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Endometriosis is a complex and common gynecological disorder yet a poorly understood 
disease affecting about 176 million women worldwide and causing significant impact 
on their quality of life and economic burden. Neither a definitive clinical symptom nor 
a minimally invasive diagnostic method is available, thus leading to an average of 4 to 
11 years of diagnostic latency. Discovery of relevant biological patterns from microarray 
expression or next generation sequencing (NGS) data has been advanced over the last 
several decades by applying various machine learning tools. We performed machine 
learning analysis using 38 RNA-seq and 80 enrichment-based DNA methylation (MBD-
seq) datasets. We experimented how well various supervised machine learning methods 
such as decision tree, partial least squares discriminant analysis (PLSDA), support vector 
machine, and random forest perform in classifying endometriosis from the control samples 
trained on both transcriptomics and methylomics data. The assessment was done from 
two different perspectives for improving classification performances: a)   implication of 
three different normalization techniques and b) implication of differential analysis using 
the generalized linear model (GLM). Several candidate biomarker genes were identified 
by multiple machine learning experiments including NOTCH3, SNAPC2, B4GALNT1, 
SMAP2, DDB2, GTF3C5, and PTOV1 from the transcriptomics data analysis and 
TRPM6, RASSF2, TNIP2, RP3-522J7.6, FGD3, and MFSD14B from the methylomics 
data analysis. We concluded that an appropriate machine learning diagnostic pipeline 
for endometriosis should use TMM normalization for transcriptomics data, and quantile 
or voom normalization for methylomics data, GLM for feature space reduction and 
classification performance maximization.

Keywords: endometriosis, machine learning, classification, methylomics, transcriptomics, DNA methylation, 
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INTRODUCTION

Endometriosis is a complex and common gynecological 
disorder, and the etiology is poorly understood (Halme et al., 
1984). The impact of endometriosis is very high. About 176 
million women worldwide and about 8.5 million women in 
North America suffer from endometriosis (David Adamson 
et al., 2010). Five to ten percent of women who are of reproductive 
age, 20–30% of women with subfertility, and 40–60% of women 
with chronic pelvic pain and infertility are suffering from 
endometriosis (Selçuk and Bozdağ, 2013). Nearly 70% of teens 
with pelvic pain are later diagnosed with endometriosis (Yeung 
et al., 2011). Endometriosis is a leading cause of the 600,000 
hysterectomies performed in the US every year (Burkett et al., 
2011) and significantly impairs mental and physical quality 
of life in patients. Moreover, work performance for women 
with endometriosis is seriously compromised. Endometriosis 
causes a large economic burden due to loss of workdays and the 
health-care costs due to outpatient visits, hospitalization, and 
medications, which in the US have been estimated to be $22 
billion each year (Simoens et al., 2007).

A gold standard for endometriosis diagnostic approach is 
laparoscopy, which is an invasive procedure. Due to the lack of 
definitive clinical diagnostic symptoms and an easy-to-perform 
molecular diagnostic approach, current diagnostic latency is 
on average 4 to 11 years (Agarwal et al., 2019). Therefore, early 
intervention is crucial for reducing suffering and expenses 
related to the disease. A minimally invasive diagnostic approach, 
such as endometrial biopsy, would be very useful for reducing 
diagnostic latency. Endometriosis patients have an altered 
methylome (DNA methylation) and transcriptome (RNA-seq), 
and these differences in DNA methylation and gene expression 
could lead to the identification of biomarkers for developing 
a minimally invasive diagnostic technique for endometriosis 
(Eyster et al., 2007; Wu et al., 2007; Xue et al., 2007a; Xue et al., 
2007b; Lee et al., 2009). In a DNA microarray study comparing 
eutopic endometrium and ectopic endometrium suggested that 
alterations of cell adhesion-associated genes may contribute to 
the adhesive and invasive properties of ectopic endometrium 
(Eyster et al., 2007). In a mouse model of endometriosis with 
bisulphite-based DNA methylation suggested that significant 
changes occur in multiple markers of endometrial receptivity in 
the eutopic endometrium after induction of endometriosis (Lee 
et al., 2009). A cross-sectional measurement of gene expression 
levels of DNMT1, DNMT3A, and DNMT3B on endometriotic 
tissue demonstrated that those genes were overexpressed in the 
ectopic endometrium as compared with normal control subjects 
or the eutopic endometrium of women with endometriosis (Wu 
et al., 2007). Also, differential methylation of a CpG island at the 
ESR2 promoter region (Xue et al., 2007a) and SF-1 promoter and 
exon I regions (Xue et al., 2007b) may be key mechanisms related 
to endometriosis.

Discovery of relevant biological patterns from microarray 
expression data or next generation sequencing data have been 
advanced over the last several decades by applying various machine 
learning tools (Tarca et al., 2007; Liu et al., 2013; Neelima and 
Prasad Babu, 2017). Both unsupervised and supervised machine 

learning methods have been applied widely on microarray 
expression data (Vandesompele et al., 2002; Libbrecht and Noble, 
2015). In the unsupervised machine learning application, some 
studies evaluated the clustering techniques such as hierarchical 
clustering and K-means clustering for identifying the groups 
of genes that share similar functions or expressions (Mudge 
et al., 2013; GTEx Consortium, 2015; Melé et al., 2015). For 
the application of supervised machine learning methods, 
some studies evaluated the application of disease vs. healthy 
classification tasks using various methods such as decision trees, 
random forests, artificial neural networks (ANN), support vector 
machines (SVM), and Bayesian networks (Pirooznia et al., 2008). 
Availability of both transcriptomics and methylomics data have 
greatly increased in recent years, which created the opportunity 
for using those data in clinical diagnostics (Mikeska et al., 2012; 
Byron et al., 2016). Unlike microarray gene expression data, 
application of machine learning classifiers on transcriptomics 
or methylomics data have been limited with various success 
(Bhasin et al., 2005; Wei et al., 2006; Bock, 2012; Cai et al., 2015; 
Thompson et al., 2016; Johnson et al., 2018). The difference of 
gene expressions in transcriptomics data or the difference of 
DNA methylation in methylomics data can provide avenues for 
the development of endometriosis diagnostic method (Eyster 
et al., 2007; Wu et al., 2007; Xue et al., 2007a; Xue et al., 2007b; 
Lee et al., 2009). In this work, we assess various supervised 
machine learning methods trained on both transcriptomics and 
methylomics data for classifying endometriosis samples from the 
control for creating highly accurate diagnostic predictive models. 

An earlier work evaluated the performance of classification 
models using transcriptomics data (Akter et al., 2018). This 
work aims to systematically examine how well various state-
of-the art supervised machine learning methods perform in 
classifying endometriosis and control samples using both 
transcriptomics and methylomics data. The assessment was done 
from three different perspectives: a) implication of three different 
normalization techniques on prediction performances, b) 
implication of differential analysis on prediction performances. 
In addition, network and functional enrichment analysis was 
conducted using the genes identified from different machine 
learning models.

MATERIALS AND METHODS

Subjects and Tissue Collection
Subjects for the study were aged between 18 and 49 years and 
all undergoing a laparoscopy procedure—either diagnostic 
laparoscopy for pain or infertility or seeking laparoscopic 
sterilization. Prior to surgery, the physician obtained informed 
consent following the IRB protocol. Endometrial biopsies, which 
yield ≥250 mg of tissue, were collected using suction pipelles 
(Cooper Surgical Uterine Explora Model I) under general 
anesthesia prior to surgery. Endometrial biopsy is a quick, 
minimally invasive procedure, lasting ≤5 min, with minimal risk 
of infection, uterine perforation, or bleeding. During laparoscopy, 
the physician thoroughly examined the peritoneal cavity and 
visually confirmed the presence or absence of endometriosis. 
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If present, at least one endometriotic lesion was sent to pathology 
for histological confirmation of endometriosis. Endometriosis 
patients had visually and histologically confirmed endometriosis.

Table 1 presents the inclusion and exclusion criteria for the 
two populations. Samples were collected from three different 
institutes: 1) Women’s and Children’s Hospital, University of 
Missouri; 2) Boone Hospital, Columbia, MO; and 3) University 
of California, San Francisco. The tissue samples were processed 
for generating high-throughput mRNA (RNA-Seq) data and 
enrichment-based DNA methylation (MBD-seq) data using 
the Illumina Next Seq NGS technology. Our transcriptomics 
dataset includes 38 single-end RNA-seq samples (22 controls 
and 16 endometriosis). The methylomics dataset includes 80 
enrichment-based DNA methylation samples (36 controls and 
44 endometriosis) where 77 (35 controls and 42 endometriosis) 
met the quality control criteria. 

