown in Table 2, two SNPs (rs6487213 and
rs5417) were significantly associated with DILI chronicity, with odds ratios of 3.28 (95% CI:
1.57–7.09, p = 0.002) and 3.01 (95% CI: 1.44–6.43, p = 0.004), respectively. The other three
cited SNPs were not statistically significant.

We also applied the three machine learning methods to identify the SNP interaction
terms that were linked to DILI chronicity. As shown in Table 2, MARS identified an
interaction of a two-SNP combination (rs6487213 + rs3785157), while RF-LR detected
another two-SNP interaction (rs5417 + rs3785157), and MDR found a three-SNP interaction
(rs5417 + rs7658048 + rs12453290). Importantly, the SNP interactions identified by MARS
and MDR have an improved association between the presence of genotypes and the
chronicity of DILI. The odds ratio of the SNP interaction rs6487213 + rs3785157 identified
by the MARS approach increased to 4.74 (95% CI: 2.14–10.39, p < 0.001), while the odds
ratios of rs6487213 and rs3785157 alone are 3.28 (95% CI: 1.57–7.09, p = 0.002) and 1.49
(0.72–3.14, p = 0.282), respectively. Additionally, 30.4% of the combined genotypes of
CC + CC by rs6487213 + rs3785157 were reported with DILI chronicity, as compared to
20.8% of the genotype CC of rs6487213 alone. The MDR approach identified a three-SNP
interaction, and its odds ratio of 4.19 (95% CI: 1.36–11.74, p = 0.008) by rs5417 + rs7658048
+ rs12453290 was improved in comparison to the odds ratio of 3.01 (95% CI: 1.44–6.43,
p = 0.004) by rs5417 alone. However, the SNP–SNP pair (rs5417 + rs3785157) identified by
logistic regression did not show improvement over individual SNPs (Table 2).

We further utilized the SNPs identified by MARS and MDR to develop a simple
decision tree model for predicting DILI chronicity. As shown in Figure 2, three SNPs
(rs6487213, rs5417 and rs12453290) were selected as the predictors for the decision tree
model built on 271 patients. The leaf defined by rs6487213, rs5417, with the genotype CC
and AA, yielded a frequency of 36.4% (12/33) of DILI chronicity as compared to the overall
frequency of 12% (33/271) in the study population. Other leaves defined by rs6487213,
rs5417 and rs12453290, together yielded a frequency of 50% (3/6) DILI chronicity. When
evaluated by using a stratified 5-fold cross-validation, the decision tree model yields a
sensitivity of 42.4%, a specificity of 90.3%, an accuracy of 86.3%, and a balanced accuracy
of 66.4%, which is calculated from the average value of sensitivity and specificity [44].
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Figure 2. A decision tree model was developed to predict chronicity of drug-induced liver injury for 271 patients. Specifically,
in the first layer, the genotype TT and TC of SNP rs6487213 will be assigned as acute, while the genotype CC will be
continued to the next layer. In the second layer, the patient with the genotype AA of rs5417 will be assigned as chronic,
otherwise, it will need further consideration. In the third layer, if the genotype GG of SNP rs12453290 was determined, the
patient will be assigned as chronic and otherwise as acute.

Table 2. Individual SNPs and SNP–SNP interaction analysis for their association with chronic
drug-induced liver injury.

Individual SNP Analysis

Individual
SNPs or

SNP–SNP
Interaction

Genotypes Acute
N (%)

Chronicity
N (%)

Odds Ratio (95%
Confidence
Intervals,
p Value)

rs6487213
CC 76 (79.2) 20 (20.8) 3.28 (1.57–7.09,

p = 0.002)CT or TT 162 (92.6) 13 (7.4)

rs5417
AA 74 (79.6) 19 (20.4) 3.01 (1.44–6.43,

p = 0.004)CA or CC 164 (92.1) 14 (7.9)

rs7658048
AG 113 (86.3) 18 (13.7) 1.33 (0.64–2.79,

p = 0.448)AA or GG 125 (89.3) 15 (10.7)

rs12453290
AA 105 (84.7) 19 (15.3) 1.72 (0.83–3.65,

p = 0.149)GA or GG 133 (90.5) 14 (9.5)

rs3785157
CC 106 (85.5) 18 (14.5) 1.49 (0.72–3.14,

p = 0.282)TC or TT 132 (89.8) 15 (10.2)
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Table 2. Cont.

Individual SNP Analysis

Individual
SNPs or

SNP–SNP
Interaction

Genotypes Acute
N (%)

Chronicity
N (%)

Odds Ratio (95%
Confidence
Intervals,
p Value)

SNP–SNP interaction analysis

MARS analysis

rs6487213 +
rs3785157

CC and CC 32 (69.6) 14 (30.4) 4.74 (2.14–10.39,
p < 0.001)Others 206 (91.6) 19 (8.4)

MDR analysis

rs5417 +
rs7658048 +
rs12453290

AA and AG and
AA 12 (66.7) 6 (33.3) 4.19 (1.36–11.74,

p = 0.008)
Others 226 (89.3) 27 (10.7)

Random Forest plus logistic regression

rs5417 +
rs3785157

AA and CC 36 (78.3) 10 (21.7) 2.44 (1.03–5.45,
p = 0.034)Others 202 (89.8) 23 (10.2)

4. Discussion

Individual SNPs reportedly have limited predictive power on human phenotypes,
especially for diseases with complicated mechanisms, such as DILI. Here, we investigated
three different machine learning approaches: MARS, MDR, and Random Forest plus
logistic regression, for their capabilities in identifying SNP–SNP interactions associated
with DILI chronicity.

