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Abstract

Introduction

Vaccination programs aim to control the COVID-19 pandemic. However, the relative

impacts of vaccine coverage, effectiveness, and capacity in the context of nonpharmaceuti-

cal interventions such as mask use and physical distancing on the spread of SARS-CoV-2

are unclear. Our objective was to examine the impact of vaccination on the control of SARS-

CoV-2 using our previously developed agent-based simulation model.

Methods

We applied our agent-based model to replicate COVID-19-related events in 1) Dane

County, Wisconsin; 2) Milwaukee metropolitan area, Wisconsin; 3) New York City (NYC).

We evaluated the impact of vaccination considering the proportion of the population vacci-

nated, probability that a vaccinated individual gains immunity, vaccination capacity, and

adherence to nonpharmaceutical interventions. We estimated the timing of pandemic con-

trol, defined as the date after which only a small number of new cases occur.

Results

The timing of pandemic control depends highly on vaccination coverage, effectiveness, and

adherence to nonpharmaceutical interventions. In Dane County and Milwaukee, if 50% of

the population is vaccinated with a daily vaccination capacity of 0.25% of the population,

vaccine effectiveness of 90%, and the adherence to nonpharmaceutical interventions is

60%, controlled spread could be achieved by June 2021 versus October 2021 in Dane

County and November 2021 in Milwaukee without vaccine.
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Discussion

In controlling the spread of SARS-CoV-2, the impact of vaccination varies widely depending

not only on effectiveness and coverage, but also concurrent adherence to nonpharmaceuti-

cal interventions.

Introduction

With over 32 million cases in the US alone, poorly controlled transmission of SARS-CoV-2

has challenged the capacity of health systems and has resulted in over 580,000 deaths [1]. Until

recently, the only effective measures for controlling the spread of SARS-CoV-2 have been non-

pharmaceutical interventions (NPIs), such as physical distancing and masking. Sustained

adherence to these NPIs is variable and difficult to achieve [2].

The US Food and Drug Administration authorized the use of two, two-dose vaccines and

one, single-dose vaccine against SARS-CoV-2 of similarly high efficacy to prevent symptoms

of novel coronavirus disease (COVID-19) and hospitalization [3, 4]. As of May 12, 2021, 36%

of the US population has been fully vaccinated [1]. However, if and when widespread use of

these vaccines will result in sustained control of the pandemic remains unclear given the speed

of vaccine roll out and societal factors such vaccine hesitancy and suboptimal adherence to

NPIs. Moreover, there is a need to examine these factors at a regional level given the rolling

nature of the pandemic and COVID-19 hot spots around the country.

The objective of this study was to use our previously developed COVID-19 agent-based

simulation model [2], to examine the impact of vaccine coverage and effectiveness, vaccination

capacity, and adherence to NPIs on SARS-CoV-2 burden, as well as to predict how these fac-

tors influence control of virus spread in urban communities in the US.

Methods

This study used only publicly available de-identified data. We previously developed the

COVID-19 Agent-based simulation Model (COVAM) [2] to represent the interactions among

people that may lead to transmission of SARS-CoV-2 in three urban regions in the US: Dane

County in Wisconsin, the Milwaukee metro area in Wisconsin, and New York City (NYC).

Briefly, COVAM works as follows: individuals who belong to one of eight possible states repre-

senting an individual’s COVID-19-related status (S1 Fig in S1 Data) interact with each other

through which SARS-CoV-2 is transmitted. The number of such close interactions in a given

day is estimated separately for different regions considering population densities using data

from social network literature and calibration [5, 6]. For each of these daily interactions, there is

a possibility that a contagious individual exposes another individual to SARS-CoV-2. The num-

ber of daily contacts differs by age group, with older individuals less likely to have such interac-

tions as compared to younger individuals. COVAM considers the possibility that not all

individuals infected with SARS-CoV-2 will be tested positive and reported. Moreover, COVAM

considers the possibility that some asymptomatic individuals transmit the disease prior to show-

ing symptoms. COVAM also assumes that individuals who are experienced a previous COVID-

19 infection gain protective immunity for future infections. The basic reproduction number

(R0) corresponding to the unmitigated base-case transmission dynamics was 3.34 for Dane

County and Milwaukee and 6.68 for NYC due to a large number of daily contacts.

