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The therapeutic utility of opioids is diminished by their ability to induce rewarding behaviors
that may lead to opioid use disorder. Recently, the endogenous cannabinoid system has
emerged as a hot topic in the study of opioid reward but relatively little is known about how
repeated opioid exposure may affect the endogenous cannabinoid system in the
mesolimbic reward circuitry. In the present study, we investigated how sustained
morphine may modulate the endogenous cannabinoid system in the ventral tegmental
area (VTA) of Sprague Dawley rats, a critical region in the mesolimbic reward circuitry.
Studies here using proteomic analysis and quantitative real-time PCR (qRT-PCR) found
that the VTA expresses 32 different proteins or genes related to the endogenous
cannabinoid system; three of these proteins or genes (PLCγ2, ABHD6, and CB2R)
were significantly affected after repeated morphine exposure (CB2R was only detected
by qRT-PCR but not proteomics). We also identified that repeated morphine treatment
does not alter either anandamide (AEA) or 2-arachidonoylglycerol (2-AG) levels in the VTA
compared to saline treatment; however, there may be diminished levels of anandamide
(AEA) production in the VTA 4 h after a single morphine injection in both chronic saline and
morphine pretreated cohorts. Treating the animals with an inhibitor of 2-AG degradation
significantly decreased repeated opioid rewarding behavior. Taken together, our studies
reveal a potential influence of sustained opioids on the endocannabinoid system in the
VTA, suggesting that the endogenous cannabinoid system may participate in the opioid-
induced reward.
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INTRODUCTION

The opioid epidemic is a severe health problem in the
United States. It is estimated that over 10 million Americans
misused prescription opioids and approximate two million of
them have use disorders (SAMHSA, 2019). This high prevalence
of opioid misusers/abusers is coupled to a striking increase in
emergency room visits and overdose deaths due to non-medical
use of opioids (Kolodny et al., 2015). Recently, this situation is
even getting worse due to the social isolation and overwhelming
despair associated with the COVID-19 pandemic (Volkow, 2020).
Despite these significant detriments associated with opioids, 50
million Americans who are suffering from pain still need
opioids–as they remain the current most effective analgesics
(Dahlhamer et al., 2018). This dilemma has now become a
challenging question for the medical community and requires
further research to suppress the addictive potential of opioids
especially for long-term use.

Opioid-induced reward is an initial but critical step toward
opioid abuse and addiction (Fields and Margolis, 2015). Therefore,
exploring the underlying mechanisms of opioid reward is essential
to develop novel therapies for the treatment of the opioid epidemic.
The mesolimbic circuitry is the major component of the brain
reward system (Volkow and Morales, 2015). This circuitry is
comprised of dopaminergic neurons projecting from the ventral
tegmental area (VTA) of the midbrain to the nucleus accumbens
(NAc) in the ventral forebrain (Volkow and Morales, 2015). The
activation of these dopaminergic neurons is thought to directly
encode for a reward prediction signal by producing a rapid, phasic
dopamine release in the NAc (Volkow and Morales, 2015), which,
at least in part, mediates opioid-induced reward.

The endogenous cannabinoid system (ECS), formed by
cannabinoid receptors, lipid-derived endogenous ligands, and
enzymes that synthesize and degrade the endogenous ligands,
has recently been implicated in the process of rewarding behavior
formation mediated by the mesolimbic circuitry. As it was shown
previously, the blockade of cannabinoid receptor 1 (CB1R) in the
VTA or NAc significantly suppressed morphine-induced
conditioned place preference (CPP) or heroin self-
administration (Caillé and Parsons, 2006; Rashidy-Pour et al.,
2013); while administration of a selective Cannabinoid receptor 2
(CB2R) agonist JWH015 effectively attenuated acute morphine-
induced dopamine release in the NAc, as well as attenuated
morphine-induced rewarding behavior when co-administered
with morphine (Grenald et al., 2017). Additionally, systemic
administration of an endocannabinoid 2-arachidonyl glycerol
(2-AG) or the inhibitor of its degrading enzyme MAGL,
JZL184, significantly enhanced dopamine release in NAc
(Oleson et al., 2012; De Luca et al., 2014). Interestingly,
another study utilizing a dual FAAH (the primary enzymes
that hydrolyzes the endocannabinoid anandamide (AEA) in
the brain)-MAGL inhibitor, SA-57, reduced heroin-reinforced
nose poke behavior and the progressive ratio break point for
heroin (Wilkerson et al., 2017). Although distinct phenomena
might be observed from different studies, current evidence
strongly suggests the ECS can modulate and possibly
participate in the development of opioid reward.

Current data propose that the ECS modulates opioid reward
primarily via a disinhibitory feedback loop mediated by the 2-
AG/CB1R axis in the mesolimbic circuitry (Zlebnik and Cheer,
2016). During periods of burst firing, VTA dopamine neurons
release 2-AG onto the presynaptic GABAergic terminals in VTA
(Lecca et al., 2012). The CB1R activation by 2-AG disinhibits the
GABA-mediated inhibition of dopamine neurons, thus
enhancing dopamine neuron activity (Melis et al., 2004; Riegel
and Lupica, 2004; Fitzgerald et al., 2012). Recently, studies
showed that CB2Rs are functionally expressed on the VTA
dopamine neurons and can significantly suppress the activity
of these neurons in the presence of cocaine, suggesting a potential
ECS-mediated modulatory mechanism of opioid reward (Zhang
et al., 2014; Zhang et al., 2017).

Considering the major impact of the endocannabinoid system
on the rewarding effects of opioids, one important question is
how the ECS in the mesolimbic reward circuitry responds to
sustained exposure of opioids. To date, only a few studies have
explored this research question (Rubino et al., 1997; Cichewicz
et al., 2001; Gonzalez et al., 2002; González et al., 2003; Viganò
et al., 2003; Viganò et al., 2004; Caillé et al., 2007; Jin et al., 2014).
However, none of these studies have investigated the possible
changes in the VTA. Additionally, most of these studies merely
focused on analyzing the expression of CB1Rs, which lack a
comprehensive understanding of the alterations in the whole
ECS. Therefore, our present study sought to 1) obtain a thorough
picture of the ECS-related proteins expressed in the VTA and
their possible alterations induced by repeated opioid treatment
through unbiased quantitative proteomics and 2) investigate the
VTA levels of the two major endocannabinoids (AEA and 2-AG)
by in vivo microdialysis after repeated morphine treatment.

MATERIALS AND METHODS

Animals
Two hundred and twenty-three male Sprague Dawley rats
(7–8 weeks old), purchased from Envigo (Indianapolis, IN),
were maintained in a climate-controlled room on a 12 h light-
dark cycle and allowed food and water ad libitum. Rats were
housed three per cage for all experiments except for those that
received guide cannula implantation, which were housed
individually. All procedures were approved by the University
of Arizona Animal Care and Use Committee (Approval #06–110)
and adhere to the guidelines issued by the National Institutes of
Health and the International Association for the Study of Pain.

