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Abstract: Background: Pediatric sedation and anesthesia techniques have plenty of difficulties
and challenges. Data on the pharmacologic, electroencephalographic, and neurologic response to
anesthesia at different brain development times are only partially known. New data in neuroscience,
pharmacology, and intraoperative neuromonitoring will impact changing concepts and clinical
practice. In this article, we develop a conversation to guide the debate and search for a view more
attuned to the updated knowledge in neurodevelopment, electroencephalography, and clinical
pharmacology for the anesthesiologic practice in the pediatric population.
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1. Introduction

A retrospective study with data from 1996 to 2000 showed the impact of multiple
surgeries and anesthesia on learning disabilities and the onset of ADHD in children under
3 years of age [1]. This study confirmed the results of an earlier 1986 study on this topic,
despite better monitoring and new drugs available. In December 2016, the Food and Drug
Administration (FDA) released a Drug Safety Communication warning that the “repeated
or lengthy use of general anesthetic in children younger than three years of age or in
pregnant women during the final trimester may affect development of children’s brains”.

The American Society of Anesthesia responded to these FDA claims by acknowledging
that while there are data on anesthesia toxicity risks in developing brains [2], these are not
conclusive in the clinical setting. In their statement, they affirmed: “It is not yet known
whether the anesthetic drug or some other factor is responsible for these findings. Rigorous
research to further characterize any possible associations is ongoing” [3].

During the last few years, several studies have been developed in an attempt to clarify
the undesirable effects of general anesthesia on children. Studies such as the GAS study,
PANDA Project, and MASK study [4–6] have preliminary results. The GAS study compared
regional vs. general anesthesia and concluded that general anesthesia of less than 1 h in
young infants does not alter neurodevelopmental outcome at 5 years of age compared
to the use of awake regional anesthesia. The other two studies evaluated the use of
general anesthetics and the impact on neurodevelopment, and neuropharmacology was not
associated with deficits in intelligence quotient; however, the parents of multiply exposed
children reported increased problems in terms of executive function, behavior, and reading.
All these studies include retrospective or prospective analyses, but they do not differentiate
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between drug techniques (inhaled or intravenous) and whether electroencephalogram
(EEG) brain monitoring was performed or not.

2. The Core of the Current Debate

The conceptualization of pediatric anesthesia, particularly the sedative component, as
a pharmacological phenomenon associated principally with neocortical activity, presents
many conceptual questions and a deficit of objective data in order to interpret whether the
anesthetic action fulfills all the desired objectives. For this reason (and others), anesthetics
are frequently performed with techniques, drugs, or concepts used in mature brains. For
example, the full significance of recent electroencephalographic and functional imaging
data obtained in children during anesthetic cortical depression is not yet fully understood,
which has uncertain implications for our assessment of current clinical practice. The same
applies to pharmacological data.

For many years, it was assumed that young children, especially neonates, had no
response to noxious aggression. Just as this concept has been demonstrated to be incor-
rect, similar concepts are being assumed about pediatric sedation. For example, the full
significance of electroencephalographic and functional imaging data obtained in children
exposed to anesthetic is not yet fully understood. In a recent study on infants <6 months
of age, the relative percentages of density spectral array did not correlate with end-tidal
sevoflurane, there being an absence of coherence in alpha and beta frequencies [7]. This
also applies to pharmacologic data. These problems create uncertain implications for our
assessment of current clinical practice. These conceptual errors have occurred due to the
direct transfer of knowledge to pediatric patients from studies of the adult brain. [8,9]

Nociceptive reactivity can be studied from 19 weeks of gestation age. At 20 weeks,
the fetus already responds by releasing cortisol and beta-endorphins and noradrenaline,
measured in the umbilical cord [10].

Facial expressions of pain appear from a postconceptional age of 28 weeks, and
cortical blood flow activity associated with the bilateral somatosensory cortex S2 has been
measured between 25 and 45 weeks of gestation after venous puncture. However, this does
not ensure that at that age it is possible to develop perceptive abilities, nor to interpret or
memorize them as an explicit memory event. Many of these responses are pre-programmed
responses of subcortical origin [11,12].

The concept of minimum alveolar concentration (MAC50) is frequently used in chil-
dren to guide the anesthetic dosage using population statistical data. Difficulties in titrating
inhaled drugs to well-defined pharmacodynamic targets are still major challenges. Gener-
ally, the use of MAC50 as a pharmacodynamic concept relies on the patient’s immobility as
a clinical objective. This concept originates from the observation that much higher doses of
an anesthetic agent are needed to inhibit spinal responses than the concentrations needed
to achieve patient unconsciousness. However, this results in unnecessary depression of
cortical activity to achieve “unconsciousness and immobility” [13].