A unique feature of COVAM is its ability to represent varying levels of adherence of the

local communities to NPIs implemented in different regions. COVAM uses cell-phone
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mobility data and calibration to estimate a time-dependent adherence to NPIs and implements

it explicitly by adjusting the number of contacts per person each day [7–9]. For instance, a

70% adherence level to NPIs in Dane County and Milwaukee is implemented by simply reduc-

ing the number of daily contacts from 10 per day to 3 per day per person, which slows the

transmission of SARS-CoV-2. COVAM uses adherence to NPIs to model several distinct

behaviors to mitigate transmission, including mask wearing and reduced number of interac-

tions where individuals do not maintain a 6-feet distance during person-to-person interac-

tions, and estimate future burden of COVID-19. COVAM has the ability to represent age-

specific adherence to NPIs. Similarly, COVAM allows individuals to show dynamic behavior

and have varying levels of adherence to NPIs over time.

COVAM was calibrated using historical pandemic data from the three urban regions and

validated in the short term with data that were not used in model development. COVAM is

programmed using C++ programming language for flexibility and quicker computational

times. All experiments in this study are conducted in personal computers. Additional details

are available in Alagoz et al. [2] and in the Supplement.

COVAM updates

We made two extensions to COVAM to answer the research questions of this study. The origi-

nal version of COVAM used a fixed level of adherence to NPIs for future projections. How-

ever, cell-phone-based data and several studies have shown that the response of local

communities to NPIs changed over time; therefore, the assumption of a fixed adherence level

may not be realistic [7–10]. Specifically, even in the absence of seasonal changes, the observed

number of cases and deaths impacted how local communities followed NPIs [10–12]. To this

end, we added a dynamic adherence scenario in which we defined two thresholds that trigger

high or low adherence to NPIs. Namely, if the number of daily new cases exceeds a high

threshold, then the NPI adherence level increases significantly from observed levels. Similarly,

if the number of daily new cases drops below a low threshold, then the adherence level drops

significantly.

The second extension was the incorporation of vaccination into COVAM. We assumed

that some individuals undergo vaccination and as a result may gain protective immunity and

become non-susceptible after vaccination representing the vaccine effectiveness rate. We

assumed that individuals who gain protective immunity after vaccination cannot get infected

with COVID-19 and do not transmit the disease to others. We also considered that only a pro-

portion of the population agrees to be vaccinated, and there is a daily capacity for vaccination

as a function of the proportion of the population in the community. We also allowed vacci-

nated individuals (whether they are immunized or not) to have a lower adherence to NPIs. We

did not explicitly model the timeline between first and second doses for the two-dose vaccines.

Instead, we assumed that immunization is developed 14 days after the second dose of the vac-

cine is administered for the two-dose vaccines.

Finally, we calibrated COVAM to the latest data on the reported number of confirmed

cases in Dane County, Milwaukee, and NYC using case counts by January 5, 2021, January 5,

2021, and January 14, 2021, respectively and compared COVAM’s predictions against data

until February 1, 2021.

Vaccination scenarios

In all runs, we assumed that vaccination started on January 5, 2021, as the first vaccine was

administered on December 14, 2020 in the US [13]. We used COVAM to evaluate the impact

of different aspects of vaccination and NPI adherence using the model inputs as presented in
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Table 1. We used observed adherence levels until February 1, 2021 and assumed that adher-

ence levels after this date are maintained afterwards. The adherence scenarios in Table 1 are

based on the new cases and the adherence levels observed in these regions since the beginning

of the pandemic (S1 Table in S1 Data).

We ran 100 replications for each experiment to obtain stable estimates and report only

mean values due to very low standard errors. Unless noted otherwise, we reported the cumula-

tive number of confirmed cases associated with each scenario on December 31, 2021.

Our base case scenario assumed that vaccination starts on January 5, 2021; daily vaccination

capacity is 0.25% of the population per day (i.e., 1,350 people/day in Dane County, 4,065 peo-

ple/day in Milwaukee, and 21,680 people/day in NYC); there is a 20% drop in adherence

among vaccinated individuals; vaccine effectiveness is 90%; vaccination coverage is 50%; and

the baseline test rate is 75%.