Drug Treatment
MJN110, a selective MAGL inhibitor (MAGL IC50 � 9.1 nM, over
1,000-fold selectivity vs. FAAH (Niphakis et al., 2013)), was
purchased from Cayman Chemical (#17583, Ann Arbor, MI).
JWH015, a selective CB2R agonist (CB2R Ki � 13.8 nM, 28-fold
selectivity vs. CB1R (Showalter et al., 1996)), was purchased from
Tocris (#1341, Minneapolis, MN). MJN110 and JWH015 were
dissolved in a vehicle solution consisting of 10% dimethyl
sulfoxide, 10% Tween-80, and 80% saline for injection
(1 ml/kg, i. p.) with dosages of 5 and 3 mg/kg, respectively,
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based on the previous studies (Niphakis et al., 2013; Grenald et al.,
2017; Thompson et al., 2020). Morphine sulfate was obtained
from the NIDA Drug Supply program and was dissolved in saline
for injection (1 ml/kg). Sustained morphine administration as
previously described was performed by intraperitoneal injections
of morphine sulfate to rats at a dose of 5 mg/kg twice daily (9:00
am and 5:00 pm) for five consecutive days (Viganò et al., 2003;
Tumati et al., 2012; Campbell et al., 2013), which was intended to
mimic the repeated use and systemic administration of opioids in
humans (Ballantyne and Mao, 2003; Abrams et al., 2011; Surratt
et al., 2011; Volkow and McLellan, 2016). For conditioned place
preference testing, rats received a total of five injections of
morphine at a dose of 10 mg/kg intraperitoneally over five
consecutive days.

Ventral Tegmental Area Tissue Collection
One hour after the last morphine or saline injection, rats were
anesthetized with ketamine (80 mg/kg)/xylazine (10 mg/kg) mix
and transcardially perfused with phosphate buffered saline (pH
7.4). Brains were carefully removed, and the VTA tissues
(bilateral) were rapidly dissected on ice by using disposable
biopsy punches (1 mm diameter) according to the Paxinos and
Watson Atlas (Paxinos and Watson, 2007). Immediately after
tissue harvest, the VTA samples were snap frozen in liquid
nitrogen and then stored at −80°C until they were used for
proteomics, western blotting, and quantitative real-time
polymerase chain reaction.

Proteomics Analysis
In-gel Digestion
Each VTA sample (3–4 mg VTA tissue from one rat) was lyzed in
60 μL chilled RIPA buffer (#89900, Thermo Scientific, Rockford,
IL) with protease inhibitor cocktail (1: 50 dilution, #B14002,
Bimake, Houston, TX). Immediately after adding the lysis buffer,
samples were homogenized via ultrasonication (3 short bursts)
and centrifuged at 15,000 g for 10 min at 4°C. The supernatant
was transferred into a clean 1.5 ml tube, and the protein
concentration in the tissue lysates were determined using
Pierce BCA protein assay kit (#23225, Thermo Scientific,
Rockford, IL). The protein concentration of each sample was
∼2–3 μg/μL 100 μg boiled tissue lysate was separated by SDS-
PAGE and stained with Bio-Safe Coomassie G-250 Stain
(#1610786; Biorad, Hercules, CA). Each lane of the SDS-PAGE
gel was cut into seven slices. The gel slices were subjected to
trypsin digestion and the resulting peptides were purified by C18-
based desalting exactly as previously described (Kruse et al., 2017;
Parker et al., 2019).

Mass Spectrometry and Database Search
HPLC-ESI-MS/MS was performed in positive ion mode on a
Thermo Scientific Orbitrap Fusion Lumos tribrid mass
spectrometer fitted with an EASY-Spray Source (Thermo
Scientific, San Jose, CA). NanoLC was performed as previously
described (Kruse et al., 2017; Parker et al., 2019). Tandem mass
spectra were extracted from Xcalibur “RAW” files and charge
states were assigned using the ProteoWizard 2.1. x msConvert
script using the default parameters. The fragment mass spectra

were searched against the rattus SwissProt_2018 database (8,068
entries) usingMascot (Matrix Science, London, United Kingdom;
version 2.4) using the default probability cut-off score. The search
variables that were used were: 10 ppm mass tolerance for
precursor ion masses and 0.5 Da for product ion masses;
digestion with trypsin; a maximum of two missed tryptic
cleavages; variable modifications of oxidation of methionine
and phosphorylation of serine, threonine, and tyrosine. Cross-
correlation of Mascot search results with X! Tandem was
accomplished with Scaffold (version Scaffold_4.8.7; Proteome
Software, Portland, OR, United States). Probability assessment
of peptide assignments and protein identifications were made
using Scaffold. Only peptides with ≥95% probability were
considered.

Label-free Peptide/protein Quantification and
Identification
Progenesis QI for proteomics software (version 2.4, Nonlinear
Dynamics Ltd., Newcastle upon Tyne, United Kingdom) was
used to perform ion-intensity based label-free quantification. In
brief, in an automated format, raw files were imported and
converted into two-dimensional maps (y-axis � time, x-axis �
m/z) followed by selection of a reference run for alignment
purposes. An aggregate data set containing all peak
information from all samples was created from the aligned
runs, which was then further narrowed down by selecting only
+2, +3, and +4 charged ions for further analysis. The samples
were then grouped and a peak list of fragment ion spectra from
only the top eight most intense precursors of a feature was
exported in Mascot generic file (.mgf) format and searched
against the rattus SwissProt_2018 database (8,068 entries)
using Mascot (Matrix Science, London, United Kingdom;
version 2.4). The search variables that were used were: 10 ppm
mass tolerance for precursor ion masses and 0.5 Da for product
ion masses; digestion with trypsin; a maximum of two missed
tryptic cleavages; variable modifications of oxidation of
methionine and phosphorylation of serine, threonine, and
tyrosine; 13C � 1. The resulting Mascot. xml file was then
imported into Progenesis, allowing for peptide/protein
assignment, while peptides with a Mascot Ion Score of <25
were not considered for further analysis. Protein quantification
was performed using only non-conflicting peptides and precursor
ion-abundance values were normalized in a run to those in a
reference run (not necessarily the same as the alignment reference
run). Principal component analysis and unbiased hierarchal
clustering analysis (heat map) was performed in Perseus
(Tyanova et al., 2016; Tyanova and Cox, 2018) while Volcano
plots were generated in Rstudio. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was performed with DAVID (Huang
et al., 2009).