Transcriptomics and Methylomics Data 
Preprocessing Workflow
We preprocessed our data using several widely accepted 
bioinformatics tools. The transcriptomics dataset was processed 
in five steps, and the methylomics dataset was processed in 
seven steps. Steps 1 to 3 were same for both datasets. In the first 
step, all raw data were checked for quality control using FastQC 
(Andrews). In the second step, Cutadapt (Martin, 2011) was used 
to remove reads with low-quality bases, adapter sequences, and 
other contaminating sequences. In step three, Bowtie2 (Langmead 
et al., 2009) was applied to align sequence reads to the reference 
genome hg38. In the fourth step for RNA-seq, TopHat (Trapnell 
et al., 2009) was used to discover the locations of short sequence 
reads with respect to the reference. In step five for RNA-seq, 
HTSeq (Anders et al., 2015) was applied to generate the read count 
data, which was then filtered to remove very low count genes. The 
filtering criterion was to keep the genes that have at least 1 count 
per million (cpm) reads mapped in at least n samples where n is 
the smallest group size. In the fourth step for DNA methylation, 
each sample’s read was aligned against the reference genome 
hg38 using Bowtie2 (Langmead et al., 2009). In the fifth step for 
DNA methylation, we used Samtools (Li et al., 2009) and Picard 
(Picard) for sorting and removing duplicate reads. In the sixth 
step for DNA methylation, we segmented the genome sequence 
into 1,000 bases tiling windows, which is widely used. The seventh 
step for DNA methylation is to record the number of reads that 
are mapped to each methylated region. Read counts are the 
number of aligned reads that uniquely map to the hg38 reference 
genome. Several R packages (MEDIPS, BSgenome, BSgenome.
Hsapiens.UCSC.hg38) were applied to generate the read count 
data, which was then filtered to remove very low count methylated 

regions. The filtering criterion was to keep the regions that have 
nonzero counts per million (cpm) reads mapped in at least n 
samples where n is the smallest group size. A study on comparing 
normalization techniques in RNA-seq analysis demonstrated that 
normalization methods have impacts on the results (Lin et al., 
2016). In this study, the read count data were normalized using 
three different techniques: a) logarithm of counts per million 
(logCPM) of trimmed mean of M values (TMM) (Smyth, 2004), 
b) quantile normalization (qNorm) (Bolstad et al., 2003), and c) 
Voom normalization (vNorm) (Smyth, 2004).

In the methylomics data analysis, our goal is to identify the 
methylated regions of interest (MROI) and find the nearby genes. 
Mapping of an MROI to the reference annotation information 
helped us to extract the nearest genes from that MROI. Our 
goal is to identify the genomic features such as the protein-
coding genes, long intergenic noncoding RNA (lincRNA) genes, 
microRNA (miRNA) genes, ribosomal ribonucleic acid (rRNA) 
genes, small nucleolar RNA (snoRNA) genes, and small nuclear 
RNA (snRNA) genes. The distance threshold for the MROI 
position to the genomic region was set to 10,000 bp.

Differential Analysis
To identify the differentially expressed genes (DEGs) in the 
transcriptomics dataset or the differentially methylated regions 
(DMRs) in the methylomics dataset between the control 
and endometriosis cases, a generalized linear model (GLM) 
was applied followed by likelihood ratio test using the edgeR 
(Robinson et al., 2010) package. The trimmed mean of M 
values (TMM) normalization was performed to normalize 
read counts among different samples. The significance of the 
genes was defined by using an adjusted p-value cutoff set at 5% 
using the false discovery rate (FDR) method for multiple testing 
(Benjamini and Hochberg, 1995).

Network and Functional Enrichment 
Analysis
We used the GeneMANIA (Montojo et al., 2014) application 
in Cytoscape (Shannon et al., 2003) for the network analysis 
and functional enrichment analysis. For a given gene list, 
GeneMANIA can build a weighted functional interaction 
network using a database of almost 2,300 networks. The networks 
are organized into different groups such as co-expression, 
physical interaction, genetic interaction, shared protein domains, 
co-localization, pathway, etc. To generate a network, Pearson 
correlation is used as the degree of interaction strength between 
each pair of genes. Utilizing the publicly available datasets, the 
GeneMANIA algorithm can predict genes or gene products that 
are highly related to the original gene list. Hypergeometric test 
was applied for the functional enrichment analysis with q-values 
cutoff of 0.10 using the Benjamini–Hochberg procedure.

Machine Learning Classifiers
Decision Tree
Decision tree is a tree-based algorithm that can be described 
as IF–THEN rules (Quinlan, 1993). There are many varieties 

TABLE 1 | Inclusion and exclusion criteria.

Group Inclusion criteria Exclusion criteria

Controls Age 18 to 49 years Visual observation of lesions
Endometriosis Age 18 to 49 years

Laparoscopic and 
pathology confirmed 

Diagnostic laparoscopy 
without visual observation of 
endometriotic lesions
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of the decision tree algorithm based on the attribute selection 
criteria such as Iterative Dichotomiser 3 (ID3) (Quinlan, 1986), 
Classification and Regression Trees (CART) (Breiman et al., 1984), 
and C4.5 (Quinlan, 1993). Decision tree is constructed in two 
phases. First, a large tree is grown to fit the data closely. Second, 
the tree is pruned by removing parts that are predicted to have a 
relatively high error rate. C4.5 is a popular algorithm for decision 
tree construction that uses entropy minimization or information 
gain for attribute selection criteria. We used an improved version 
of C4.5 called C5.0/see5 (Data Mining Tools See5 and C5.0) for 
constructing the decision tree in this study. Confidence factor is 
used as a parameter for tree pruning in C5.0. The default value for 
confidence factor is 25% or 0.25. If the value of confidence factor is 
smaller than 0.25, it causes more pruning and vice versa. 

Biosigner
Biosigner is an enhanced algorithm for detecting biomarkers 
(Rinaudo et al., 2016). The Biosigner algorithm includes four 
steps: 1) bootstrap resampling (default is boot = 50), 2) feature 
ranking, 3) selection of significant features called signature set, 
and 4) building the final model that is restricted to the features 
from the signature set. In Biosigner, three different machine 
learning classifier algorithms [partial least squares discriminant 
analysis (PLSDA) (Wold et al., 2001; Barker and Rayens, 2003), 
random forest (RF) (Breiman, 2001), and support vector machine 
(SVM) (Boser et al., 1992)] were used for constructing three 
different models. As the input to the Biosigner algorithm, we used 
the TMM normalized data as expression data.

Machine Learning Experimental Approach
We performed six different experiments using the decision 
tree classifier (see Table 2). Performance measures of each 
model were computed using the cross-validation approach 
described previously. We used the default value of confidence 
factor (0.25) so that the decision tree is optimally pruned. 
GLM was applied on the whole dataset for the decision  
tree experiments. 

For testing with the Biosigner algorithm, we used TMM as the 
expression data. The TMM data were then used for constructing 
the classifier models (PLSDA, random forest, and SVM) using 
Biosigner. We used the default value for the boot parameter, which 
is 50. In some iterations of the leave-one-out cross-validation, 
Biosigner was unable to produce a prediction result for the test 
record using the predict function that uses the signature model, if 
the signature model was not produced in those iterations. In such 
a scenario, the model with tier A was used for prediction.

The dataset were filtered for low read count genes for the 
transcriptomics datasets and for low read count methylated 
regions for the methylomics dataset. For the transcriptomics 
dataset, the experiments were conducted in two scenarios: a) all 
genes including protein-coding, lincRNA gene, miRNA gene, 
rRNA gene, etc. are present in the dataset after removing the 
genes with lower read counts, and b) only protein-coding genes 
are present in the dataset after removing the genes with lower 
read counts. For the methylomics dataset, all methylated regions 
except lower read counts were present.

Cross-Validation and Model Performance
For model validation and comparing results between the methods, 
we applied the leave-one-out cross-validation for computing the 
performance measures. This ensures two things: 1) the record 
used for model validation is not used for model construction, 
and 2) all records are used for model validation. This technique 
is useful for dataset with smaller number of samples such as 
in our study. The final model is constructed using all records. 
We computed several model performance measures: accuracy, 
sensitivity, specificity, precision, F1 score, Matthews correlation 
coefficient (MCC), and area under the receiver operating 
characteristics curve (AUC); the leave-one-out cross-validation 
approach was used for calculating these measures.

RESULTS

Data Preprocessing and Differential 
Analysis
There were a total of 38 samples in the transcriptomics dataset. After 
preprocessing of the RNA-seq data of each samples, we created a 
dataset containing the read counts of 58,050 genes in which 18,852 
genes were protein-coding. After applying the filtering criteria 
for low count genes, 14,154 genes were included in the dataset in 
which 11,687 of them were protein-coding genes. We performed 
differential analysis using the GLM followed by likelihood ratio 
test on 14,154 genes and found 28 DEGs: 5 upregulated and 23 
downregulated genes. We also performed the differential analysis 
on the 11,687 protein-coding genes only and found 11 protein-
coding DEGs: one upregulated and 10 downregulated genes.

In the methylomics dataset, out of the 80 samples, 77 
samples met the quality control criteria (35 controls and 42 
endometriosis). After preprocessing of the enrichment-based 
DNA methylation (MBD-seq) data of each sample, we created 
a dataset containing the read counts of 3,088,281 methylated 
regions. After applying the filtering criteria for lower read counts, 
2,577,382 methylated regions were included in the dataset. We 
performed the differential analysis using GLM on 2,577,382 
methylated regions and found 365 DMRs in which 303 of them 
were hypermethylated and 62 of them were hypomethylated.

Decision Tree Results Using 
Transcriptomics Data
For the experiments using both the protein-coding and 
nonprotein-coding genes (denoted as “all genes” in this article), 

TABLE 2 | Machine learning experimental approach using decision tree.