In pediatric practice, therefore, it is very unusual to titrate (individualize) the anes-
thetic requirement of the sedation/unconsciousness component. The drug dosages are
usually guided by statistical tables, indirect markers such as hemodynamic response, or
subcortical responses such as movement to surgical stimuli.

3. Neural Development, EEG, and the Emergence of Consciousness

Observing the differences at each stage of brain development in brain architecture,
synaptogenesis, neuronal differentiation, neurochemical signals, and myelinization, we
can intuit that it is not possible to apply the adult concepts to children at different ages of
development [14].

In human neonates, maturation of receptor activity has a critical period dependent on
synaptogenesis and plasticity between birth and the age of two. Changes in the maturation
of glutamate and gamma-amino butyric acid (GABA) receptors in the developing brain
show that GABA activation generates significant depolarization, even months after birth.
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Inhibitory activity is gradually reached through development. Before full maturation of
GABA-mediated inhibition, the N-methyl-D-aspartate receptor (NMDA receptor) and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA receptor) sub-
types of glutamate receptors peak in the neonatal period. Kainate receptor binding is
initially low and gradually rises to adult levels by the fourth postnatal week [15].

If there is a high predominance of GABAergic activity in immature brains (preterm/
newborns) and given its recognized role in epileptogenic activity at this age, we should
question why the extensive use of GABAergic drugs such as propofol and sevoflurane
continues to be promoted in this population, considering the risk of producing an as
yet not well-defined excitatory condition. This excitatory GABA state produces a kind
of disappearance of a minimal “state of consciousness” or perhaps simply the state of
vigilance for these developing brains [16].

Neuroapoptosis, or programmed cell death, is a physiological process of adjustment
and occurs at an accelerated rate from 24 weeks of gestation until 4 weeks after birth. This
process involves γ aminobutyric acid (GABA) and the glutamate neurotransmitter and
receptor systems. This is a very important process for building the fetal brain connectome.
In the absence of transmission and neuronal binding of GABA and glutamate, neurons
produce neuroapoptosis in an unordered way. The majority of commonly used anesthetic
and sedative agents bind to the GABA receptor or the N-methyl-D-aspartate receptor and
affect neuroapoptosis very intensely [17]. The binding of GABA and NMDA agents blocks
normal neurotransmission in the GABA and glutamate systems, resulting in synaptic
deprivation and probably decreasing the formation of dendrites and disrupting neuronal
migration. There is an unresolved discussion about the clinical impact of these findings,
and from a clinical point of view, the focus of these investigations probably should be on
repeated exposure to anesthesia, or its effect on vulnerable brains [18–20].

In neonates, synaptogenesis has different densities in different brain areas. In pre-
frontal areas, the density is less abundant and reaches its peak only 12 months after
birth [21]. This may be important in the different EEG tracing in neonates consistent with
the lack of thalamo-cortical synchrony seen in anesthetized adults and may be part of the
deleterious consequences in the development of these areas exposed to anesthetic drugs
commonly used in mature brains.

Glucose uptake in positron emission tomography (PET) studies also shows differences
between different areas, with abundant and early activity in occipital zones at 3 months
postnatal, while temporal activity begins at 6–8 months [22].

Subplate neurons, the first neurons generated in the cerebral cortex, play a key role in
brain development, and guide the formation of thalamocortical connections. The subplate
cells form the first functional connections and are necessary for relaying early oscillatory
activity in the developing brain [23].

Neonates are affected by the inhibition of intrauterine wakefulness factors that disap-
pear at birth. For example, norepinephrine reuptake is activated along with the activity of
the locus coeruleus as a global amplifier center, stimulating arousal and wakefulness [24].

This could justify the use of dexmedetomidine in the newborn by creating conditions
like the intrauterine stage of lower connectivity to the environment.

Baseline neuroapoptosis increased in neonatal rats exposed to isoflurane, but it was
noted that it did not increase in neonatal rats exposed to dexmedetomidine alone. When
dexmedetomidine was added to the isoflurane exposure group, they observed a dose-
dependent reduction in neuroapoptosis to basal level with no effect on long-term cognitive
outcome [25,26].