Western Blotting
Tissue lysates were prepared as for the proteomics analysis
(methods above). Protein samples from each tissue lysate were
resolved on 10% SDS-polyacrylamide gels (Criterion TGX, Bio-
rad, Hercules, CA) and subsequently transferred to
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polyvinylidene difluoride (PVDF) membranes (Bio-rad,
Hercules, CA). PVDF Membrane was blocked with 5% BSA in
Tris-buffered saline containing 0.5% (v/v) Tween-20 (TBST) for
1 h at room temperature, and then incubated with different
primary antibodies, including anti-rat CB1R antibody (rabbit
polyclonal, 1:1,000 dilution), anti-rat DAGLα antibody (rabbit
polyclonal, 1:4,000 dilution), anti-rat MAGL antibody (rabbit
polyclonal, 1:2,000 dilution), and anti-α-tubulin (cp06,
Calbiochem; mouse monoclonal, 1:50,000 dilution). All
antibodies were diluted in Tris-buffered saline containing 0.5%
(v/v) Tween-20 (TBST) and 3% (w/v) bovine serum albumin
(BSA). Anti-rat CB1, DAGLα, and MAGL antibodies are kind
gifts from Dr Ken Mackie. HRP-linked anti-rabbit IgG (7,074,
Cell Signaling, Danvers, MA) and HRP-linked anti-mouse IgG
(7,076, Cell Signaling, Danvers, MA) were used as the secondary
antibodies for corresponding primary antibodies. The
membranes were developed by using Clarity Western ECL
substrate (#1705061, Bio-rad, Hercules, CA), and the blots
were detected by GeneMate Blue Lite Autorad films
(BioExpress, Kaysville, UT) and later quantitated with ImageJ
1.50i (Wayne Rasband, NIH, United States). All data were
normalized to the α-tubulin signal for each sample. To probe
a second protein on the same membranes, the membranes were
washed in TBST and then stripped in the OneMinute Plus
stripping buffer (GM6015, GM Biosciences, Frederick, MD).
After a second run of wash in TBST, the membranes were
blocked and then stained with another primary antibody.

Quantitative Real-Time Polymerase Chain
Reaction
Quantitative real-time polymerase chain reaction (qRT-PCR) was
performed as described previously (Ibrahim et al., 2017). RNA
was extracted from VTA tissues using TRIzol reagent
(#15596026, Invitrogen, Carlsbad, CA) according to the
manufacturer’s protocol. Briefly, samples were homogenized in
500 μL TRIzol reagent, and then 100 μL chloroform was added to
each homogenate. After centrifugation, the upper aqueous phase
containing RNAwas transferred to a new tube and total RNAwas
subsequently precipitated after adding 250 μL isopropanol to the
aqueous phase. Following by another centrifugation, the RNA
precipitates were washed with 75% ethanol and resuspended in
20 μL DEPC-treated water (ThermoFisher, Grand Island, NY).
cDNA was generated immediately after RNA extraction using the
Maxima Reverse transcriptase kit (#K1641, ThermoFisher, Grand
Island, NY) according to its manufacturer’s protocol. qRT-PCR
analysis was performed using 5x HOT FIREPol EvaGreen qPCR
Mix Plus (08–25–00001, Solis Biodyne, Estonia) on a CFX
connect real-time PCR detection system (Bio-rad, Hercules,
CA) according to the manufactures protocol. The relative
mRNA expression for CB1R and CB2R genes was normalized
to β-actin mRNA level and calculated with the ΔΔCt method
(Livak and Schmittgen, 2001). The sequences of all specific
primers were listed below: Rat CB1R (forward 5’- ACCTAC
CTGATGTTCTGGATTGGG -3’, reverse 5’- CGTGTGGAT
GATGATGCTCTTCTG -3′), Rat CB2R (forward 5’- CTCGTA
CCTGTTCATCGGCA -3’, reverse 5’- GTATCGGTCAACAGC

GGTCA -3’) and Rat β-actin (forward TAAGGCCAACCGTGA
AAAGATGA -3’, reverse 5’- TAAGGCCAACCGTGAAAAGAT
GA -3’). The primers for ABHD6 and PLCγ2 were acquired from
Qiagen RT2 qPCR Primer Assays (ABHD6: PPR46100A-200
(NM_001007680); PLCγ2: PPR44457A-200 (NM_017168)).

In vivo Endocannabinoid Analysis
Cannulation Implantation
Rats were anesthetized with ketamine (80 mg/kg)/xylazine
(10 mg/kg) mix and secured in a stereotaxic apparatus
(Stoelting, Wood Dale, IL). A unilateral microdialysis guide
cannula (20 mm, MAB 2/6/9.20. G, SciPro, Sanborn, NY) was
implanted into the ventral tegmental area (VTA) according to the
Paxinos and Watson Atlas (Paxinos and Watson, 2007): AP
−5.9 mm, ML +0.5 mm, and DV −8.2 mm from bregma. The
guide cannula was fixed in place with skull screws and dental
cement. All rats were injected with the antibiotic gentamicin
(8 mg/kg, s. c.) to prevent infection. Morphine treatment started
on the same day of surgery. Due to the small nuclei target, the
successful rate of the cannula placement is ∼50%, with a total of
n � 44 rats excluded for off target placement.

In vivo Microdialysis of Endocannabinoids in Awake
Animals
In vivoMicrodialysis experiments were conducted on the last day
of repeated morphine treatment. The performance of
microdialysis was modified from previous studies (Buczynski
and Parsons, 2010; Wiskerke et al., 2012; Grenald et al., 2017).
Two hours prior to sample collection, rats were lightly
anesthetized for ∼2 min with 2% isoflurane for smooth
insertion of a microdialysis probe (1 mm PES membrane and
15kD cut-off; MAB 6.20.1; 1 mm protruded beyond guide
cannula) through and secured in the guide cannula.
Immediately after probe insertion, the isoflurane anesthesia
was discontinued and artificial cerebral spinal fluid (aCSF)
containing 10% (w/v) hydroxypropyl-β-cyclodextrin (#16169,
Cayman Chemical, Ann Arbor, MI) was perfused through the
microdialysis probe and equilibrated within the brain tissue at a
flow rate of 1 μL/min. Following this 2 h baseline period, all rats
were injected with morphine (5 mg/kg, i. p.) and dialysate
samples were collected every 30 min (30 μL total volume at
each time point) for a total of 4 h. Collected samples were
frozen in dry ice after each 30 min interval and subsequently
stored at −80°C until further analysis. Upon completion, rats were
sacrificed, and their brains were harvested and fixed in 10%
formalin solution to verify cannula placement. Coronal slices
containing the VTA were sectioned at a thickness of 40 μm on a
cryostat. Guide cannula placements were verified visually and
only those rats with correct cannula placement were used for final
analysis.