Controllable spread date analysis

Using the implied R0 values for infectious disease models, the herd immunity is theoretically

achieved when 70%, 70%, and 85% of the population gains immunization through recovery

from COVID-19 or vaccination in Dane County, Milwaukee, and NYC, respectively. However,

these herd immunity levels assume that NPIs, including face mask use, are no longer adopted.

Therefore, we investigated whether vaccination, along with NPIs, will mitigate the pandemic

to a level such that that it will become controllable. For this purpose, we defined a controllable
spread date as the date after which the number of daily new confirmed cases never exceeds 20

for Dane County, 60 for Milwaukee, and 320 for NYC. For example, if the daily number of

new cases never exceeds 20 for Dane County after June 15, 2021, the controllable spread date

is set to June 15, 2021. We selected these daily numbers of confirmed cases based on data from

Dane County that employs 180 contact tracers to trace COVID-19 cases; therefore, 20 new

cases per day would make it feasible to conduct aggressive and efficient contact tracing to

completely control the disease in Dane County [14]. For the other regions, we scaled up the

number considering population size.

Table 1. Description of vaccination scenarios.

Parameter Description Values

Vaccine effectiveness Proportion of the individuals who gain protective

immunity after vaccination

50%, 75%, 90%

Vaccine coverage Proportion of the population receiving full dose of

the vaccines

25%, 50%, 60%, 75%, 100%

Daily vaccination capacity Proportion of the population that are vaccinated

on a given day

0.05%, 0.1%, 0.25%, 0.5%

Adherence to nonpharmaceutical interventions

after February 1, 2021 under fixed adherence

scenario

Proportion of the population following

nonpharmaceutical interventions under the fixed

adherence scenario

Dane County: 75%, 70%, 65%, 60% Milwaukee: 75%, 70%, 65%,

60% NYC: 90%, 85%, 80%, 75%

Adherence to nonpharmaceutical interventions

in the future under fixed adherence scenario

Proportion of the population following

nonpharmaceutical interventions under the

dynamic adherence scenario

Dane County: If the number of new confirmed cases in a day is

�50, adherence drops to 60%, if it is >50, then adherence

increases to 75% Milwaukee: If the number of new confirmed

cases in a day is�150, adherence drops to 60%, if it is >150,

then adherence increases to 75% NYC: If the number of new

confirmed cases in a day is�250, adherence drops to 75%, if it is

>50, then adherence increases to 90%

Drop in adherence to nonpharmaceutical

interventions among vaccinated individuals

Vaccinated individuals may be less likely to follow

nonpharmaceutical interventions

20%, 0%

https://doi.org/10.1371/journal.pone.0254456.t001
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Sensitivity analysis

We conducted a parametric sensitivity analysis in which we tested the impact of uncertainty in

two input parameters: drop in adherence to NPIs after vaccination, where the drop in adher-

ence was assumed to be 0% as opposed to 20% in the base case, and baseline test rate, where

the probability of testing in earlier days of the pandemic was assumed to be 50% as opposed to

75% in the base case. We also conducted a structural sensitivity analysis in which we assumed

that vaccination reduces the risk of infection instead of leading to complete immunity. That is,

a 90% vaccine effectiveness scenario reduces the risk of getting infected among all vaccinated

individuals by 90% but does not lead to complete immunity.

Results

COVAM accurately predicted the reported number of cases in each urban area in the short

term (S2 Fig in S1 Data). We first reported the number of confirmed cases over time for dif-

ferent vaccine coverage and adherence to NPI scenarios when vaccine effectiveness is 90% and

daily vaccination capacity is 0.25% (Fig 1). We found that the total number of confirmed cases

was not sensitive to the vaccination coverage in any of the regions as long as communities

keep a high level of adherence to NPIs. In general, the dynamic adherence scenario has led to

later controllable spread dates compared to those under fixed adherence scenarios for both

vaccination and no vaccination cases.