The recording of neural activities from use of dexmedetomidine show weak effects
on the EEG; they appear to demonstrate incomplete elimination of synchronies such as
phase–phase synchrony rhythms. However, from results in short-term studies, there were
multiple strong correlations between the base state without the drug and the change of
some basal feature value after the drug administration. This apparently indicates that
dexmedetomidine did affect the cortical activity of the subjects, but probably indirectly [27].
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There are some limitations regarding the safe use of dexmedetomidine in children
with congenital heart disease because sinus node and atrioventricular nodal function are
both depressed [28,29]. However, the drug is being explored for use in neonate rats that
have suffered perinatal asphyxia due to its neuroprotective effect when combined with
therapeutic hypothermia [30].

EEG and postnatal brain tractography show significant age differences in these pa-
tients. Synaptogenic arborization is also highly differentiable between neonates, young
children, and adolescents [31].

The development of the nervous system begins in the first weeks of gestation. In
this phase of brain development, the neonatal cortical activity recorded with the EEG
has unique characteristics that can be differentiated from that of an adult. In children
before 37 weeks of gestational age, there is a discontinuity compared to the EEG of an
adult, and the premature EEG is normally classified as continuous or discontinuous. An
intermittent burst of activity in the presence of an otherwise discontinuous EEG is common
in premature infants. These bursts of activity are called transient spontaneous activity
(TSA) [32]. They are believed to originate in the subplate area of the neonatal brain, and the
cortical subplate area is believed to regulate the cortical activity of premature infants [33].
As the baby matures, the EEG becomes increasingly continuous, and the TSAs disappear.
The EEG activity of a full-term infant is already continuous during wakefulness and sleep.
Another difference is the expression of the stages of sleep, where after only 36 weeks, these
states can be correlated with three different EEG patterns. Calm sleep is characterized by
discontinuity, while active sleep is continuous [34].

From the point of view of consciousness, the fetus at birth is already aware of the body,
perceiving pain and differentiating between touch and nontouch. It also presents facial
expressions to certain stimuli, probably preprogrammed and of subcortical origin. It is
capable of expressing emotions and shows signs of shared feelings. However, as described
by Changeux, it is unthinking, present-oriented, and makes little reference to the concept of
self [35]. The absence of a sense of self poses difficulties in the interpretation of how these
individuals’ anesthetic–surgical experiences will be stored and subsequently incorporated
into the bank of experiences.

Newborns show characteristic features of what can be called basic consciousness, and
still have to undergo considerable maturation to reach the level of adult consciousness,
although as a premature infant they may open their eyes and make minimal eye contact
with their mother, showing avoidance reactions to harmful stimuli.

The immature brains of children under six months may be much more dependent
on activating (arousal) activity than on intrinsic cortical activity, because the bank of
experiential memory and the characteristics of connectivity are still extremely limited,
preventing the emergence of what we define as explicit perceptual awareness.

On the other hand, in adults, propofol induces a state of unconsciousness with an
important alpha activity in the frontal spectrogram, resulting from the synchronic thalamo-
cortical activity [36].

This frontal delta spindle activity is not observed in children under 6 months. It
appears only in children and adolescents where the overall activity (power) is much more
intense than in adults. This is seen in the intensity of these alpha bands (Figure 1). In
children under 6 months, the mechanism for frontal predominance of alpha power suggests
that the differential thalamic connectivity required to produce this phenomenon is not
present (Figure 2). A study examining the EEG effects of sevoflurane during induction,
maintenance, and awakening revealed delta oscillations at all ages; but the theta and alpha
oscillations began to appear only at 4 months. As commented, in infants both frontal
alpha and coherence are missing, and upon awakening theta and alpha activity begins to
decrease only from 4 to 6 months onwards [37].
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Figure 2. A 6-month-old patient. The EEG shows a spectrogram with very low potency in the alfa
band despite low concentrations of propofol (1.6 ug/ml).

Brain monitoring during anesthesia with EEG-derived indices is used only to a limited
extent in adults, rarely in children, and essentially not at all in infants. These EEG-derived
indices, which have been developed in adults, can give inaccurate indications of anesthetic
states in infants and younger children [38,39].

The current pediatric research has studied a limited set of anesthetics and has fre-
quently used EEG montages with few electrodes. Different analysis methods have been
used in different studies. Multielectrode recordings available in children have not been
analyzed in relation to age. Dose-titration experiments commonly conducted in adult
patients cannot be conducted in children for ethical reasons [38,40].

The EEG has characteristics that consistently change with arousal during anesthesia,
but the relationship between arousal and the EEG is imprecise and drug dependent. This
relationship is the basis for using the EEG to measure anesthesia and provides only an
indirect measure of consciousness and memory formation in adult patients.