Experimental name Normalization GLM Decision tree

TMM + Decision Tree TMM X
qNorm + Decision Tree qNorm X
vNorm + Decision Tree vNorm X
TMM + GLM + Decision Tree TMM X X
qNorm + GLM + Decision Tree qNorm X X
vNorm + GLM + Decision Tree vNorm X X
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we used 14,154 genes in these experiments. For the experiments 
using only the protein-coding genes, we used only the protein-
coding genes that include 11,687 genes. We applied the six 
experiments (separately for all genes and protein-coding genes) 
using the decision tree algorithm. Table 3 presents the decision tree 

models from those experiments. A total of 13 candidate biomarker 
genes were identified from the transcriptomics experiments using 
decision tree. Among those genes, eight genes were differentially 
expressed (seven downregulated and one upregulated). Six genes 
were identified from the models using all genes in which three 
of them are protein-coding. Nine genes were identified from the 
models using protein-coding genes. Two genes (NOTCH3 and 
TMEM106B) were found common between the two groups of 
results (all vs. protein-coding genes). NOTCH3 was present in all 
models, and KLF2P1 was present in three models using decision 
tree. “TMM + GLM + Decision Tree” experiments (all vs. protein-
coding genes) achieved the best performances (see Performance 
Evaluation section for more details). Figure 1 presents the gene 
interaction network among all the genes from different decision 
tree models of the transcriptomics dataset. Most of the query 
genes and predicted genes are linked by co-expression network 
with weight 99.70. There were no significant GO annotation from 
the functional enrichment analysis of these genes.

Biosigner Results Using Transcriptomics 
Data
We applied the Biosigner algorithm on 14,154 genes including 
both the protein-coding and nonprotein-coding genes (denoted 
as “all genes” in this article) and on 11,687 protein-coding genes 
only, separately. As the input of the Biosigner algorithm, we used 
the TMM normalized data as the expression data. The Biosigner 
algorithm constructed three different models: PLSDA, random 
forest, and SVM. Figure 2A presents the gene tier plot (S = 
signature genes; A–E = A is a higher tier gene and E is a lower 
tier genes). Biosigner identified three genes as the potential set of 
biomarkers: NOTCH3, RP4-782L23.2, and SEMA3B-AS1 using 
all genes. Figure 2B presents the gene tier plot of four genes as 
the potential set of biomarkers identified by Biosigner: NOTCH3, 
SNAPC2, ILDR1, and C1QL3 using protein-coding genes only. 
Table 4 presents the candidate biomarker genes that were identified 
from the transcriptomics experiments using Biosigner, in which 
three genes were differentially expressed (two downregulated and 
one upregulated). Three genes were identified from the models 
using all genes in which one of them is protein-coding, and four 
genes were identified from the models using the protein-coding 
genes. One gene (NOTCH3) was found common between the 
two groups of results (all vs. protein-coding genes). NOTCH3 was 
present in all the models, and SNAPC2 and RP4-782L23.2 were 
present in two models using Biosigner. Unlike the decision tree 
experiments, the results were opposite in Biosigner; the models 
using protein-coding genes performed either similar or better 
results than the models using all genes. We also compared the 
gene list found between the decision tree models and the Biosigner 
models; NOTCH3 and SNAPC2 were found common between 
those two sets of genes. Both of these genes are protein-coding and 
were found downregulated in the differential analysis.

Performance Evaluation of Models Using 
Transcriptomics Data
The results of the decision tree performance measures on the 
transcriptomics dataset using all genes are presented in Table 5. 

TABLE 3 | Decision tree models using transcriptomics data.

Gene 
feature 
set

Experiment 
name

Tree model

All TMM + 
Decision Tree

NOTCH3 <= 0.3994181: endometriosis (10)
NOTCH3 > 0.3994181:
:...TMEM106B <= 2.207379: control (23/1)
    TMEM106B > 2.207379: endometriosis (5)

All qNorm + 
Decision Tree

NOTCH3 <= 1.710526: endometriosis (13/1)
NOTCH3 > 1.710526:
:... RP11-792A8.1<= 1.052632: control (22/1)
    RP11-792A8.1> 1.052632: endometriosis (3)

All vNorm + 
Decision Tree

NOTCH3 <= -0.05049461: endometriosis (13/1)
NOTCH3 > -0.05049461:
:...RP11-459F6.3 <= 1.434793: endometriosis (3)
    RP11-459F6.3 > 1.434793: control (22/1)

All TMM + GLM + 
Decision Tree

NOTCH3 <= 0.3994181: endometriosis (10)
NOTCH3 > 0.3994181:
:...KLF2P1 > 3.247368: endometriosis (4)
    KLF2P1 <= 3.247368:
    :...MFAP2 <= -0.1358892: endometriosis (3/1)
        MFAP2 > -0.1358892: control (21)

All qNorm + GLM 
+ Decision 
Tree

NOTCH3<= 1.684211: endometriosis (13/1)
NOTCH3> 1.684211:
:... SMAP2<= 17.94737: control (22/1)
    SMAP2> 17.94737: endometriosis (3)

All vNorm + GLM 
+ Decision 
Tree

NOTCH3 <= -0.05049461: endometriosis (13/1)
NOTCH3 > -0.05049461:
:...KLF2P1 <= 3.057986: control (22/1)
    KLF2P1 > 3.057986: endometriosis (3)

Protein-
Coding

TMM + 
Decision Tree

NOTCH3 <= 1.644335: endometriosis (10)
NOTCH3 > 1.644335:
:...TMEM106B <= 3.460871: control (23/1)
    TMEM106B > 3.460871: endometriosis (5)

Protein-
Coding

qNorm + 
Decision Tree

NOTCH3 <= 1.894737: endometriosis (13/1)
NOTCH3 > 1.894737:
:...SMAP2 <= 1: control (22/1)
    SMAP2 > 1: endometriosis (3)

Protein-
Coding

vNorm + 
Decision Tree

NOTCH3 <= 1.293087: endometriosis (13/1)
NOTCH3 > 1.293087:
:...DDB2 <= 5.616763: endometriosis (3)
    DDB2 > 5.616763: control (22/1)

Protein-
Coding

TMM + GLM + 
Decision Tree

NOTCH3 <= 1.641844: endometriosis (10)
NOTCH3 > 1.641844:
:...B4GALNT1 <= 7.888268: endometriosis (3)
    B4GALNT1 > 7.888268:
    :...ZNF865 <= 1.835846: endometriosis (2)
        ZNF865 > 1.835846: control (23/1)

Protein-
Coding

qNorm + GLM 
+ Decision 
Tree

NOTCH3 <= 1.815789: endometriosis (13/1)
NOTCH3 > 1.815789:
:...PTOV1 > 779.6053: control (17)
    PTOV1 <= 779.6053:
    :...GTF3C5 <= 0.8157895: endometriosis (4)
        GTF3C5 > 0.8157895: control (4)

Protein-
Coding

vNorm + GLM 
+ Decision 
Tree

NOTCH3 <= 1.293087: endometriosis (13/1)
NOTCH3 > 1.293087:
:...SNAPC2  -0.7898067: endometriosis (2)
    SNAPC2 > -0.7898067: control (23/2)

The best model in each subgroup of experiment is presented in bold text.
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FIGURE 1 | Gene interaction network among the genes from the decision tree models using the protein-coding genes of transcriptomics data. Black circles denote 
the candidate biomarkers genes, and gray circles denote the GeneMANIA-predicted genes. Blue and green edges represent co-expression (network weight 99.70) 
and genetic interactions (network weight 0.33), respectively.

FIGURE 2 | Gene tier plot from Biosigner using transcriptomics data from the experiments using: (A) all genes, (B) protein-coding genes only; S, signature genes; 
A–E=A is a higher tier, and E is a lower tier.
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We observed that the models using all genes performed better 
than the models using protein-coding genes. This is mainly 
because, in case of all genes, the models took the benefit of using 
genes that are not protein-coding. When the decision tree was 
created on three different normalized data (TMM, qNorm, and 
vNorm), the model tends to perform better on the TMM data. 
The “TMM + Decision Tree” experiment achieved the accuracy 
of 71.1%, with sensitivity of 68.8%, specificity of 72.7%, and 
precision of 64.7%. The F1 score of the “TMM + Decision Tree” 
experiment is 0.677, MCC is 0.412, and AUC is 0.665. We also 
applied the GLM technique on the 14,154 genes and identified 
28 DEGs: five genes were upregulated, and 23 genes were down 

regulated. When the decision tree was created using those 28 
DEGs, the performance measures improved significantly on all 
three different normalized data (TMM, qNorm, and vNorm). 
Among these experiments, the “TMM + GLM + Decision Tree” 
experiment achieved the best performance followed by the 
“qNorm + GLM + Decision Tree” experiment that achieved the 
second best performance. The “TMM + GLM + Decision Tree” 
experiment achieved the accuracy of 89.5%, with sensitivity of 
81.3%, specificity of 95.5%, and precision of 92.9%. The F1 score 
of the “TMM + GLM + Decision Tree” experiment is 0.867, 
MCC is 0.785, and AUC is 0.92. Table 3 presents the decision 
tree model that was created using the “TMM + GLM + Decision 
Tree” experiment. 

For the experiments using only the protein-coding genes, 
the decision tree model tends to perform better on the TMM 
data. This is consistent with the experiments using all genes. 
The “TMM + Decision Tree” experiment achieved the accuracy 
of 71.1%, with sensitivity of 62.5%, specificity of 77.3%, and 
precision of 66.7%. The F1 score of the “TMM + Decision Tree” 
experiment is 0.645, MCC is 0.402, and AUC is 0.611. We also 
applied the GLM technique on the 11,687 protein-coding genes 
and identified 11 protein-coding genes that were differentially 
expressed in which one gene was upregulated and 10 genes were 
downregulated. When the decision tree was created using those 
11 protein-coding DEGs, the performance measures improved 
significantly on all three different normalized data (TMM, 
qNorm, and vNorm). This is also consistent with the experiments 
using all genes. Among these experiments, the “TMM + GLM + 
Decision Tree” experiment achieved the best performance, which 
is 84.2% accuracy, 62.5% sensitivity, 100% specificity, and 100% 
precision. The F1 score of the “TMM + GLM + Decision Tree” 
experiment is 0.769, MCC is 0.701, and AUC is 0.625. Table 3 
presents the decision tree model that was created using the 
“TMM + GLM + Decision Tree” experiment; the model shows 
the gene names that were identified in the decision tree models 
differentiating endometriosis vs. control.

