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ABSTRACT We report the draft genome sequences of Buttiauxella spp. strains that
were isolated from water and gastropods. Three isolates show fluorescence in the
Colilert system, indicating unusual b-D-glucuronidase activity, and phylogenetic anal-
yses suggest that they represent a novel species. Another strain, without b-D-glucu-
ronidase activity, was assigned to the species Buttiauxella ferragutiae.

Microbial water quality is examined using fecal indicator bacteria such as coliform
bacteria and Escherichia coli. For their detection, b-D-galactosidase and b-D-glucu-

ronidase activities are tested with membrane-filtration-based water quality tests or most
probable number methods like the Colilert system (1, 2). E. coli is the most important indica-
tor of fecal water contamination, and the presence of b-D-glucuronidase activity is consid-
ered indicative of E. coli (2, 3). However, other members of the Enterobacteriaceae family,
such as certain strains of Salmonella, Klebsiella, Citrobacter, Shigella, and Yersinia, also possess
this enzyme, resulting in false-positive E. coli results (3–5). Here, we report draft genome
sequences of Buttiauxella isolates that showed false-positive E. coli results in water analyses.

Buttiauxella spp. strains were isolated from a drinking water sample from a small vil-
lage near Bruchsal, Germany, and from feces from the gastropods Arion vulgaris and
Helix pomatia, collected near Bruchsal (Table 1), using the Colilert-18/Quanti-Tray
(IDEXX Laboratories, USA) according to ISO 9308-2:2012 (6). To obtain single colonies,
liquid from the wells of the Colilert-18/Quanti-Tray was transferred onto heterotrophic
plate count (HPC) agar plates (Merck KGaA, Darmstadt, Germany) (7), as recommended
by German regulations (Deutsches Einheitsverfahren), and incubated for 24 h at 36°C.
Bacterial isolates were picked, transferred to fresh HPC agar plates, and again incubated
for 24 h at 36°C. Genomic DNA of pure cultures grown on these agar plates was
extracted using the FastDNA SPIN kit for soil (MP Biomedicals, USA) and quantified using
a Qubit fluorometer (Invitrogen, USA) according to the manufacturer’s instructions.

Genome sequencing was performed as described previously (8). Preparation of sequenc-
ing libraries was performed using a DNA preparation kit (Illumina). Draft genomes were
sequenced by 150-bp paired-end sequencing on an Illumina NextSeq 1000 system using
NovaGene (Illumina). Reads were trimmed using Cutadapt v1.16.6 (9) and quality controlled
using FastQC v0.72 (https://github.com/s-andrews/FastQC). High-quality sequence reads
were assembled de novo using Unicycler v0.4.6.0 (10), which includes SPAdes v3.12.0 (11).
Annotation was carried out using RASTtk v2.0 (12, 13) and NCBI PGAP v5.0 (14, 15).
Phylogeny was determined with the codon-tree pipeline in PATRIC v3.6.9 (16, 17), which
uses single-copy cross-genus protein families and analyzes aligned proteins and coding
DNA from single-copy genes using RAxML v8.0.0 (18). To confirm species, the average nu-
cleotide identity (ANI) was calculated using OrthoANI (19). Default parameters were used for
all software unless otherwise noted. Genome sizes and additional information are presented
in Table 1.

Phylogenetic analyses and ANI values suggest that three of the isolates (S04-F03, W03-
F01, and A2-C1_F) represent a new species of the genus Buttiauxella, while the fourth strain
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(A2-C2_NF) could be assigned to the species Buttiauxella ferragutiae. The analyses further
confirmed the presence of the uidA gene, coding for b-D-glucuronidase, in the three iso-
lates with fluorescence in the Colilert-18/Quanti-Tray test (S04-F03, W03-F01, and A2-C1_F)
and its absence in the fourth isolate (A2-C2_NF). Glucuronidase activity has also been demon-
strated in Buttiauxella noackiae MCE (formerly Buttiauxella agrestis), which was isolated from
surface water (2). Thus, certain Buttiauxella isolates from environmental sources that harbor
b-D-glucuronidase can lead to false-positive E. coli results in drinking water testing.

Data availability. The whole-genome shotgun projects and the raw sequence reads
have been deposited in DDBJ/ENA/GenBank under the accession numbers listed in Table 1.
They belong to the BioProject PRJNA789423. For all sequences, the first versions of the
accession numbers are described in this paper.
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