Given the mentioned physiology in developing brains, the cortical activity is highly
dependent on the activating ascending system (arousal) required to sustain an active level
of consciousness, and it is minimally dependent on the contents of consciousness. In
clinical pharmacologic terms, this means that drugs with subcortical predominant effect,
such as opioids, alpha-2 agonists, or low doses of ketamine, are more fundamental than
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the use of GABAergic drugs to depress the level of consciousness, to simply reduce the
arousal and put the cortex in a more synchronic rhythm.

In older children, the problem is different. Data indicate that the brain is continually
active and the EEG during loss of consciousness shows broad and very powerful alpha
bands. The great challenge from the clinical point of view is the phenomenon of emer-
gence delirium. To date, the causes have been poorly explained, but it is likely that this
phenomenon is produced by a transitory alteration of the connectivity together with an
overload of neuronal input coming from the surgical stimulation or from the postoperative
environment. This data overload on a pharmacologically affected brain would generate
an information-integration imbalance. Data demonstrating the excitation of the locus
coeruleus by the effect of sevoflurane may explain this “overamplification” effect due to
the norepinephrine released in this circumstance and eventually may explain emergence
delirium in children [41]. An imbalance in the ability to process and integrate information
in frail, underdeveloped brains or those affected by drugs would explain the frequent
phenomenon of postoperative excitation or delirium.

4. Pharmacology

Available pharmacological data on children are also weak. The formulas describing
distribution and elimination are complex, and weight as a covariable becomes insufficient
to describe change over a wide range of ages and sizes. The concept of allometry has
been incorporated into pharmacokinetics/pharmacodynamics (PK/PD) models to correct
for the change in function and size across ages, particularly in relation to clearance. This
approach (use of allometry and other covariables in modeling) help to explain that weight
has a different impact for each distributive phase or elimination clearance. It is not correct
to use a single working weight to calculate the dose during all the anesthesia, but several,
as the distributive process progresses [42,43].

Inhaled drugs have been the most widely used in neonatal population, but clinical data
are primarily extrapolations from older children and based on the concept of immobility
(MAC). To study the MAC awake (statistical partial pressure of gas to put 50% of the patient
unconscious) in this population is very questionable because of the lack of definition of
consciousness in this population and absence of EEG correlates of these clinical states [44].

In the case of dexmedetomidine the PK models with significant casuistry are only
found in children over 2 years [45].

In a recent study with 20 term infants, the most suitable model for dexmedetomidine
was a mono-compartment model with an allometric clearance adjusted to postmenstrual
age (PMA). PMA is defined as the time (in weeks) elapsed between the first day of the last
menstrual period and birth (gestational age) plus the time elapsed after birth (chronological
age). Currently there is no validated and approved target-controlled infusion technology
available for clinical use to optimize the administration [46].

A study with intensive care pediatric patients using four different data sets observed
that the sedation concentration was similar to adults, but small children under 1 year of
age with immature clearance required a dose adjustment [47].

The studies of propofol, despite having managed to describe a broad spectrum of
ages from infants to adolescents [48–50], have shown that in young children, the initial
distribution volumes are oversized, generating an initial overdose [51,52].

In our experience, the most appropriate model to use is Paedfusor (Absalom) [51],
because it includes covariates from 2 months of age to advanced adolescents (Figure 3).
The Kataria [48] model only included children between the ages of 3 and 9. The ideal
way to overcome this initial overdose would be to perform 2 min stepwise titrations
until clinical unconsciousness is achieved. This procedure unfortunately involves having
previously placed a venous line. In all these cases, the use of reference PK/PD models
require target-controlled infusion technology, which is still not available in the USA, but is
used throughout South America, Europe, and Asia.
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Figure 3. A typical overdosing of a 12-year-old patient using Propofol children model (Paedfusor) in
TCI mode. You can observe a depression in the alfa band in the middle of the spectrogram display
(Time is from up to down). This depression is considered a sign of overdosing and requires the
reduction of the concentration of propofol observed at the down point of the screen (BIS bilateral
monitor left, Ezfusor™ infusion system right). The adequate doses are only 2.2 ug/ml in this case.

Pharmacodynamic models in children also have weaknesses. In PK/PD models, the
unifying link between the dissociation of plasma concentrations and the appearance of the
effect is called ke0. This ke0 is a constant of gradient proportionality that describes the time
course of the effect and has been of great help in the possibility of titrating adult patients
during inductions or moments of changes of anesthetic requirement. However, it needs to
be refined in consideration of the phenomenon recently described as neuronal inertia. This
protective phylogenetic phenomenon is necessary to maintain bistable states and is not
represented in the reference studies of concentration–effect relationships used in current
pharmacology [53,54].