TABLE 4 | Candidate biomarker genes from transcriptomics analysis.

Experiment name Gene names
(Experiments using 
all genes)

Gene names
(experiments using 
the protein-coding 
genes only)

TMM + Decision Tree NOTCH3, TMEM106B NOTCH3, TMEM106B
qNorm + Decision Tree NOTCH3, RP11-

792A8.1
NOTCH3, SMAP2

vNorm + Decision Tree NOTCH3, RP11-
459F6.3

NOTCH3, DDB2

TMM + GLM +  
Decision Tree

NOTCH3, KLF2P1, 
MFAP2

NOTCH3, B4GALNT1, 
ZNF865

qNorm + GLM +  
Decision Tree

NOTCH3, KLF2P1 NOTCH3, PTOV1, 
GTF3C5

vNorm + GLM +  
Decision Tree

NOTCH3, KLF2P1 NOTCH3, SNAPC2 

Biosigner (PLSDA) NOTCH3, RP4-
782L23.2

NOTCH3, SNAPC2

Biosigner (Random 
Forest)

NOTCH3, RP4-
782L23.2, SEMA3B-
AS1

NOTCH3

Biosigner (SVM) No signature or A-tier 
genes were found in 
the final model

NOTCH3, SNAPC2, 
ILDR1, C1QL3

TABLE 5 | Performance measures using transcriptomics data by leave-one-out cross-validation.

Gene feature set Experiment name Accuracy Sensitivity Specificity Precision F1 score MCC AUC

All TMM + Decision Tree 0.711 0.688 0.727 0.647 0.667 0.412 0.665
All qNorm + Decision Tree 0.184 0.000 0.318 0.000 NA −0.689 0.239
All vNorm + Decision Tree 0.553 0.188 0.818 0.429 0.261 0.007 0.205
All TMM + GLM + Decision Tree 0.895 0.813 0.955 0.929 0.867 0.785 0.920
All qNorm + GLM + Decision Tree 0.842 0.750 0.909 0.857 0.800 0.675 0.820
All vNorm + GLM + Decision Tree 0.684 0.375 0.909 0.750 0.500 0.344 0.810
All Biosigner (PLSDA) 0.737 0.864 0.563 0.731 0.792 0.453 NA
All Biosigner (Random Forest) 0.447 0.455 0.438 0.526 0.488 -0.107 NA
All Biosigner (SVM) 0.553 0.636 0.438 0.609 0.622 0.075 NA
Protein-Coding TMM + Decision Tree 0.711 0.625 0.773 0.667 0.645 0.402 0.611
Protein-Coding qNorm + Decision Tree 0.421 0.125 0.636 0.200 0.154 −0.268 0.554
Protein-Coding vNorm + Decision Tree 0.263 0.125 0.364 0.125 0.125 −0.511 0.239
Protein-Coding TMM + GLM + Decision Tree 0.842 0.625 1.000 1.000 0.769 0.701 0.625
Protein-Coding qNorm + GLM + Decision Tree 0.763 0.563 0.909 0.818 0.667 0.513 0.577
Protein-Coding vNorm + GLM + Decision Tree 0.763 0.563 0.909 0.818 0.667 0.513 0.573
Protein-Coding Biosigner (PLSDA) 0.763 0.955 0.500 0.724 0.824 0.528 NA
Protein-Coding Biosigner (Random Forest) 0.447 0.500 0.375 0.524 0.512 −0.124 NA
Protein-Coding Biosigner (SVM) 0.605 0.591 0.625 0.684 0.634 0.213 NA

The best model with corresponding performance measures in each subgroup of experiment is presented in bold text.
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Table 5 presents the Biosigner performance measures 
that were computed using the leave-one-out cross-validation 
approach. For both groups of results (all vs. protein-coding 
genes), the best performance was observed using the PLSDA 
model. For all genes, the PLSDA achieved the accuracy of 73.7%, 
sensitivity of 86.4%, specificity of 56.3%, precision of 73.1%, F1 
score of 0.792%, and MCC of 0.453. For the protein-coding 
genes, the PLSDA achieved the accuracy of 76.3%, sensitivity of 
95.5%, specificity of 50.0%, precision of 72.4%, F1 score of 0.824, 
and MCC of 0.528. The performance measures for random forest 
and SVM are significantly lower in comparison with those for 
PLSDA using all genes. However, SVM has a higher specificity 
than PLSDA and random forest using protein-coding genes.

A bar chart comparison of accuracy, sensitivity, and specificity 
for experiments using all genes is presented in Figure 3. In this 
scenario, the “TMM + Decision Tree” experiment has a balanced 
accuracy, sensitivity, and specificity but does not outperform all of 
the experiments. The “TMM + GLM + Decision Tree” experiment 
produced the highest accuracy, specificity, and precision among 
all the experiments and outperformed all of the experiments 
by F1 score and MCC. A bar chart comparison of accuracy, 
sensitivity, and specificity for experiments using the protein-
coding genes is presented in Figure 4. In this scenario, the SVM 
in Biosigner has a balanced accuracy, sensitivity, and specificity 
but does not outperform all of the experiments. The PLSDA in 
Biosigner achieved the best sensitivity and F1 score but has a 
poor specificity. The “TMM + GLM + Decision Tree” experiment 
produced the highest accuracy, specificity, and precision among 
all of the experiments and outperformed all experiments based 
on MCC. In both scenarios (all vs. protein-coding genes), GLM 
was useful for improving the overall performance in case of the 
decision tree application. 

Decision Tree Results Using Methylomics 
Data
For the six decision tree experiments using the methylomics 
dataset, we used 2,577,382 methylated regions in these 
experiments. Table 6 presents the decision tree models from 
different experiments. The methylated regions of interest 
(MROI) were extracted from the decision tree models, and the 
nearby genes of those MROIs were extracted using the process 
described in the Methods section. All the MROIs and nearby 
genes are presented in Table 7. Among those 17 MROIs, eight 
regions were differentially methylated and hypo-methylated. 
We found eight nearby genes of those 17 MROIs within the 
distance of 10,000 bp, in which five genes are protein-coding 
(e.g., MFSD14B, RASSF2, TRPM6, TNIP2, and FGD3), two 
genes are lincRNA (e.g., RP11-734K21.4 and RP3-522J7.6), and 
one is pseudogene (e.g., RPL37AP1). Also, the MROIs related 
to five genes (e.g., MFSD14B, RASSF2, RP11-734K21.4, RP3-
522J7.6, and TNIP2) were found upstream and three genes (e.g., 
RPL37AP1, TRPM6, and FGD3) overlapped with the regions. 
Figure 5 presents the gene–gene interaction network comprising 
all the nearby genes of the MROIs identified by the decision tree 
models. GeneMANIA predicted many genes that are closely 
related to the query genes. The gene interaction network includes 
physical interaction network (weight 67.64), co-expression 
network  (weight 13.50), predicted functional relationships 
between genes (weight 6.35), co-localization network (6.17), 
pathway network (weight 4.35), genetic interaction network 
(weight 1.40), and shared protein domain network (weight 0.59). 
Some of the top gene ontologies from the functional enrichment 
analysis include regulation of endothelial cell apoptotic process, 
toll-like receptor signaling pathway, innate immune response-
activating signal transduction, Fc receptor signaling pathway, 

FIGURE 3 | Performance comparisons using both protein-coding and nonprotein-coding genes (“all genes”) of the transcriptomics dataset.
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and regulation of I-kappaB kinase/NF-kappaB signaling. More 
detail is presented in the Supplementary Table 1.

Biosigner Results Using Methylomics Data
We applied the Biosigner algorithm on 2,577,382 methylated 
regions. As the input of the Biosigner algorithm, we used the 
TMM normalized data as the methylation expression data. The 
Biosigner algorithm constructed three different models: PLSDA, 
random forest, and SVM. Figure 6 presents the tier plot of the 
methylated regions (here, S = signature genes; A–E = A is a 
higher tier gene and E is a lower tier genes). Biosigner identified 
nine methylated regions as the potential set of biomarkers. 
The MROIs (n = 9) were extracted from the Biosigner models, 
and the nearby genes of those MROIs were extracted using the 
experiments described in the Methods section. Among those 
nine MROIs, four regions were differentially methylated (three 
hypo-methylated and one hyper-methylated). We found three 
genes (see Table 7) within the distance of 10,000 bp from those 
nine MROIs, in which one gene is protein-coding (e.g., TRPM6), 
one is lincRNA (e.g., RP3-522J7.6), and one is pseudogene (e.g., 
OR10AH1P). Also, the MROIs related to two genes (e.g., RP3-
522J7.6 and OR10AH1P) were found upstream and one (e.g., 
TRPM6) overlapped with the regions. We compared the genes 
found from the decision tree and the Biosigner experiments and 
found two common genes (e.g., TRPM6 and RP3-522J7.6).