Fig 2 and Table 2 show how adherence to NPIs change the effect of vaccination on the

cumulative number of cases. Assuming vaccine effectiveness is 90%, vaccine coverage is 50%,

and daily vaccination capacity is 0.25%, we found that the level of adherence to NPIs had a

major impact on the cumulative number of cases (Fig 2 and Table 2), as well as the controlla-

ble spread date. When the level of NPI adherence is very high (75% for Dane County and Mil-

waukee; 90% for NYC), the effect of vaccination on the controllable spread date and number

of cumulative cases was minimal compared to no vaccination. When the NPI adherence rates

are equal to 70% for Dane County and Milwaukee, and 85% for NYC, vaccination reduced the

Fig 1. Impact of vaccine coverage on the number of confirmed cases in different regions for two different scenarios of adherence to nonpharmaceutical

interventions (NPIs).

https://doi.org/10.1371/journal.pone.0254456.g001
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number of confirmed cumulative cases from 51,784, 185,343, and 1,110,070 to 43,326, 165,679,

and 784,137implying an 16%, 11%, and 29% rate of reduction in the number of confirmed

cases for Dane, Milwaukee, and NYC, respectively, and reduced the time to controllable spread

by 2–3 months in all three regions (Table 2, 0.25% vaccination capacity).

The reduction in the number of cases due to vaccination was higher in Dane County com-

pared to Milwaukee. The proportion of cumulative confirmed cases in the population in Dane

County and Milwaukee as of January 31, 2021 were 7% and 10%, respectively [15]. COVAM

considers the possibility that the actual number of cases is higher than the confirmed number

of cases due to some patients experiencing very mild disease and the limited testing. As such,

COVAM estimated that the proportion of cumulative confirmed and unreported cases in the

population in Dane County and Milwaukee as of January 31, 2021 was 8% and 11%, respec-

tively. Therefore, the prevalence of SARS-CoV-2 was higher in Milwaukee compared to Dane

County during the vaccination period.

Table 2 also shows that maintaining a high level of adherence to NPIs under the same vac-

cination scenario reduces the number of confirmed cases and results in a significantly earlier

date of controllable spread compared to lower NPI adherence in all three regions. For example,

in Dane County, a 60% level of NPI adherence after February 1, 2021 led to 53,232 cases with

vaccination and a controllable spread date of June 15, 2021 versus a 70% level of NPI adher-

ence, which led to a total of 43,326 cases and a controllable spread date of March 29, 2021.

We also found that daily vaccination capacity had a differential effect on the number of cases

and the date on which controllable spread is achieved (Table 2). In particular, under the

dynamic adherence scenario, vaccination at 0.5% instead of 0.05% of the population per day

reduced the number of confirmed cases from 72,062, 250,540, and 1,273,560 to 42,468, 163,134,

and 688,177 implying a 41%, 35%, and 46% reduction in Dane County, Milwaukee, and NYC,

respectively, and reduced the time to controllable spread by 12, 10, and 16 months, respectively.

Table 3 shows that the effectiveness of vaccination does not have a major impact on the

date when controllable spread is achieved, whereas it reduces the number of confirmed cases

greatly. Parametric and structural sensitivity analyses recapitulated the overall trends observed

in the base-case runs (S3-S10 Figs in S1 Data and S3-S8 Tables in S1 Data).

Fig 2. Impact of vaccination and adherence to nonpharmaceutical interventions (NPIs) on the number of cases over time.

https://doi.org/10.1371/journal.pone.0254456.g002
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Discussion

In this simulation study, we estimated the impact of vaccination on the number of COVID-19

cases in three urban communities using agent-based simulation modeling. We found that con-

trollable spread of SARS-CoV-2 can be achieved sooner than when a large proportion of the

population is vaccinated (e.g., 70–80%) as long as there is high adherence to NPIs in the com-

munity. We further found that vaccination would reduce the number of COVID-19 cases

Table 2. Controllable spread date and number of cases on December 31, 2021 for different daily vaccination capacity and adherence to nonpharmaceutical inter-

ventions (NPI) scenarios (vaccine effectiveness 90%, vaccine coverage 50%).