Quantification of Endocannabinoid Contents in
Microdialysates
Analysis of 2-AG and AEA contents in microdialysates was
performed by the University of Arizona Cancer Center
Analytical Chemistry Core on an Ultivo triple quadrupole
mass spectrometer combined with a 1,290 Infinity II UPLC
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system (Agilent, Palo Alto, CA). Samples for analysis were
prepared by mixing 10 μL internal standard solution (a
mixture of 5.213 nM d4-AEA and 5.688 nM d4-2-AG in
acetonitrile) to 20 μL microdialysate and then centrifuged at
15,800 xg for 5 min at 4°C. The supernatant was transferred to
autosampler vials and 5 μL was injected for analysis.
Chromatographic separation was achieved using an isocratic
system of 21% 1 mM ammonium fluoride and 79% methanol
on an Acquity UPLC BEH C-18 1.7u 2.1 × 100 mm column
(Waters, Milford, MA) maintained at 60°C with a flow rate of
400 μL/min. After each injection the column was washed with
90% methanol for 1 min and then re-equilibrated for 5 min prior
to the next injection. The mass spectrometer was operated in
electrospray positive mode with a gas temperature of 150°C at a
flow of 5 L/min, nebulizer at 15 psi, capillary voltage of 4,500 V,
sheath gas at 400°C with a flow of 12 L/min and nozzle voltage of
300 V. The transitions monitored were:m/z348.3→m/z287.3 (d0-
AEA), m/z352.3→m/z287.4 (d4-AEA), m/z379.3→m/z287.2 and
269.2 (d0-2-AG), and m/z348.3→m/z287.2 and 296.1 (d4-2-AG).
As 2-AG is reported to be relatively unstable and can rapidly
convert to 1-AG (Caillé et al., 2007), the 2-AG and 1-AG
peak areas were combined for all analyses in the present
study. The quantification of AEA and 2-AG was achieved by
using calibration curves, which were prepared by serial
dilution of AEA and 2-AG stock solutions in 80%
acetonitrile. The stock solutions of AEA, 2-AG, d4-AEA
and d4-2-AG were purchased from Cayman Chemical
(Ann Arbor, MI).

Conditioned Place Preference
The procedure of conditioned place preference (CPP) was
modified from our previous studies (Grenald et al., 2017;
Sandweiss et al., 2018). Rats were preconditioned to a three-
chambered CPP apparatus (San Diego Instruments, San Diego,
CA) for 15 min to acquire their baseline preference for the two
side chambers. Only rats that showed no basal preference (<80%
of the total time) or aversion (>20% of the total time) to any end
chambers were used and randomly assigned for further
conditioning experiments over the next 5 days. In our
experiments, approximate 10–20% rats were excluded every
time due to basal preference. In the morning session of the
first conditioning day, rats were pretreated with MJN110
(5 mg/kg, i. p.), JWH015 (3 mg/kg, i. p.) or vehicle, and then
were returned to their home cages. To ensure that JWH015 is on
board and interacting at CB2R, animals were injected with
morphine (10 mg/kg, i. p.) or saline 30 min after the
pretreatment. This treatment time point has been applied
frequently by previous studies using JWH015 or similar
compounds (Ma et al., 2012; Verty et al., 2015; Zhang et al.,
2018). Immediately after morphine/saline treatment, animals
were confined to one end chamber (drug-paired chamber) for
15 min. In the afternoon session, all rats were pretreated with
vehicle followed by an injection of saline and paired with opposite
end chamber (non-drug paired chamber) as a control. All
chambers were thoroughly cleaned after each trial to prevent
effects of scent on behavior in the following trials. The same
procedures were repeated on the conditioning days 2–5 while the

morning and afternoon sessions in days 2–4 were inverted to
counter-balance a putative effect of the circadian rhythm. In the
morning of the test day (day 6), rats could explore all chambers of
the CPP box freely for 15 min and the total time they spent in
each chamber was recorded to determine their chamber
preference. The chamber preference is presented as CPP score,
which is calculated as below:

CPP difference score � Time spent in drug-paired chamber on the test day

− Time spent in drug-paired chamber on baseline day

Statistical Analysis
Power analyses were performed on cumulated data using G*Power
3.1 software (Faul et al., 2009) to estimate the optimal numbers of
animals required for each experiment, and we found the adequate
statistical separation for each group to detect 0.80 between groups
at p < 0.05. ANOVA was used to analyze the expression difference
between repeated morphine and saline-treated samples in the
proteomic analysis. Two-way ANOVA with Tukey’s and Sidak’s
multiple comparisons tests were used to analyze the time effect and
group difference of the endocannabinoid production, respectively.
Unpaired t test was used to compare the expression difference in
proteomic analysis, western blotting, qRT-PCR andMAGL activity
assay. One-way ANOVAwith Dunnett’s multiple comparisons test
was used to analyze the CPP tests. All data are presented as mean ±
standard error of the mean (SEM) and a value of p < 0.05 was
accepted as statistically significant. GraphPad Prism 8.0 (Graph
Pad Inc., San Diego, CA) was used to perform statistical analyses
and generate plots.

RESULTS

The Effects of Sustained Morphine on the
Ventral Tegmental Area Proteome
To obtain a global picture of protein expression alterations in the
VTA endogenous cannabinoid system after sustained opioid
exposure, we carried out HPLC-ESI-MS/MS-based proteomic
analysis of VTA tissues harvested from sustained morphine or
saline-treated rats (Figure 1A). This analysis identified 3,680 total
proteins across a total of 56 fractions from eight biological
samples (Supplementary Table S1). 162 identified proteins
were significantly (p < 0.05) affected by sustained morphine
exposure, 37 of which had over 2-fold expression difference
(Figure 1B; Supplementary Table S1). Of the 162
significantly regulated proteins, the expression levels of 117
were decreased after sustained morphine exposure and the
levels of 45 were increased. Unbiased principal component
analysis (PCA) of the 162 significantly affected proteins from
the 2-way ANOVA analysis suggested a good consistency among
the samples within each treatment group (Figure 1C), data that
were supported by unbiased hierarchical clustering analysis
(Figure 1D). The Gene Ontology (GO) enrichment and
KEGG analyses of the significantly affected proteins were
performed for GO-Molecular Function, Cellular Component
and Biological Process as well as KEGG pathways, and the

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6327575

Zhang et al. Repeated Morphine on VTA ECS

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


results are presented in Figure 1E; Supplementary Table S2.
Interestingly, our analyses of GO-Molecular Function and
GO-Biological Process suggest that the endopeptidase
inhibitors are the most affected proteins in the VTA
following repeated morphine treatment (All 14 proteins
were reduced significantly and 11 of them had over 2-fold
reduction in expression; Figures 1E, F; Supplementary Table
S3). α-1-macroglobulin was the most significantly affected
protein out of all 3,680 proteins, which has the largest fold
change loss after morphine treatment of all the significantly

affected proteins related to endopeptidase activity (labeled red
in Figure 1F).