Performance Evaluation of Models Using 
Methylomics Data
The experimental results of the decision tree performance 
measures on the methylomics dataset are presented in Table 8. 
When the decision tree was created on three different normalized 

data (TMM, qNorm, and vNorm), the model tends to perform 
better on TMM normalization. The “TMM + Decision Tree” 
experiment achieved the accuracy of 40.3%, with sensitivity of 
52.4%, specificity of 25.7%, and precision of 45.8%. The F1 score of 
the “TMM + Decision Tree” experiment is 0.489, MCC is −0.225, 
and AUC is 0.414. We also applied the differential analysis using 
GLM on the 2,577,382 methylated regions and identified 365 
DMRs. When the decision tree was created using those 365 
DMRs, the performance measures improved significantly on 
all three different normalized data. Among these experiments, 
both “qNorm + GLM + Decision Tree” and “vNorm + GLM + 
Decision Tree” experiments achieved the best performance. These 
experiments achieved the accuracy of 77.9%, with sensitivity of 
76.2%, specificity of 80.0%, and precision of 82.1%. The F1 score 
of these experiments is 0.790, MCC is 0.560, and AUC is 0.721.

Table 8 presents the Biosigner performance measures 
that were computed using the leave-one-out cross-validation 
approach. The best performance was observed using the PLSDA 
model, with accuracy of 68.8%, sensitivity of 60.0%, specificity 
of 76.2%, precision of 67.7%, F1 score of 0.636%, and MCC of 
0.367. The performance measures for random forest and SVM 
are significantly lower in comparison with those for PLSDA. 

A bar chart comparison of accuracy, sensitivity, and specificity 
for experiments using the methylomics dataset is presented in 
Figure 7. The “qNorm + GLM + Decision Tree” and “vNorm + GLM + 
Decision Tree” experiments have a balanced accuracy, sensitivity, 
and specificity and outperform all of the experiments. Both the 
“qNorm + GLM + Decision Tree” and “vNorm + GLM + Decision 
Tree” experiments produced the highest accuracy, sensitivity, and 
specificity among all the experiments and outperformed all of the 
experiments by F1 score, and MCC. GLM was useful for improving 
the overall performance in case of decision tree application.

FIGURE 4 | Performance comparisons using the protein-coding genes of the transcriptomics dataset.
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DISCUSSION

This work achieves the aim of broadly assessing how well the 
supervised machine learning classifiers perform in classifying 
endometriosis vs. control samples using the whole genome next 
generation transcriptomics data and methylomics data as well 

as facilitate identifying candidate biomarker genes. Since the 
machine learning training process is a data-driven approach, we 
wanted to assess multiple aspects by various experiments and 
several important conclusions were made. 

First, we evaluated three different normalization techniques. 
We found that the performance of machine learning classifiers 
varied depending on the normalization techniques, but the choice 
of normalization should be based on the type of dataset. For the 
endometriosis classification task, our experiment revealed that 
TMM normalization performed the best for the transcriptomics 
dataset, and both qNorm and vNorm performed the best for 
the methylomics dataset. This finding is consistent with the 
results demonstrated by the study on comparing normalization 
techniques using transcriptomics data (Lin et al., 2016).

Second, the differential analysis using the GLM is an established 
method for identifying the DEGs from the transcriptomics datasets 
and for identifying the DMRs from the methylomics datasets. We 
used GLM in combination with decision tree. We found that GLM 
was useful for improving the performance of decision tree models.

Third, candidate biomarker genes can be extracted from the 
machine learning models. From the transcriptomics analysis, 
NOTCH3 has been identified as a candidate biomarker by all of 
the methods, which is a protein-coding gene and found to be 
differentially expressed and downregulated. In all the variations 
of the decision tree experiments in this work, NOTCH3 was 
chosen as the primary differentiating criteria (root node). 
Recent studies recommend that NOTCH3 signaling may play a 
major role in oncogenesis, tumor maintenance, and resistance 
to chemotherapy (Aburjania et al., 2018). Prior study also 
reported that dysregulation and decrease in NOTCH signaling 
pathway are associated with endometriosis (Su  et  al., 2015; 
González-Foruria et al., 2017). NOTCH3 has also been 
reported as a major driver for breast cancer development 
(Braune et al., 2018). It plays an important role in maintaining 
the tumor phenotype in pancreatic ductal adenocarcinoma 
(PDAC) (Song et al., 2018), lung carcinogenesis (Su et al., 
2018), and endometrial carcinoma (Mitsuhashi et al., 2012). 
Also, from the transcriptomics data analysis, SNAPC2 was 
identified by the decision tree and Biosigner experiments. A 
recent genome-wide methylation study proposes SNAPC2 
as a biomarker for glioblastoma prediction (Ma et al., 2015). 
Other candidate biomarker genes are also reported to be 
associated with endometriosis and/or different types of 
cancers. Another study identified B4GALNT1 to be related 
to endometrial cancer (Trimarchi et al., 2017). GTF3C5 has 
been reported as differently expressed between endometrioid 
endometrial cancer and non-endometrioid endometrial cancer. 
TMEM106B was found upregulated in ectopic versus eutopic 
endometrium of women with endometriosis (Meola et al., 
2010). MFAP2 stimulates epithelial–mesenchymal transition in 
gastric cancer cells by activating TGFβ signaling pathway that 
supports survival and metastasis of endometrial cancer cells 
(Lei et al., 2009). MFAP2 is also related to human endometrial 
receptivity (Díaz-Gimeno et al., 2011) and has been defined as 
biochemical pregnancy biomarkers (Fung et al., 2018). Other 
study found MFAP2 as differentially expressed in severe vs. 
mild endometriosis (Fung et al., 2018). SMAP2 was reported 

TABLE 6 | Decision tree models using methylomics data.

Experiment 
Name

Tree Model

TMM + 
Decision Tree

chr2_147728001_147729000 <= 1.207401: 
:...chr10_132354001_132355000 <= 1.41709: endometriosis (2) 
:   chr10_132354001_132355000 > 1.41709: control (22) 
chr2_147728001_147729000 > 1.207401: 
:...chr1_35106001_35107000 <= 1.102261: 
    :...chr1_20862001_20863000 <= 0.1675461: endometriosis (2) 
    :   chr1_20862001_20863000 > 0.1675461: control (11) 
    chr1_35106001_35107000 > 1.102261: 
    :...chr22_16562001_16563000 <= 0.286556: control (2) 
        chr22_16562001_16563000 > 0.286556: endometriosis (38)

qNorm + 
Decision Tree

chr9_94372001_94373000 > 5.356569: 
:...chr1_3182001_3183000 <= 5.492207: endometriosis (2) 
:   chr1_3182001_3183000 > 5.492207: control (22) 
chr9_94372001_94373000 <= 5.356569: 
:...chr1_2908001_2909000 > 5.999371: control (7) 
    chr1_2908001_2909000 <= 5.999371: 
    :...chr16_37922001_37923000 <= 4.049325: control (5) 
        chr16_37922001_37923000 > 4.049325: 
endometriosis (41/1)

vNorm + 
Decision Tree

chr9_94372001_94373000 > 1.435922: 
:...chr1_3182001_3183000 <= 1.56803: endometriosis (2) 
:   chr1_3182001_3183000 > 1.56803: control (22) 
chr9_94372001_94373000 <= 1.435922: 
:...chr1_2908001_2909000 > 2.063281: control (7) 
    chr1_2908001_2909000 <= 2.063281: 
    :...chr16_37922001_37923000 <= 0.1332516: control (5) 
        chr16_37922001_37923000 > 0.1332516: 
endometriosis (41/1)

TMM + GLM +  
Decision Tree

chr9_92948001_92949000 > 0.1864191: control (19/1) 
chr9_92948001_92949000 <= 0.1864191: 
:...chr2_9142001_9143000 > 0.515642: control (8) 
    chr2_9142001_9143000 <= 0.515642: 
    :...chr4_2757001_2758000 > 0.9228122: control (5) 
        chr4_2757001_2758000 <= 0.9228122: 
        :...chr22_49841001_49842000 <= 1.252199: 
endometriosis (41/1) 
            chr22_49841001_49842000 > 1.252199: control (4/1)

qNorm +  
GLM + 
Decision 
Tree

chr9_74884001_74885000 <= 4.534801: 
:...chr20_4827001_4828000 <= 4.961341: endometriosis (30) 
:   chr20_4827001_4828000 > 4.961341: control (5/1) 
chr9_74884001_74885000 > 4.534801: 
:...chr10_71353001_71354000 > 4.124296: control (29/1) 
    chr10_71353001_71354000 <= 4.124296: 
    :...chr20_44466001_44467000 <= 5.021993: 
endometriosis (10) 
        chr20_44466001_44467000 > 5.021993: control (3)

vNorm +  
GLM + 
Decision 
Tree

chr9_74884001_74885000 <= 0.280641: 
:...chr20_4827001_4828000 <= 0.7003891: endometriosis (30) 
:   chr20_4827001_4828000 > 0.7003891: control (5/1) 
chr9_74884001_74885000 > 0.280641: 
:...chr10_71353001_71354000 > -0.1261655: control (29/1) 
    chr10_71353001_71354000 <= -0.1261655: 
    :...chr20_44466001_44467000 <= 0.7601537: 
endometriosis (10) 
        chr20_44466001_44467000 > 0.7601537: control (3)
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to be involved in microsatellite instability oncogenesis (Sangar 
et al., 2014). A recent study reported that overexpressed 
PTOV1 plays a major role in tumorigenesis and progression 
of esophageal cancer (Li et al., 2017) and in prostate cancer 
(Benedit et al., 2001). ZNF865 coordinates the functionality 
of cancer networks (Ghanat Bari et al., 2017). DDB2 enhances 
tumorigenesis and different types of cancers (Romieu-Mourez 
et al., 2001; Barakat et al., 2010; Meola et al., 2010; Han et al., 
2014). ILDR1 was identified as a diagnostic marker for cancer 
progression (Hauge et al., 2004). Further details of these genes 
are provided in the Supplementary Table 2.