Dane County

75% Adherence 70% Adherence 65% Adherence 60% Adherence Dynamic Adherence

Vaccination

capacity

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

No Vaccine 27-Mar-

2021

43,932 18-Jul-

2021

51,784 17-Mar-

2022

111,014 29-Oct-

2021

200,642 After June

2022

79,285

0.05% 22-Mar-

2021

43,210 (2%) 26-May-

2021

47,977 (7%) 18-Oct-

2021

73,339 (34%) 13-Oct-

2021

149,440

(25%)

17-Mar-

2022

72,062 (9%)

0.1% 18-Mar-

2021

42,684 (3%) 1-May-

2021

46,063 (11%) 1-Aug-

2021

59,141 (47%) 15-Sep-

2021

108,001

(46%)

24-Oct-2021 63,856 (19%)

0.25% 12-Mar-

2021

42,136 (4%) 29-Mar-

2021

43,326 (16%) 2-May-

2021

45,999 (59%) 15-Jun-

2021

53,232 (73%) 29-May-

2021

46,479 (41%)

0.5% 26-Feb-

2021

40,698 (7%) 9-Mar-

2021

41,477 (20%) 25-Mar-

2021

42,819 (61%) 13-Apr-

2021

45,326 (77%) 29-Mar-

2021

42,468 (46%)

Milwaukee

75% Adherence 70% Adherence 65% Adherence 60% Adherence Dynamic Adherence

Vaccination

capacity

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

No Vaccine 23-Mar-

2021

167,626 12-Jun-

2021

185,343 26-Mar-

2022

309,809 18-Nov-

2021

567,311 After June

2022

271,692

0.05% 18-Mar-

2021

165,670 (1%) 7-May-

2021

177,118 (4%) 17-Sep-

2021

229,519

(26%)

20-Oct-

2021

416,404

(27%)

27-Jan-2022 250,540 (8%)

0.1% 14-Mar-

2021

164,208 (2%) 19-Apr-

2021

172,592 (7%) 13-Jul-

2021

201,369

(35%)

8-Sep-2021 309,676

(45%)

30-Sep-2021 211,145

(22%)

0.25% 6-Mar-

2021

161,278 (4%) 26-Mar-

2021

165,679

(11%)

27-Apr-

2021

175,355

(43%)

5-Jun-2021 200,362

(65%)

16-May-

2021

173,188

(36%)

0.5% 25-Feb-

2021

158,520 (5%) 7-Mar-

2021

160,586

(13%)

21-Mar-

2021

164,078

(47%)

7-Apr-

2021

170,184

(70%)

25-Mar-

2021

163,134

(40%)

NYC

90% Adherence 85% Adherence 80% Adherence 75% Adherence Dynamic Adherence

Vaccination

capacity

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

No Vaccine 22-Mar-

2021

699,352 27-Aug-

2021

1,110,070 4-Sep-2021 3,307,090 21-Jun-

2021

4,999,100 After June

2022

1,308,990

0.05% 19-Mar-

2021

686,109 (2%) 28-Jun-

2021

986,660

(11%)

19-Aug-

2021

2,758,440

(17%)

20-Jun-

2021

4,555,280

(9%)

After June

2022

1,273,560

(3%)

0.1% 17-Mar-

2021

674,414 (4%) 30-May-

2021

909,823

(18%)

3-Aug-

2021

2,278,760

(31%)

18-Jun-

2021

4,106,650

(18%)

8-Feb-2022 1,186,840

(9%)

0.25% 10-Mar-

2021

647,188 (7%) 22-Apr-

2021

784,137

(29%)

14-Jun-

2021

1,379,770

(58%)

10-Jun-

2021

2,808,280

(44%)

24-Jul-2021 862,981

(34%)

0.5% 3-Mar-

2021

615,486

(12%)

27-Mar-

2021

685,342

(38%)

28-Apr-

2021

881,193

(73%)

3-Jun-2021 1,426,150

(71%)

11-May-

2021

688,177

(47%)

Numbers in parentheses represent percent reduction relative to no vaccine.

https://doi.org/10.1371/journal.pone.0254456.t002
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significantly, but the rate of reduction in the number of cases differs among regions. Finally,

we found that the level of adherence to NPIs has a major impact on the number of cases, as

well as the date that controllable spread is achieved regardless of vaccine capacity, vaccine

effectiveness, or region. In NYC, vaccination would reduce the number of cases from

3,307,090to 1,379,770, or by 58%, when the adherence to NPIs is fixed at 80%. Under the same

scenario, controllable spread would be achieved in June 2021 as opposed to September 2021

without vaccination.