Logistic regression is a widely used approach for detecting SNP–SNP interactions;
however, it has limited power to handle the exponentially growing interaction terms or the
need of the large sample sizes to detect effects with high dimensions [26]. The combined use
of Random Forest and logistic regression improved efficiency in searching SNP interactions
but still could miss the best SNP–SNP interaction term by falling into local maxima. MARS
and MDR are designed to overcome these limitations to identify the maximum effects of
interaction terms in a moderate sample size [37,45]. MDR can detect the high order of
SNP interactions, while MARS is faster in revealing candidate SNPs in the chronicity DILI
dataset. Note, our DILI chronicity dataset only contains 872 SNPs and is not a large dataset.
Regardless, both MARS and MDR successfully identified the SNP–SNP interaction terms
with a higher predictive power than individual SNPs, while Random Forest plus logistic
regression failed in this test.

A simple predictive model based on the SNPs identified by MARS and MDR also
demonstrated a fair predictive performance, suggesting that the presence of these SNP–
SNP interactions as risk factors could be associated with an increased risk of chronicity of
drug-induced liver injury. We also explored possible underlying biological mechanisms
associated with the SNPs identified by the machine learning approaches. Elevated total
bilirubin was reportedly associated with DILI chronicity [46,47] and was confirmed in our
study. Here, SNP rs6487213, a variant of gene SLCO1B1, was identified as an important
contributing factor for predicting chronic DILI. SLCO1B1 is a solute carrier organic anion
transporter family member 1B1. It is responsible for bilirubin uptake and transporting
xenobiotic compounds such as toxins and drugs from blood into the liver, to be eventually
excreted from the body. The uptake capability is markedly decreased by the presence of
SLCO1B1 allelic variants. In a study involving 9500 Caucasians, the allelic variation in
SLCO1B1 was reported as a major genetic predictor of increased serum bilirubin levels [48].
Furthermore, the polymorphisms of SLCO1B1 were reportedly associated with hepatox-
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icity caused by drugs, including but not limited to methimazole [49], methotrexate [50],
atorvastatin [51] and anti-tuberculosis drugs [52], including rifampin [53].

Increasing evidence suggests that membrane transporters impact immune cell function
and shape immunological responses. The SNP rs5417 is a variant of the gene GLUT4 (also
known as solute carrier family 2, facilitated glucose transporter member 4, SLC2A4), which
is a critical transporter for glucose uptake and metabolism. GLUT1 upregulation plays a
key role in T cell activation and in importing glucose to be metabolized through aerobic
glycolysis. Similar to GLUT1, GLUT4 was upregulated in activated CD4+ T cells to varying
degrees, and the variants in GLUT4 play compensatory and supporting roles in most T
cells [54].

Furthermore, the SNP rs12453290 is a variant of the gene MCT4 (SLC16A3), which is a
member of the monocarboxylate transporter (MCT) family controlling the lactate uptake.
MCT4 plays a role in exporting additional lactate into the extracellular space. Lactate often
builds up at sites of inflammation and in hypoxic conditions. Excess lactate importing into
T cells will restrict proliferation and cytokine production of cytotoxic T cells. In T cells,
T cell receptor activation upregulates MCT1 expression, while its blockage will result in
impaired cytotoxic T cell function. MCT4 upregulation causes full macrophage activation,
while its deletion will lead to an intracellular decrease in glycolysis and accumulation of
lactate. By contrast, the downregulation of MCT4 will promote the cytotoxicity of natural
killer cells and boost immune responses [55].

5. Conclusions

In this study, we investigated three machine learning methods for the study of gene–
gene interactions as risk factors for chronic DILI, including MARS, MDR and Random
Forest followed by logistic regression. All of the three methods were robust when tested
in the simulation dataset with permutation analysis. When we applied these methods to
the real-world DILI chronicity dataset, MARS and MDR identified SNP–SNP interactions
that showed improved performance regarding the association with DILI chronicity as
compared to their individual SNP counterparts. This finding demonstrated that MARS and
MDR are superior to the traditional logistic regression approach for identifying SNP–SNP
interactions in complex diseases such as chronic DILI.

We also developed a simple decision tree model by using the SNPs from the inter-
actions identified by MARS and MDR, and most of these SNPs were mechanistically
relevant, either related to the bilirubin uptake or to immunological responses. These SNPs
will be further investigated and validated by including non-genetic factors such as drug
properties and responses as co-factors. The identification of SNP–SNP interactions for
disease susceptibility has become increasingly important, and our evaluated methods for
determining potential genetic risk of the synergetic SNP interactions will potentially benefit
the diagnostic test of chronic DILI.
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