From the methylomics analysis, two genes (e.g., TRPM6 
and RP3-522J7.6) were identified by both the decision tree 
and Biosigner experiments. TRPM6 is known to be related to 
two pathways (e.g., CREB Pathway and Ion channel transport) 
and associated with a disease named Hypomagnesemia. GO 
annotations of TRPM6 include protein serine/threonine kinase 
activity and calcium channel activity. Serine/threonine kinase 
activity has been reported to be associated with endometriosis 
(Kao et al., 2003). RP3-522J7.6 is a lincRNA. Methylomics 
analysis also revealed some other clinically significant genes. 
RASSF2 is a tumor suppressor gene and was proposed as a novel 

TABLE 7 | Methylated regions of interest (MROI) and candidate biomarker genes from methylomics analysis.

Experiment name Methylated regions of interest (MROI) Nearby gene names

TMM + Decision Tree chr2_147728001_147729000, chr10_132354001_13235500, chr1_35106001_35107000, 
chr1_20862001_20863000, chr22_16562001_16563000

Not found

qNorm + Decision Tree chr9_94372001_94373000, chr1_3182001_3183000, chr1_2908001_2909000, 
chr16_37922001_37923000

MFSD14B

vNorm + Decision Tree chr9_94372001_94373000, chr1_3182001_3183000, chr1_2908001_2909000, 
chr16_37922001_37923000

MFSD14B

TMM + GLM + Decision Tree chr9_92948001_92949000, chr2_9142001_9143000, chr4_2757001_2758000, 
chr22_49841001_49842000

RP11-734K21.4, RP3-
522J7.6, TNIP2, FGD3

qNorm + GLM + Decision 
Tree

chr9_74884001_74885000, chr20_4827001_4828000, chr10_71353001_71354000, 
chr20_44466001_44467000

RPL37AP1, RASSF2, TRPM6

vNorm + GLM + Decision 
Tree

chr9_74884001_74885000, chr20_4827001_4828000, chr10_71353001_71354000, 
chr20_44466001_44467000

RPL37AP1, RASSF2, TRPM6

Biosigner (PLSDA) chr7_5111001_5112000, chr5_29429001_29430000, chr22_49841001_49842000 RP3-522J7.6, 
OR10AH1P

Biosigner (Random Forest) chr11_2027001_2028000, chr2_147728001_147729000, chr9_74884001_74885000 TRPM6
Biosigner (SVM) chr18_17526001_17527000, chr4_186970001_186971000, chr4_189277001_189278000 Not found

The best model is presented in bold text.

FIGURE 5 | Gene interaction network among the genes from the decision tree models using the methylomics data. The blue, green, orange, teal, purple, yellow, 
and gray edges represent various GeneMANIA networks: physical interaction network (weight 67.64), co-expression network (weight 13.50), predicted functional 
relationships between genes (weight 6.35), co-localization network (6.17), pathway network (weight 4.35), genetic interaction network (weight 1.40), and shared 
protein domain network (weight 0.59), respectively.
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methylation marker for screening several cancers (Cooper et al., 
2008). RASSF2 has been reported to be associated with ovarian 
endometriosis (Ren et  al., 2014). The GO annotations related 
to TNIP2 includes protein kinase binding and polyubiquitin 

modification-dependent protein binding. TNIP2 is a hub 
protein in the NF-κB network (Banks et  al., 2016), and NF-kB 
has an important role in the pathophysiology of endometriosis 
(Kaponis et al., 2012). FGD3 was reported to be associated 

FIGURE 6 | Methylated region tier plot from biosigner using methylomics data; S, signature genes; A–E=A is a higher tier, and E is a lower tier.

TABLE 8 | Performance measures using methylomics data by leave-one-out cross-validation.

Experiment name Accuracy Sensitivity Specificity Precision F1 score MCC AUC

TMM + Decision Tree 0.403 0.524 0.257 0.458 0.489 −0.225 0.414
qNorm + Decision Tree 0.364 0.405 0.314 0.415 0.410 −0.280 0.199
vNorm + Decision Tree 0.403 0.405 0.400 0.447 0.425 −0.194 0.233
TMM + GLM + Decision Tree 0.714 0.714 0.714 0.750 0.732 0.427 0.679
qNorm + GLM + Decision Tree 0.779 0.762 0.800 0.821 0.790 0.560 0.721
vNorm + GLM + Decision Tree 0.779 0.762 0.800 0.821 0.790 0.560 0.721
Biosigner (PLSDA) 0.688 0.600 0.762 0.677 0.636 0.367 NA
Biosigner (Random Forest) 0.429 0.314 0.524 0.355 0.333 −0.164 NA
Biosigner (SVM) 0.519 0.400 0.619 0.467 0.431 0.019 NA

The best model with corresponding performance measures in each subgroup of experiment is presented in bold text.
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with six distinct breast cancer cohorts and four TCGA cancer 
cohorts and was proposed as an important clinical biomarker 
for cancers (Willis et al., 2017). MFSD14B is known as neuronal 
and affected by nutrient availability (Lekholm et al., 2017), and 
GO annotations include transporter activity. Three of the RAS-
association domain family members (RASSF2, RASSF3, and 
RASSF5) were involved in the network analysis (Figure 5) using 
all methylomics decision tree models, which are known as tumor 
suppressor genes and epigenetically inactivated in different 
tumor types. RASSF2 was reported to be associated with ovarian 
endometriosis, breast cancer, gastric cancer, and childhood acute 
lymphoblastic leukemia (Ren et  al., 2014; Perez-Janices et al., 
2015; Aydin et al., 2016; Singh et al., 2016) and has been proposed 
as a novel methylation marker for screening several cancers 
(Cooper et al., 2008). RASSF3 is an oncogene and mutated in 
nearly one third of all human cancers. Somatic mutations and 
other genomic abnormalities were also found in patients with 
endometriosis that are associated in cancer development. PTEN 
is a tumor suppressor gene and mostly occurs in endometrial 
and ovarian cancers. Somatic mutations in the PTEN gene were 
identified in 20% ovarian endometrioid carcinomas, 8.3% clear 
cell carcinomas, and 20.6% solitary endometrial cysts (Sato 
et  al., 2000). KRAS plays a role in promoting oncogenic events 
in colorectal cancer. Mutations in the KRAS gene were found in 
patients with endometriosis (Vestergaard et al., 2011; Anglesio 
et al., 2017). MAP3K8 activation is critically involved in both 
inflammation and oncogenetic events (Vougioukalaki et al., 
2011; Lee et al., 2015). MAP3K8 was identified as an oncogene 
in endometrial cancer, breast cancer, colon cancer, renal cancer, 
gastric cancer, and nasopharyngeal carcinoma (Lee et al., 2015), 
but it is a tumor suppressor gene in lung and intestinal cancers 
(Gkirtzimanaki et al., 2013; Zhang et al., 2016) as well. MAP3K8 
was found upregulated in multiple tumor types and closely related 
to tumorigenesis (Sperger et al., 2003; D’Errico et al., 2009). 

The findings of many cancer-associated genes in our 
study were surprising but not new. Though endometriosis is 
considered to be a benign condition, some of the characteristics 
of endometriosis are similar to cancer; for example, both 
endometriosis and cancer can be metastatic, angiogenic, and 
resistant to apoptosis. In the past, several studies examined if 
endometriosis has any relation with cancer. Recent studies have 
found cancer-associated mutations in endometriotic lesions 
(Sato et al., 2000; Thomas and Campbell, 2000) and also in deep 
infiltrating endometriosis without coexisting cancer (Anglesio 
et al., 2017). Other studies have shown that endometrial cancer 
and endometriosis (both are estrogen dependent and a disease of 
chronic inflammation) appear to have a moderate but significant 
shared genetic correlation (Wenzl et al., 2003; Painter et al., 
2018). A recent study, based on The National Health Insurance 
Research Databases in Taiwan, has claimed that there is a 
potential association between endometriosis and endometrial 
cancer. This study has reported that the endometriosis patients 
have higher risk for developing endometrial cancer in their 
later life, with an adjusted hazard ratio (aHR) of 2.83 [95% 
confidence interval (CI)  = 1.49 to 5.35], and for older women 
(age >40) diagnosed with endometriosis, the ratio was higher 
(aHR = 7.08, 95% CI = 2.33 to 21.55) (Yu et al., 2015). Another 
study has identified that 85% of atypical endometriosis lesions 
have a cancer-like immunological gene signature (Edwards et al., 
2015). It has been reported that endometriosis is associated with 
ovarian cancer (Jimbo et al., 1997) and has a fourfold increased 
risk of developing the ovarian cancer (Kok et al., 2015). Also, 
there is a shared genetic risks between endometriosis and 
epithelial ovarian cancer (Lu et al., 2015). There is a significant 
risk of developing breast cancer in patients with endometriosis 
(Schairer et al., 1997; Chuang et al., 2015). The overall cancer risk 
has been found higher, with a standardized incidence ratio (SIR) 
of 1.2 (95% CI 1.1 to 1.3) in a study on 20,686 endometriosis 

FIGURE 7 | Performance comparisons using the methylomics dataset.
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patients who were hospitalized during the period 1969 to 1983 
in Sweden. The SIR was 1.3 (95% CI 1.1 to 1.4) for breast cancer, 
1.9 for ovarian cancer (95% CI 1.3 to 2.8), and 1.4 (95% CI 1.0 
to 1.8) for hematopoietic malignancies (Brinton et al., 1997). 
Another study, based on 63,630 women with endometriosis, 
has found that endometriosis patients has an increased risk for 
several malignancies. The SIR for endocrine tumors was 1.38, 
ovarian cancer was 1.37, renal cancer was 1.36, thyroid cancer 
was 1.33, brain tumors was 1.27, malignant melanoma was 1.23, 
and breast cancer was 1.08 (Melin et al., 2007). Endometriosis 
has been found to be associated with an increased overall risk 
of skin cancer, with a hazard ratio (HR) of 1.28 (95% CI 1.05 
to 1.55) and melanoma risk with HR 1.64 (95% CI 1.15 to 2.35) 
(Farland et al., 2017).