Sustained Morphine Induces Proteomic
Changes in the Ventral Tegmental Area
Endogenous Cannabinoid System
In the proteomic analysis, 31 endogenous cannabinoid system-
related proteins were detected in the VTA (Table 1). Two of these
proteins, phospholipase Cγ-2 (PLCγ2) and α/β-hydrolase

FIGURE 1 | Proteomic analysis of the endogenous cannabinoid system-related proteins in rat VTA. (A) Experimental design for VTA tissue collection. (B) Schematic
diagram of the label-free quantitative proteomics experimental approach. VTA tissues acquired from repeatedmorphine- or saline-treated rats were processed and used
for performing proteomic analysis as described in Methods and Materials. (C) A volcano plot of the proteins identified in the VTA tissues treated with sustained morphine
or saline. Above the horizontal gray line represents the cut-off for a p value of <0.05 while the two vertical lines represent the cut-off values of 2-fold change in either
the positive or negative direction. (D) Unbiased principal component analysis (PCA) of the 162 significantly affected proteins from the 2-way ANOVA analysis of the
quantitative proteomics data revealed that the protein expression differences of the individual biological samples within each group were consistent. (E) Unbiased
hierarchical clustering of the 162 significantly affected proteins in the sustained morphine vs. saline treatment groups confirmed that the expression patterns across the
different individual biological samples cluster together. (F) Scatter plots of the Gene Ontology (GO) enrichment findings for the significantly affected proteins after
repeated morphine treatment. (G) Scatter plot of the endopeptidase inhibitors that are significantly affected by repeated morphine treatment. The Fold Change axis is
labeled red to represent that treatment with morphine results in a decrease in the endopeptidase inhibitor proteins identified. The vertical dashed green line represents the
p cut-off value of <0.05. α-1-macroglobulin is labeled in red to highlight the most significantly affected protein after morphine treatment. n � 4 per group.
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domain containing 6 (ABHD6), were significantly downregulated
after sustained morphine exposure. To verify the results of our
proteomic analysis, we examined the expression of PLCγ2 and
ABHD6 as well as several proteins that are demonstrated as the
major contributors to the endocannabinoid signaling in the
central nervous system, including diacylglycerol lipase α
(DAGLα), monoglyceride lipase (MAGL) and CB1R, using
either western blotting or qPCR. Consistent with our
proteomic data, DAGLα, MAGL and CB1R were not
significantly altered in the VTA after repeated morphine
treatment (DAGLα: t (10) � 1.27, p � 0.23; MAGL: t (10) �
1.73, p � 0.11; CB1R: t (10) � 0.47, p � 0.65) (Figures 2A–F), yet
findings for the PLCγ2 using qPCR demonstrated PLCγ2 was
significantly downregulated after morphine treatment (t (10) �
8.65, p < 0.0001) (Figure 3A). These results indicate the accuracy
and reproducibility of the proteomic analysis (t (10) � 1.70, p �
0.12). Interestingly, ABHD6 detected by qPCR was not shown to
be altered by sustained morphine (Figure 3B), suggesting its

downregulation detected by proteomics may not be controlled at
the transcription level.

CB2R, a critical member of the endogenous cannabinoid
system, was recently demonstrated as playing a key role in
drug addiction (Xi et al., 2011; Navarrete et al., 2013; Ortega-
Álvaro et al., 2015; Grenald et al., 2017). However, due to its low
expression level in the central nervous system, this receptor was
not detected with current mass spectrometry-based or antibody-
based techniques (Cécyre et al., 2014; Marchalant et al., 2014; Li
and Kim, 2015). To examine the expression of CB2R in the VTA,
we employed quantitative real-time PCR. Our results showed that
sustained morphine significantly decreased the mRNA
expression level of CB2Rs by 17% (t (10) � 2.82, p < 0.05)
(Figure 3C). In contrast, no significant difference of CB1R
expression between repeated morphine-treated and saline-
treated groups was found (t (10) � 0.77, p � 0.46)
(Figure 3D), which is consistent with our previous protein
observation (Figure 2F).

TABLE 1 | Expression alterations of the endogenous cannabinoid system-related proteins in the VTA after chronic morphine exposure.

Protein name Gene name MW (kDa)a Fold changeb Anova P valuec

Receptors for cannabinoids
Cannabinoid receptor 1 CNR1 52.8 0.85 0.380
Transient receptor potential cation channel subfamily V member 1 TRPV1 94.9 0.54 0.924

Enzymes related to endocannabinoid synthesis
1-Phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 PLCB1 138.3 1.04 0.595
1-Phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 PLCB3 139.4 0.88 0.164
1-Phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 PLCB4 134.4 1.04 0.721
1-Phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-1 PLCD1 85.9 1.01 0.971
1-Phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-4 PLCD4 88.9 0.64 0.059
1-Phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 PLCG1 148.5 0.90 0.134
1-Phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 147.6 0.63 0.035*
Glycerophosphodiester phosphodiesterase 1 GDE1 37.6 0.72 0.089
N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D NAPEPLD 45.7 1.07 0.913
Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 SHIP1 133.5 0.87 0.923
Sn1-specific diacylglycerol lipase alpha DAGLA 115.2 0.53 0.107

Enzymes related to endocannabinoid degradation
Arachidonate 12-lipoxygenase, 12 R type ALOX12 B 80.7 0.92 0.354
Cytochrome P450 2C70 CYP2C70 56.1 1.07 0.365
Cytochrome P450 2D4 CYP2D4 56.6 1.04 0.833
Cytochrome P450 4F5 CYP4F5 60.6 0.72 0.105
Fatty-acid amide hydrolase 1 FAAH1 63.3 1.14 0.305
Monoacylglycerol lipase, abhydrolase domain containing 6 ABHD6 38.3 0.69 0.031*
Monoacylglycerol lipase, abhydrolase domain containing 12 ABHD12 45.3 1.03 0.648
Monoglyceride lipase MGLL 33.5 1.00 0.956
N-acylethanolamine-hydrolyzing acid amidase NAAA 40.3 0.81 0.410

Endocannabinoid transport proteins
Fatty acid-binding protein 5 FABP5 15.1 0.85 0.495
Fatty acid-binding protein 7 FABP7 14.9 0.97 0.810
Heat shock 70 kDa protein 1 A HSPA1A 70.1 1.59 0.143
Heat shock 70 kDa protein 1-like HSPA1L 70.5 0.80 0.975
Heat shock-related 70 kDa protein 2 HSPA2 69.6 1.20 0.491
Heat shock 70 kDa protein 4 HSPA4 94.0 1.04 0.668
Heat shock 70 kDa protein 13 HSPA13 51.8 0.95 0.734
Heat shock 70 kDa protein 14 HSPA14 54.4 1.29 0.283

Regulatory protein
CB1 cannabinoid receptor-interacting protein 1 CNRIP1 18.6 1.08 0.619

aMW, molecular weight.
bExpression difference is presented as the fold change of the protein abundance in the tissues after chronic morphine treatment: fold change � protein expression level (after sustained
morphine treatment)/protein expression level (after saline treatment).
c*p < 0.05.
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The Effects of Sustained Morphine on the
Production of Endocannabinoids in the
Ventral Tegmental Area
Next, to determine the influence of sustained morphine on the
production of the endocannabinoids 2-AG and AEA, we
employed in vivo microdialysis in the VTA of awake rats after
sustained morphine administration (Figures 4A,B). Our results
found that, one day after repeated morphine treatment, the
production of 2-AG in the VTA was not significantly changed
compared to saline-treated group (Interaction: F (11, 187) � 0.72,
p � 0.71; Time: F (2.714, 46.14) � 1.60, p � 0.21; Column factor: F
(1, 17) � 0.32, p � 0.58; Subject: F (17, 187) � 31.89, p < 0.0001)
(Figure 4C; t � −120–0 min). However, considering the
possibility that sustained morphine-induced 2-AG alteration
have returned to the baseline level, we performed an
additional injection of morphine (5 mg/kg, i. p.) to both
sustained morphine-treated and saline treated rats and
determined whether the 2-AG production may be altered
compared to the baseline levels. Again, no significant
difference of 2-AG production was identified compared to
baseline levels or between two treatment groups (Figure 4C).