Although the disease spread rate (i.e., R0 value) was identical for Dane County and Milwau-

kee, the impact of vaccination on the number of cases and timing of controllable spread was

more pronounced in Dane County compared to Milwaukee. Of note, according to the

COVAM model, 8% of the Dane County population was infected as of January 31, 2021

Table 3. Controllable spread date and number of cases on December 31, 2021 for different vaccination effectiveness scenarios (vaccine coverage 50%, vaccination

capacity 0.25%).

Dane County

75% Adherence 70% Adherence 65% Adherence 60% Adherence Dynamic Adherence

Vaccine

effectiveness

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

No Vaccine 27-Mar-

2021

43,932 18-Jul-

2021

51,784 17-Mar-

2022

111,014 29-Oct-

2021

200,642 After June

2022

79,285

50% 15-Feb-

2021

39,421 (10%) 21-Feb-

2021

39,835 (23%) 5-Mar-

2021

40,620 (63%) 8-Apr-

2021

42,721 (79%) 31-Mar-

2021

42,166 (47%)

75% 9-Feb-2021 38,632 (12%) 11-Feb-

2021

38,808 (25%) 15-Feb-

2021

39,070 (65%) 21-Feb-

2021

39,540 (80%) 20-Feb-2021 39,486 (50%)

90% 5-Feb-2021 38,267 (13%) 7-Feb-2021 38,373 (26%) 9-Feb-2021 38,519 (65%) 11-Feb-

2021

38,742 (81%) 10-Feb-2021 38,719 (51%)

Milwaukee

75% Adherence 70% Adherence 65% Adherence 60% Adherence Dynamic Adherence

Vaccine

effectiveness

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

No Vaccine 23-Mar-

2021

167,626 12-Jun-

2021

185,343 26-Mar-

2022

309,809 18-Nov-

2021

567,311 After June

2022

271,692

50% 15-Feb-

2021

154,616 (8%) 20-Feb-

2021

155,814

(16%)

2-Mar-

2021

157,883

(49%)

27-Mar-

2021

162,635

(71%)

18-Mar-

2021

161,193

(41%)

75% 8-Feb-2021 152,299 (9%) 11-Feb-

2021

152,783

(18%)

14-Feb-

2021

153,531

(50%)

20-Feb-

2021

154,751

(73%)

19-Feb-2021 154,613

(43%)

90% 5-Feb-2021 151,177

(10%)

7-Feb-2021 151,484

(18%)

8-Feb-2021 151,883

(51%)

10-Feb-

2021

152,469

(73%)

10-Feb-2021 152,403

(44%)

NYC

90% Adherence 85% Adherence 80% Adherence 75% Adherence Dynamic Adherence

Vaccine

effectiveness

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

Date Number of

cases

No Vaccine 22-Mar-

2021

699,352 27-Aug-

2021

1,110,070 4-Sep-2021 3,307,090 21-Jun-

2021

4,999,100 After June

2022

1,308,990

50% 23-Feb-

2021

558,007

(20%)

15-Mar-

2021

592,532

(47%)

7-Jun-2021 723,988

(78%)

17-Dec-

2021

1,542,430

(69%)

18-Sep-2022 1,150,020

(12%)

75% 17-Feb-

2021

527,610

(25%)

28-Feb-

2021

542,527

(51%)

26-Mar-

2021

578,939

(82%)

24-Jul-

2021

718,146

(86%)

19-Jun-2021 627,447

(52%)

90% 14-Feb-

2021

513,007

(27%)

21-Feb-

2021

521,935

(53%)

6-Mar-

2021

539,888

(84%)

16-Apr-

2021

588,561

(88%)

22-Mar-

2021

557,833

(57%)

Numbers in parentheses represent percent reduction in the number of cases relative to no vaccine.

https://doi.org/10.1371/journal.pone.0254456.t003
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compared to 11% of the Milwaukee population. Thus, our results imply that vaccination may

have a larger impact when the history of COVID-19 infections is lower to start with. Based on

this, we suggest to benefit most from vaccination, regions need to keep a high level of adher-

ence to NPIs to keep caseload low, a similar finding as reported in a prior modeling study [16].

Relying on vaccination alone to control the spread of COVID-19 over the coming months

may delay the timing of controllable disease by several months, and this has important impli-

cations for the timing of lifting policies for NPIs that are currently in place.