Fifth, machine learning classifiers can be trained for creating 
highly accurate models for classifying endometriosis with 
high sensitivity and specificity thus creating the opportunity 
for precision medicine application for endometriosis. The 
diagnostic latency of endometriosis is very high, with an 
average delay of 4–11 years mainly because of complexity in 
diagnosis techniques. The machine learning models in this 
study achieved a high F1 score (0.867) for the transcriptomics 
dataset and a high F1 score (0.79) for the methylomics dataset. 
The current diagnostic process is highly invasive in nature, but 
we anticipate a future where a minimally invasive endometrial 
biopsy with a machine learning predictive diagnostic model 
as demonstrated in this study can be used for diagnosing 
endometriosis. In recent years, we have seen the success of deep 
learning in various domains including bioinformatics such as 
described in a review article (Li et al., 2019). Another study 
demonstrated the application of deep learning for mutation map 
analysis (Umarov et al., 2019). A future extension of this study 
could be to apply the deep learning techniques for classifying 
endometriosis and demonstrate a process for interpretation of 
the models for biomarker detection.

Finally, we found that the type of whole genome 
sequencing data has an impact on the predictive performance. 
Transcriptomic dataset achieved higher accuracy in 
comparison with the methylomics dataset. An interesting 
investigation would be to develop an integrative classification 
model by integrating both transcriptomes and methylomics 
data to train a single model and measure the predictive 
performance. This aim is supported by our rationale that an 
integrative multi-omics approach may increase predictive 
performance thus providing a highly accurate predictive 
diagnostic model. Further study is needed for investigating 
such hypothesis. 

In summary, this study demonstrated that a supervised machine 
learning method leveraging transcriptomics or methylomics 
data is a reliable approach for classifying endometriosis. We 
concluded that an appropriate machine learning diagnostic 
pipeline for endometriosis should use a) either transcriptomics or 
methylomics data, b) TMM normalization for the transcriptomics 
data, or qNorm or vNorm for the methylomics data, and c) 
GLM for feature space reduction and classification performance 
maximization. The conclusion was made based on the use case of 
endometriosis classification in this study. Further study is needed 

to generalize the results across multiple disease classification cases 
as well as using publicly available data on multiple populations.

DATA AVAILABILITY

The datasets GENERATED for this study can be found in the 
gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE134052; https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE134056

ETHICS STATEMENT

The protocol was approved by the University of Missouri 
Institutional Review Board. The physician obtained informed 
consent following the IRB protocol. All subjects gave informed 
consent in accordance with the Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

SA, TJ, DX, and SN contributed in the conception and 
design of the study; SN, TJ, JB, KP, and GW contributed in 
the acquisition of the samples and data. SA organized and 
preprocessed the data, performed the machine learning 
analysis, and wrote the first draft of the manuscript. All 
authors contributed to the manuscript revision and read and 
approved the submitted version.

FUNDING

This work was supported by NIEHS R21 ES020039, University of 
Missouri Institute for Clinical and Translational Science, NIH/
National Center for Advancing Translational Sciences (NCATS) 
grant UL1TR002345, and University of Missouri Research 
Council Grant.

ACKNOWLEDGMENTS

The biological samples were collected in collaboration with 
the Women’s and Children’s Hospital, University of Missouri, 
Boone Hospital, Columbia, MO, and University of California, 
San Francisco. Some tissue samples were provided by the NIH 
SCCPIR Human Endometrial Tissue Bank and DNA Bank at 
UCSF, funded under NIH HD055764-06. We are thankful to 
Stacy Syrcle, Sarah Crowder, Danny J. Schust, and Breton Barrier 
for their help with sample collection. 

An earlier work evaluated the performance of classification 
models using transcriptomics data (Akter et al., 2018) that was 
published in 2018 IEEE International Conference on Bioinformatics 
and Biomedicine (BIBM).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00766/
full#supplementary-material

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134052
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134052
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134056
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134056
https://www.frontiersin.org/articles/10.3389/fgene.2019.00766/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00766/full#supplementary-material


Endometriosis Machine Learning ClassifiersAkter et al.

15 September 2019 | Volume 10 | Article 766Frontiers in Genetics | www.frontiersin.org

REFERENCES

Aburjania, Z., Jang, S., Whitt, J., Jaskula-Stzul, R., Chen, H., and Rose, J. B. 
(2018). The role of notch3 in cancer. Oncologist 23, 900–911. doi: 10.1634/
theoncologist.2017-0677

Agarwal, S. K., Chapron, C., Giudice, L. C., Laufer, M. R., Leyland, N., 
Missmer, S. A., et al. (2019). Clinical diagnosis of endometriosis: a call to action. 
Am. J. Obstet. Gynecol. 220, 354.e1–354.e12. doi: 10.1016/j.ajog.2018.12.039

Akter, S., Xu, D., Nagel, S. C., and Joshi, T. (2018). A data mining approach for 
biomarker discovery using transcriptomics in endometriosis in 2018 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM) (Madrid 
Spain) (IEEE), 969–972. doi: 10.1109/BIBM.2018.8621150

Anders S., Pyl P. T., and Huber W. HTSeq–a Python framework to work with high-
throughput sequencing data. Bioinformatics.15;31(2), 166–169. doi: 10.1093/
bioinformatics/btu638

Andrews, S. FastQC: a quality control tool for high throughput sequence data. 
Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
[Accessed September 7, 2017]. 

Anglesio, M. S., Papadopoulos, N., Ayhan, A., Nazeran, T. M., Noë, M., 
Horlings, H. M., et al. (2017). Cancer-associated mutations in endometriosis 
without cancer. N. Engl. J. Med. 376, 1835–1848. doi: 10.1056/NEJMoa1614814

Aydin, D., Bilici, A., Kayahan, S., Yavuzer, D., Basar, M., and Aliustaoglu, M. 
(2016). Prognostic importance of RASSF2 expression in patients with gastric 
cancer who had undergone radical gastrectomy. Clin. Transl. Oncol. 18, 608–
616. doi: 10.1007/s12094-015-1405-9

Banks, C. A. S., Boanca, G., Lee, Z. T., Eubanks, C. G., Hattem, G. L., Peak, A., et al. 
(2016). TNIP2 is a hub protein in the NF-κB network with both protein and 
RNA mediated interactions. Mol. Cell. Proteomics 15, 3435–3449. doi: 10.1074/
mcp.M116.060509

Barakat, B. M., Wang, Q.-E., Han, C., Milum, K., Yin, D.-T., Zhao, Q., et al. (2010). 
Overexpression of DDB2 enhances the sensitivity of human ovarian cancer 
cells to cisplatin by augmenting cellular apoptosis. Int. J. Cancer 127, 977–988. 
doi: 10.1002/ijc.25112

Barker, M., and Rayens, W. (2003). Partial least squares for discrimination. J. 
Chemom. 17, 166–173. doi: 10.1002/cem.785

Benedit, P., Paciucci, R., Thomson, T. M., Valeri, M., Nadal, M., Càceres, C., et al. 
(2001). PTOV1, a novel protein overexpressed in prostate cancer containing a 
new class of protein homology blocks. Oncogene 20, 1455–1464. doi: 10.1038/
sj.onc.1204233

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Bhasin, M., Zhang, H., Reinherz, E. L., and Reche, P. A. (2005). Prediction of 
methylated CpGs in DNA sequences using a support vector machine. FEBS 
Lett. 579, 4302–4308. doi: 10.1016/j.febslet.2005.07.002

Bock, C. (2012). Analysing and interpreting DNA methylation data. Nat. Rev. 
Genet. 13, 705–719. doi: 10.1038/nrg3273

Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A comparison 
of normalization methods for high density oligonucleotide array data 
based on variance and bias. Bioinformatics 19, 185–193. doi: 10.1093/
bioinformatics/19.2.185

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A training algorithm for 
optimal margin classifiers,” in Proceedings of the fifth annual workshop on 
Computational learning theory - COLT ‘92 (New York, New York, USA: ACM 
Press), 144–152. doi: 10.1145/130385.130401

Braune, E.-B., Seshire, A., and Lendahl, U. (2018). Notch and Wnt dysregulation 
and its relevance for breast cancer and tumor initiation. Biomedicines 6, 101. 
doi: 10.3390/biomedicines6040101

Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5–32. doi: 10.1023/A: 
1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification 
and Regression Trees. Wadsworth: Wadsworth International Group.