In addition to 2-AG, we also investigated the effects of
sustained morphine on AEA production. Similarly, no
significant difference in AEA production was observed
between repeated morphine-treated and saline treated rats
before (baseline session; t � −120–0 min) or after the
morphine challenge in both groups (morphine challenge session;
t � 0–240 min) (Interaction: F (11, 198) � 0.41, p � 0.95; Time:

F (2.045, 36.80) � 6.84, p < 0.01; Column factor: F (1, 18) � 0.02,
p � 0.88; Subject: F (18, 198) � 59.01, p < 0.0001) (Figure 4D).
Interestingly, we did identify a significant difference in AEA
production between the baseline (t � −90 to 0 min) and the
last time point of the morphine challenge session (t � 240 min)
when data from both groups (chronic-saline and -morphine)
were combined (t � −90 to 0 min vs. t � 240 min: p < 0.05)
(Figure 4D), something not seen with 2-AG levels. The
placement of all microdialysis guide cannulas was verified after
experiments (Figures 4E,F).

The Modulatory Effects of 2-AG and CB2R
on Sustained Morphine-Induced Reward
Lastly, we briefly investigated the possible roles of the proteins
and genes regulated by sustained morphine in the modulation of
opioid reward hoping to identify potential target(s) for the
treatment of opioid reward and addiction. According to the
proteomic data, we found that the expression of PLCγ2 and
ABHD6 was downregulated by repeated morphine treatment.
These two proteins are possibly implicated in the production of 2-
AG (Blankman et al., 2007; Kadamur and Ross, 2013). Although
the in vivo microdialysis showed that sustained morphine does
not modulate 2-AG level in VTA, it is still possible that 2-AG can
exert regulatory effects on sustained morphine-induced reward.
To examine this idea, we facilitated the production of endogenous
2-AG on sustained morphine-induced reward pharmacologically
using conditioned place preference assay (Figure 5A). Our results
showed that rats receiving sustained morphine exhibited a

FIGURE 2 | Verification of the effects of sustained morphine on DAGLα, MAGL and CB1R expression in the VTA. Rats were sacrificed after repeated morphine or
saline treatment, and the VTA tissues were then collected and prepared for western blot analysis. (A, C and E) Samples were analyzed for the expression of DAGLα,
MAGL, and CB1R. (B, D and F) Relative expression levels of DAGLα, MAGL, and CB1R were determined by densitometric analysis and normalized to a-tubulin (as
internal control) in each lane. No significant difference in the expression of DAGLα, MAGL, and CB1R was observed between two treatment groups. Values
represent the mean ± SEM, n � 6 per group.
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significant preference to the drug-paired chamber compared to
the saline-treated rats reflecting by both CPP difference score and
percentage of rats presenting CPP (F (5, 79) � 9.62, p < 0.0001;
Vehicle + Morphine vs. Vehicle + Saline: p < 0.0001; CPP (>50°s):
88.89 vs. 18.18%) (Figures 5B,C). Increasing endogenous 2-AG
tone by pretreatment with the selective MAGL inhibitor, MJN110
(5 mg/kg, i. p.), significantly reduced the time that animals spent
in morphine-paired chambers and the proportion of animals
showing CPP (Vehicle + Morphine vs. MJN110 + Morphine: p <
0.01; CPP (>50°s): 88.89 vs. 35.71%) (Figures 5B,C).
Interestingly, we found that the rats received MJN110 alone
showed a trend of aversion to drug-paired chamber although
no statistically significant difference was observed in the CPP
difference score compared to Vehicle-Saline group (Vehicle +
Saline vs. MJN110 + Saline: p � 0.64; CPA (<50°s): 45.45 vs.
61.54%) (Figures 5B,C).

CB2R is another member of the endocannabinoid system we
found to be regulated by repeated morphine treatment.
Previously, the activation of CB1R has been repeatedly
demonstrated to promote opioid-induced reward (Chaperon

et al., 1998; Navarro et al., 2001; Caillé and Parsons, 2003,
2006; De Vries et al., 2003; Solinas et al., 2003; Singh et al.,
2004; Rashidy-Pour et al., 2013; He et al., 2019). In the present
study, we sought to investigate if CB2R can modulate sustained
morphine-induced rewarding behaviors. We pre-treated the rats
with a selective CB2R agonist, JWH015 (3 mg/kg, i. p.), prior to
morphine or saline treatment. The results showed that the
activation of CB2Rs markedly inhibited morphine-induced
preference (Vehicle + Morphine vs. JWH015 + Morphine: p <
0.05; CPP (>50°s): 88.89 vs. 56.25%) (Figures 5B,C), while
JWH015 treatment alone did not present preference to any
chamber (Figures 5B,C).

DISCUSSION

The ECS has emerged as a hot topic in the study of opioid reward,
given the large body of evidence linking this system to the
formation and development of opioid reward, withdrawal and
addiction (Chaperon et al., 1998; Ledent et al., 1999; Navarro

FIGURE 3 | The effects of sustained morphine on the mRNA expression of PLCγ2, ABHD6, CB1Rs, and CB2Rs in the VTA. Rats were sacrificed after sustained
morphine or saline treatment, and the VTA tissues were then collected and prepared for qRT-PCR analysis. Relative mRNA expression levels of (A) PLCγ2, (B) ABHD6,
(C) CB2R, and (D) CB1R were determined by ΔΔCTmethod and normalized to β-actin mRNA level. PLCγ2 and CB2RmRNA expression was significantly decreased in
repeatedmorphine treatment, but no significant difference in ABHD6 and CB1 expression was observed between two treatment groups. *p < 0.05, ****p < 0.0001,
morphine vs. saline. Values represent the mean ± SEM, n � 6 per group.
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et al., 2001; Caillé and Parsons, 2003, 2006; De Vries et al., 2003;
Solinas et al., 2003; Singh et al., 2004; Solinas et al., 2005;
Luchicchi et al., 2010; Rashidy-Pour et al., 2013; Grenald et al.,
2017; He et al., 2019). Recent studies showing promising
synergistic effects of cannabinoids and opioids in chronic pain
treatment further stimulate the interest of using cannabinoids to
treat opioid abuse potential (Cichewicz, 2004; Tham et al., 2005;
Bushlin et al., 2010; Abrams et al., 2011; Kazantzis et al., 2016;
Grenald et al., 2017). However, very few studies have investigated
the possible changes of ECS in the VTA - a key brain region
mediating reward, in the presence of opioids, and no study has
provided a comprehensive proteomic analysis of VTA following
repeated opioid administration.