As commented regarding the changes in the EEG, the biological markers that were
used in children (bispectral index (BIS) monitor, spectral edge frequency (SEF50), or audi-
tory evoked potential (AEP)) for the construction of these models, do not represent recent
advancements in neuroscience. For example, in a Chilean study with children from 3 to
11 years of age, the mean ± standard deviation of the time to peak effect (TTpeak) of the
BIS index was 65 ± 14 s and 201 ± 74 s with the Alaris AEP index. Validation of the effect
model and its ke0 was only performed with the BIS monitor. In this case, the use of TTpeak
is questionable because it is based on measurements made after a manual bolus where
conditions of equilibrium between the plasma and the biophase cannot be ensured [55].

For now, what is becoming clear is that children have faster equilibrium times than
adults [56,57].

Another study with Chilean children and adults compared the calculated plasma
concentrations (Cp) using the pharmacokinetic models of Kataria [48] and Marsh [49] to
reach a BIS of 50. This study showed that the Cp to achieve BIS 50 were similar, concluding
that the difference between children and adults is essentially pharmacokinetic. From the
current perspective, this study is biased because it assumed that the BIS algorithm works
equally in both populations, a fact that we currently know is not the case.

The problem is even more significant in children under one year of age, for whom
the PKPD data are even weaker. Questions arise here as to whether the use of GABAergic
drugs in these brains that still have high excitatory GABA activity produces an anesthetic
state, or perhaps just an epileptiform excitatory connectivity uncoupling. That is one of the
reasons why the discussion of the potential synaptogenesis alterations that may impact late
on cognitive performance is taking place. In fact, we could consider that in neonates up to 6
months, whose thalamo-cortical tracts are poorly developed, the emergence of experiential
perceptual consciousness can even be discussed due to the difficulty of producing the
phenomenon of “integration of information for complexity” [58] due to the type of cortical
activity at that age, the minimal load of stored memory, and what is preferably dependent
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on subcortical emotionality without explicit memory (the concept of the proto-self is
developed by Antonio Damasio in his book How the Brain Creates the Mind, 2010).

Currently, it is very uncommon to use any type of neuromonitoring in children, but
there are studies that have reported that isoelectric EEG events were common in infants
and young children undergoing sevoflurane or propofol anesthesia. The dosing, based
frequently on patient hemodynamics and weak data coming from population pharmacoki-
netics, is often associated with unnecessarily deep anesthesia during surgery [59].

In a recent study in children 0–37 months of age requiring general anesthesia for
noncardiac or intracranial surgery using sevoflurane or propofol infusion, in 63% of the
patients, an episode of isoelectricity was observed, more related to high ASA status pa-
tients [60].

The true predictive value of the occurrence of burst suppression in pediatric anesthesia
remains unknown. Still, it suggests that dosing based on population pharmacokinetics
and patient hemodynamics is often associated with unnecessarily deep anesthesia during
surgical procedures. There is a paucity of data on the incidence of overdose due to the low
use of EEG monitoring in this population, but we suspect that overdose must be a common
phenomenon due to the way in which the practice of sedation/unconsciousness titration
in pediatric anesthesia is performed. (Figure 4)
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Figure 4. A 6-weeks old child, 4.3kg, biliary atresia, General anesthesia with Propofol TCI, Remifen-
tanil manual calculation. The raw EEG and the spectrogram show an important depression of
the SEF95, many Burst suppression episodes and asymmetry between both hemispheres, no alpha
activity using extremely low Propofol concentration.

There is widespread discussion on how to address all these challenges in a multifacto-
rial way to reflect whether current anesthesia practice has a deleterious impact on pediatric
patient outcomes [61].

In summary, recent data in young children indicate that anesthetic drugs that act by
GABAergic mechanisms and NMDA produce a greater risk of generating alterations in
maturation. This would be more evident at repeated doses.

The use of anesthetic concepts based on clinical and EEG definitions of how ma-
ture brains respond does not work for developing brains. Knowledge in these areas is
still limited.

In clinical practice, it is exceptional to finely titrate drugs based on well-defined
objectives, precisely because they are weak; for example, the clinical definition of uncon-
sciousness, or if cortical-thalamic-cortical uncoupling is required as in adults to obtain a
neuronal depression that has the minimum impact on brain development.

The deficit in drug modeling and not yet having automated administration technology
available in target-controlled infusion (TCI) are complexities to be addressed.

A better understanding of the EEG activity required to generate brain protection,
avoiding isoelectric or convulsive phenomena, and identifying the EEG condition asso-
ciated with a potential implicit memory of the surgical experience are now on the list of
knowledge and concepts that must be progressed.
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