Mainstream media, as well as prior modeling efforts, have focused on the endpoint of herd

immunity–the point at which disease transmission is halted and life can “return to normal”

from the standpoint of NPIs [17, 18]. While reaching herd immunity is the ultimate goal of a

vaccination campaign, we chose to focus on an intermediate metric: controlled spread while

continuing reasonable public health precautions. Our results highlight the importance of con-

tinued adherence to NPIs during vaccine rollout. As the vaccine is being delivered, our results

suggest that vaccine effectiveness in reducing viral spread is highly dependent on NPIs. If NPI

efforts are sustained at current levels during the rollout, then even low levels of vaccine uptake

will be able to control viral spread. On the other hand, if vaccine rollout is paired with NPI eas-

ing, a higher proportion of the population will need vaccination to stop the accumulation of

new cases.

Our findings are consistent with those from a few other modeling studies that report reach-

ing herd immunity depends on high adherence to NPIs during vaccination rollout [16, 19].

The impact of even highly effective vaccines may be diminished if deployed into a population

with high viral transmission caused by low adherence to NPIs [16]. In addition, the use of

NPIs may decrease the level of vaccine coverage needed to achieve herd immunity [19]. Our

study extends the existing literature by showing that the degree to which NPIs, vaccine cover-

age, and pace of vaccination impact disease control may vary regionally, and are highly depen-

dent on both population density and the existing cumulative burden of COVID-19 since the

pandemic began. Areas of lower density need lower adherence to NPIs to decrease case rates

with vaccination, and those with a lower existing burden of COVID-19 have a greater ability

to improve their trajectories with vaccination campaigns.

Our study’s findings are also consistent with a few other agent-based simulation models

that examined the impact of vaccination on pandemic control [20, 21]. One recent study

focused on the pandemic control in the Ontario region in Canada and found that relaxing

NPIs and lockdown restrictions early can lead to delayed controllable spread or a second wave

of infections [20]. Similarly, we found that dynamic adherence to NPIs was associated with

lower infection reduction compared to steady rates of NPI adherence. All vaccination experi-

ments shown in Fig 2 illustrate an additional wave of infections under dynamic adherence to

NPIs. Our study also agrees with another study that focused on the US and reported a modest

impact of vaccine effectiveness in some cases [21]. Similarly, as shown in Table 3, we also

found that greater vaccine effectiveness was not strongly associated with greater reduction in

infections.

Our study has several limitations related to uncertainty in vaccine effectiveness in real-

world settings. Authorized COVID-19 vaccines to date have demonstrated high efficacy for

preventing COVID-19 illness and hospitalization [3]. COVAM assumes that vaccination also

prevents transmission of SARS-CoV-2. However, studies to determine the effect of vaccination

on acquisition and shedding of SARS-CoV-2 are ongoing. Our model also assumes that

COVID-19 vaccines will be effective in preventing transmission of new and future variants of

the virus. The B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) variants have all been

detected in the US [22], and all contain mutations in the spike protein. Both the Pfizer and

Moderna vaccines are believed to be effective against the B.1.1.7 variant [23–25]. However, a
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recent study suggests the neutralizing antibodies induced by vaccination are less potent against

the B.1.351 and B.1.1.7 variants in vitro [26]. As long as SARS-CoV-2 is replicating at high lev-

els, new variants can be expected to emerge, underscoring the importance of high-level adher-

ence to NPIs and rapid vaccination with high-level coverage. Furthermore, we do not use a full

calibration procedure that is commonly used in simulation modeling to estimate the unobserv-

able inputs of the model, which may have led to suboptimal set of inputs [27–29]. Finally, our

model does not consider age-based differences in the administration and effectiveness of the

vaccines. However, currently used vaccines are administered for individuals over ages 16 only.

It is unknown if vaccination of individuals younger than 16 of age will begin by the end of the

study’s simulation period or if the effectiveness will be different for younger individuals.

In conclusion, this simulation modeling demonstrates that continued high adherence to

NPIs along with vaccination results in a shorter time to control the COVID-19 pandemic in

US urban areas. Furthermore, our results suggest adhering to NPIs to keep the caseload low

until vaccine becomes widely available can lead to greater benefit of vaccination in terms of

reduction in the number of COVID-19 cases.
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