In the present studies using unbiased global proteomic
analysis, we identified the expression of 31 proteins that
belong to five different categories of the endogenous
cannabinoid system in the VTA. Two proteins, PLCγ2, and

ABHD6, were significantly downregulated by repeated
morphine treatment. PLCγ2 is an enzyme belonging to the
phospholipase C family that selectively hydrolyzes
phosphatidylinositol 4, 5-biphosphate and generates
diacylglycerol (DAG) (Kadamur and Ross, 2013). As DAG is
the precursor of 2-AG, this downregulation of PLCγ2 may
directly reduce the levels of 2-AG in the VTA. It is also
possible that this decreased PLCγ2 expression may be a
mechanism by which opioids modulate growth factor
receptor-mediated synaptic regulation. Indeed, PLCγ2 is
primarily activated by tyrosine protein kinases, such as growth
factor receptors (Kadamur and Ross, 2013). ABHD6 is a newly
identified member of the endocannabinoid system and
contributes to approximate 4% of 2-AG hydrolysis measured
in the whole mouse brain (Blankman et al., 2007), yet the ABHD6
activity is even higher than MAGL in select brain regions
including select areas of the cortex, hippocampus, striatum

FIGURE 4 | The effects of sustained morphine on the production of 2-AG and AEA in the VTA. In vivomicrodialysis was performed on rats one day after repeated
morphine treatment to determine the alterations of endocannabinoids in VTA. Microdialysis samples were collected every 30 min for a total of 6 h. After the first 2 h
baseline (t � −120–0 min), all rats received an additional injection of morphine and the changes in the production of endocannabinoids was observed for the next 4 h (t �
0–240 min). (A) Experimental design for in vivo microdialysis of endocannabinoids. (B) Representative brain section of microdialysis guide cannula/probe
implantation. (C, D) no significant difference in the production of either 2-AG or AEA was observed between treatment groups at baseline session or in the morphine
challenge session. However, a significant time effect in AEA production was observed between the baseline period and the last time point of the morphine challenge
session (t � 240 min). (E, F) Anatomical representatives of microdialysis guide cannula placements in VTA for the studies of 2-AG and AEA. #p < 0.05, t � 240 min vs.
baseline (t � −90 to 0 min). Values represent the mean ± SEM, n � 9–10 per group.
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and cerebellum (Baggelaar et al., 2017). Previous evidence
suggests that ABHD6 controls the long-term synaptic
depression in the central nervous system mediated via the 2-
AG/CB1R axis or an endocannabinoid-independent AMPA
receptor pathway (Marrs et al., 2010; Wei et al., 2016; Cao
et al., 2019). The downregulation of ABHD6 expression
following sustained morphine exposure may be a mechanism
underlying opioid-mediated long-term synaptic depression and
participate in opioid reward. Interestingly, our qPCR result
showed that the expression of ABHD6 was not altered at the
mRNA level, suggesting its downregulation detected by the
proteomics is not at the transcription level. CB2R is a critical
member of the endogenous cannabinoid system but is barely
detected by current mass spectrometry-based techniques due to
its low expression level (Marchalant et al., 2014). Our qRT-PCR
experiments found that CB2R was significantly decreased by
repeated morphine treatment. This downregulation of CB2R
may be involved in a regulatory process of sustained morphine
in the facilitation of the rewarding behavior (Xi et al., 2011;
Navarrete et al., 2013; Ortega-Álvaro et al., 2015; Grenald et al.,
2017). Overall, these studies suggest that sustained opioids exert
regulatory effects on the VTA endogenous cannabinoid system.

Interestingly, our proteomic analysis indicates the
endopeptidase inhibitors, particularly serine-type
endopeptidase inhibitors, including α-1-macroglobulin, was the

most significantly affected protein due to repeated morphine with
over a 9-fold decrease. Considering the essential roles of these
endopeptidase inhibitors in the regulation of synaptic plasticity
and inflammation (Falkenberg et al., 1995; Almonte and Sweatt,
2011; Wang and Sama, 2012; Wake et al., 2016; Krause et al.,
2019; Zhang et al., 2020), the modulation of these proteins by
repeated morphine treatment may implicate novel regulatory
mechanisms of opioids in the mediation of reward and
addiction. It is worth mentioning that 18 out of the 45
upregulated proteins in our proteomic analysis were found to
possess cleavage sites recognized by serine-type endopeptidases
(Predicted by a peptidase database MEROPS (Rawlings et al.,
2018); (Supplementary Table S4), suggesting the upregulation of
these proteins may be attributed to the reduction of those
endopeptidase inhibitors. As some of these upregulated
proteins participate in the regulation of protein translation
(Supplementary Table S4) this may indicate a novel pathway
that opioids control different biological processes.

We also examined the modulatory effects of sustained
morphine on the VTA levels of endocannabinoids, 2-AG and
AEA. Our results exhibited that sustained morphine did not alter
the production of either 2-AG or AEA in the VTA. These results
are consistent with the unaltered protein expression of the major
regulators of endocannabinoid production or degradation, such
as DAGLα, MAGL, NAPE-PLD, and FAAH, and this lack of

FIGURE 5 | The effects of systemic MJN110 and JWH015 on the sustained morphine-induced conditioned place preference. Conditioned place preference was
employed to investigate the modulatory effects of a selective MAGL inhibitor, MJN110, and a selective CB2R agonist, JWH015, on sustainedmorphine-induced reward.
(A) Experimental design of conditioned place preference assay. After baseline testing to establish approximate equal times in the two end chambers, rats were paired
with a treatment and one of the end chambers for 5°days. Their chamber preference (access to all chambers) was tested on day 8 with no treatment administered.
(B) Rats that received sustained morphine presented a strong preference toward the drug-paired chamber but not saline-treated rats. MJN110 significantly suppressed
morphine-induced preference. MJN110may produce aversive effect on rats but no statistic difference was observed compared to the results from vehicle-saline-treated
rats. JWH015 attenuated morphine-induced preference but did not alter the preference in saline-treated rats. (C) Pie plots showing the percentages of rats exhibiting
conditioned place preference, aversion or no preference. CPP (red): Animals presenting remarked conditioned place preference (CPP difference score >50°s); CPA
(blue): Animals presenting remarked conditioned place aversion (CPP difference score < −50°s); Neutral (white), Animals presenting no remarked preference or aversion
(CPP difference score between −50 and 50°s). or *p < 0.05, **p < 0.01, ****p < 0.0001. Values represent the mean ± SEM, n � 11–18 per group.
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alteration is not affected by the time of the last morphine injection.
In contrast, previous studies showed that sustained opioid changes
the production of these endocannabinoids in several brain regions
associated with reward process (i.e., striatum) although the extent
and direction may vary (González et al., 2003; Viganò et al., 2003;
Viganò et al., 2004; Caillé et al., 2007). Currently, we do not know
the actual reasons why endocannabinoids are regulated differently
among distinct brain regions, yet previous studies show that the
changes of endocannabinoid production are not universal in all
tested brain regions (González et al., 2003; Viganò et al., 2003;
Viganò et al., 2004). Furthermore, the pattern of the drug
administration may also play a role here as a substantial
difference of the neurochemical, proteomic and genomic effects
were observed when drugs were applied noncontingently or by
free-choice self-administration (Jacobs et al., 2003). When
sustained morphine was applied via daily injection (non-
contingent), the AEA level in the NAc shell was not altered
while self-administration (contingent) of heroin significantly
increased AEA production (Viganò et al., 2004; Caillé et al.,
2007). Lastly, different dosages and duration of opioid
treatment may also influence the results. Interestingly, our study
found that a single dose of morphine just prior to VTA-
microdialysis collection significantly reduced AEA production in
both sustained morphine- and saline-treated rats, suggesting that
opioids may induce an acute regulation of AEA production in the
VTA. The actual significance for this phenomenon is unclear and
no other study has reported this result. Considering the relative
higher affinity of AEA to CB1Rs than to CB2Rs as well as the
facilitatory effect of CB1Rs on opioid-induced CPP, this reduction
of AEA after morphine treatment may reflect a negative feedback
mechanism in opioid reward. However, it is also possible that this
reduction of AEA could be a result of handling stress on animals
and/or a depletion of AEA after a 240 min period of collection. This
did not occur for 2-AG levels suggesting less evidence for stress
handling of animals, yet the regulation of the endogenous
cannabinoids may be under different stress controls and cannot
be ruled out. Further experiments analyzing the AEA alteration in
acute saline-treated rats will address this question.

Although 2-AG does not seem to be modulated by sustained
morphine, we found that modulating 2-AG production can
regulate sustained morphine-induced reward. Our study
identified that enhancing systemic 2-AG tone by a selective
MAGL inhibitor, MJN110, significantly attenuated morphine-
induced preference, suggesting an inhibitory effect of 2-AG on
the rewarding behavior of morphine. Interestingly, we also found
that activation of CB2Rs with a selective CB2R agonist, JWH015,
significantly decreased sustained morphine-induced reward,
suggestive of an opposite role of CB2Rs in opioid reward
compared to CB1Rs. This result also suggests that the
inhibitory effect of 2-AG on opioid reward is possibly
mediated via CB2R rather than CB1R that promotes the
opioid-induced rewarding behaviors. The functional difference
of CB1R and CB2R in opioid reward may be caused by their
distinct localization in the VTA. Previous studies found that
CB1Rs are abundantly expressed on synaptic terminals targeting
dopaminergic neurons in the VTA, indicating that CB1Rs serve
as an autoreceptor and disinhibit GABAergic suppression of

dopaminergic neuron activity (Fitzgerald et al., 2012; Van
Bockstaele, 2012; Rashidy-Pour et al., 2013). In contrast,
CB2Rs are primarily located on postsynaptic dopaminergic
neurons, suggesting an inhibitory role of this receptor in
reward process. Although no study has directly demonstrated
this idea in opioid reward, this seems to be true in cocaine-
induced reward (Zhang et al., 2014; Zhang et al., 2017). Further
studies that directly modulating the CB2Rs expressed on the VTA
dopaminergic neurons will provide the answer.

The endogenous cannabinoid and opioid systems are two critical
neuromodulatory systems, which share similar pharmacological
features, including the downstream signaling of µ-opioid receptors
(MORs) andCB1Rs and behavioral outcomes (analgesia, sedation and
reward) (Wenzel and Cheer, 2018). Recent evidence shows that these
two systems are functionally interacted in the modulation of reward
and addiction. Δ9-Tetrahydrocannabinol (THC)-induced CPP is
eliminated in MOR-knockout mice (Ghozland et al., 2002) and
THC self-administration is attenuated by opioid receptor
antagonist naloxone (Braida et al., 2001; Justinova et al., 2004).
Reciprocally, genetic depletion of CB1Rs or the application of
CB1R antagonist rimonabant blocks opioid-induced CPP and self-
administration (Ledent et al., 1999; Martin et al., 2000; Cossu et al.,
2001; Navarro et al., 2001; Navarro et al., 2004; Caillé and Parsons,
2006). Currently, the underlying mechanisms of the functional
interactions between the two systems remains to be elucidated, but
the interactions between MOR and CB1R may be an explanation
(Wenzel and Cheer, 2018). Indeed, these two receptors are both
expressed on the GABAergic terminals in the VTA (Mátyás et al.,
2008; Kudo et al., 2014), and the blockade of either receptor
significantly decreases drug-induced dopamine release in the NAc
(Chen et al., 1990; Tanda et al., 1997;Mascia et al., 1999). Importantly,
Schoffelmeer et al. reported that MOR and CB1R may form
heterodimers in the NAc and can cause synergistic suppression of
GABA release, providing the possibility that the MOR and CB1R in
the VTA may follow a similar pattern although additional in vivo
studies are necessary to demonstrate if this is the case in the VTA
(Schoffelmeer et al., 2006). Our present study provided evidence
suggesting additional components of the endocannabinoid system
may also involve in the functional interactions between the
endogenous cannabinoid and opioid systems. However, more
specific data using genetically modified animals are required to
confirm this thought.

Overall, our current study provides a better picture of the
ECS-related proteins expressed in the VTA and identified the
expression of several proteins/genes (i.e., PLCγ2, ABHD6, and
CB2R) were reduced after systemic sustained morphine
exposure. We also evaluated the VTA levels of 2-AG and
AEA; finding that AEA was reduced after acute exposure to
morphine. These studies, for the first time, offer a
comprehensive picture of the alterations of the VTA
endocannabinoid system following sustained morphine
exposure in male rats, providing several uncharacterized
targets that may play a role in the regulation of opioid
reward and addiction. Similar studies are ongoing in females
to determine whether there are sex differences in the ECS after
repeated morphine. It is also necessary to mention that systemic
administration of morphine was performed in this study to
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mimic the route of administration and repeated use of opioids in
humans (Ballantyne and Mao, 2003; Surratt et al., 2011; Volkow
andMcLellan, 2016) with the understanding that alterations in the
ECS in the VTA may be direct or indirect. Lastly, our study
identified the possibility that broad manipulation of the
endocannabinoid system may mitigate opioid abuse potential
directly addressing the ongoing opioid epidemic.
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