Brinton, L. A., Gridley, G., Persson, I., Baron, J., and Bergqvist, A. (1997). Cancer 
risk after a hospital discharge diagnosis of endometriosis. Am. J. Obstet. 
Gynecol. 176, 572–579. doi: 10.1016/S0002-9378(97)70550-7

Burkett, D., Horwitz, J., Kennedy, V., Murphy, D., Graziano, S., and Kenton, K. 
(2011). Assessing current trends in resident hysterectomy training. Female 
Pelvic Med. Reconstr. Surg. 17, 210–214. doi: 10.1097/SPV.0b013e3182309a22

Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D., and 
Craig, D. W. (2016). Translating RNA sequencing into clinical diagnostics: 
opportunities and challenges. Nat. Rev. Genet. 17, 257–271. doi: 10.1038/
nrg.2016.10

Cai, Z., Xu, D., Zhang, Q., Zhang, J., Ngai, S.-M., and Shao, J. (2015). Classification 
of lung cancer using ensemble-based feature selection and machine learning 
methods. Mol. Biosyst. 11, 791–800. doi: 10.1039/C4MB00659C

Chuang, S.-C., Wu, G.-J., Lu, Y.-S., Lin, C.-H., and Hsiung, C. A. (2015). 
Associations between medical conditions and breast cancer risk in asians: a 
nationwide population-based study in Taiwan. PLoS One 10, e0143410. doi: 
10.1371/journal.pone.0143410

Cooper, W. N., Dickinson, R. E., Dallol, A., Grigorieva, E. V., Pavlova, T. V., 
Hesson, L. B., et al. (2008). Epigenetic regulation of the ras effector/tumour 
suppressor RASSF2 in breast and lung cancer. Oncogene 27, 1805–1811. doi: 
10.1038/sj.onc.1210805

D’Errico, M., de Rinaldis, E., Blasi, M. F., Viti, V., Falchetti, M., Calcagnile, A., 
et  al. (2009). Genome-wide expression profile of sporadic gastric cancers 
with microsatellite instability. Eur. J. Cancer 45, 461–469. doi: 10.1016/j.
ejca.2008.10.032

Data Mining Tools See5 and C5.0. Available at: http://www.rulequest.com/see5-
info.html [Accessed November 21, 2015].

David Adamson, G., Kennedy, S., and Hummelshoj, L. (2010). Creating solutions 
in endometriosis: global collaboration through the World Endometriosis 
Research Foundation. J. Endometr. 2, 3–6. doi: 10.1177/228402651000200102

Díaz-Gimeno, P., Horcajadas, J. A., Martínez-Conejero, J. A., Esteban, F. J., 
Alamá,  P., Pellicer, A., et al. (2011). A genomic diagnostic tool for human 
endometrial receptivity based on the transcriptomic signature. Fertil. Steril. 95, 
50–60, 60.e1–15. doi: 10.1016/j.fertnstert.2010.04.063

Edwards, R. P., Huang, X., and Vlad, A. M. (2015). Chronic inflammation in 
endometriosis and endometriosis-associated ovarian cancer: new roles 
for the “old” complement pathway. Oncoimmunology 4, e1002732. doi: 
10.1080/2162402X.2014.1002732

Eyster, K. M., Klinkova, O., Kennedy, V., and Hansen, K. A. (2007). Whole genome 
deoxyribonucleic acid microarray analysis of gene expression in ectopic 
versus eutopic endometrium. Fertil. Steril. 88, 1505–1533. doi: 10.1016/j.
fertnstert.2007.01.056

Farland, L. V., Lorrain, S., Missmer, S. A., Dartois, L., Cervenka, I., Savoye, I., et al. 
(2017). Endometriosis and the risk of skin cancer: a prospective cohort study. 
Cancer Causes Control 28, 1011–1019. doi: 10.1007/s10552-017-0939-2

Fung, J. N., Mortlock, S., Girling, J. E., Holdsworth-Carson, S. J., Teh, W. T., 
Zhu, Z., et al. (2018). Genetic regulation of disease risk and endometrial gene 
expression highlights potential target genes for endometriosis and polycystic 
ovarian syndrome. Sci. Rep. 8, 11424. doi: 10.1038/s41598-018-29462-y

Ghanat Bari, M., Ung, C. Y., Zhang, C., Zhu, S., and Li, H. (2017). Machine 
learning-assisted network inference approach to identify a new class of genes 
that coordinate the functionality of cancer networks. Sci. Rep. 7, 6993. doi: 
10.1038/s41598-017-07481-5

Gkirtzimanaki, K., Gkouskou, K. K., Oleksiewicz, U., Nikolaidis, G., Vyrla, D., 
Liontos, M., et al. (2013). TPL2 kinase is a suppressor of lung carcinogenesis. 
Proc. Natl. Acad. Sci. U. S. A. 110, E1470–E1479. doi: 10.1073/pnas. 
1215938110

González-Foruria, I., Santulli, P., Chouzenoux, S., Carmona, F., Chapron, C., and 
Batteux, F. (2017). Dysregulation of the ADAM17/Notch signalling pathways 
in endometriosis: from oxidative stress to fibrosis. MHR Basic Sci. Reprod. Med. 
23, 488–499. doi: 10.1093/molehr/gax028

GTEx Consortium, Gte. (2015). Human genomics. The Genotype-Tissue 
Expression (GTEx) pilot analysis: multitissue gene regulation in humans. 
Science 348, 648–660. doi: 10.1126/science.1262110

Halme, J., Hammond, M. G., Hulka, J. F., Raj, S. G., and Talbert, L. M. (1984). 
Retrograde menstruation in healthy women and in patients with endometriosis. 
Obstet. Gynecol. 64, 151–154.

Han, C., Zhao, R., Liu, X., Srivastava, A. K., Gong, L., Mao, H., et al. (2014). 
Loss of DDB2 enhances the tumorigenicity of ovarian cancer cells through 
expanding cancer stem-like cell population. Cancer Res. 74, 3874–3874. doi: 
10.1158/1538-7445.AM2014-3874

Hauge, H., Patzke, S., Delabie, J., and Aasheim, H.-C. (2004). Characterization of 
a novel immunoglobulin-like domain containing receptor. Biochem. Biophys. 
Res. Commun. 323, 970–978. doi: 10.1016/j.bbrc.2004.08.188

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1634/theoncologist.2017-0677
https://doi.org/10.1634/theoncologist.2017-0677
https://doi.org/10.1016/j.ajog.2018.12.039
https://doi.org/10.1109/BIBM.2018.8621150
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1056/NEJMoa1614814
https://doi.org/10.1007/s12094-015-1405-9
https://doi.org/10.1074/mcp.M116.060509
https://doi.org/10.1074/mcp.M116.060509
https://doi.org/10.1002/ijc.25112
https://doi.org/10.1002/cem.785
https://doi.org/10.1038/sj.onc.1204233
https://doi.org/10.1038/sj.onc.1204233
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.febslet.2005.07.002
https://doi.org/10.1038/nrg3273
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1145/130385.130401
https://doi.org/10.3390/biomedicines6040101
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0002-9378(97)70550-7
https://doi.org/10.1097/SPV.0b013e3182309a22
https://doi.org/10.1038/nrg.2016.10
https://doi.org/10.1038/nrg.2016.10
https://doi.org/10.1039/C4MB00659C
https://doi.org/10.1371/journal.pone.0143410
https://doi.org/10.1038/sj.onc.1210805
https://doi.org/10.1016/j.ejca.2008.10.032
https://doi.org/10.1016/j.ejca.2008.10.032
http://www.rulequest.com/see5-info.html
http://www.rulequest.com/see5-info.html
https://doi.org/10.1177/228402651000200102
https://doi.org/10.1016/j.fertnstert.2010.04.063
https://doi.org/10.1080/2162402X.2014.1002732
https://doi.org/10.1016/j.fertnstert.2007.01.056
https://doi.org/10.1016/j.fertnstert.2007.01.056
https://doi.org/10.1007/s10552-017-0939-2
https://doi.org/10.1038/s41598-018-29462-y
https://doi.org/10.1038/s41598-017-07481-5
https://doi.org/10.1073/pnas.1215938110
https://doi.org/10.1073/pnas.1215938110
https://doi.org/10.1093/molehr/gax028
https://doi.org/10.1126/science.1262110
https://doi.org/10.1158/1538-7445.AM2014-3874
https://doi.org/10.1016/j.bbrc.2004.08.188


Endometriosis Machine Learning ClassifiersAkter et al.

16 September 2019 | Volume 10 | Article 766Frontiers in Genetics | www.frontiersin.org

Jimbo, H., Yoshikawa, H., Onda, T., Yasugi, T., Sakamoto, A., and Taketani, Y. 
(1997). Prevalence of ovarian endometriosis in epithelial ovarian cancer. Int. J. 
Gynaecol. Obstet. 59, 245–250. doi: 10.1016/S0020-7292(97)00238-5

Johnson, N. T., Dhroso, A., Hughes, K. J., and Korkin, D. (2018). Biological classification 
with RNA-seq data: can alternatively spliced transcript expression enhance 
machine learning classifiers? RNA 24, 1119–1132. doi: 10.1261/rna.062802.117

Kao, L. C., Germeyer, A., Tulac, S., Lobo, S., Yang, J. P., Taylor, R. N., et al. (2003). 
Expression profiling of endometrium from women with endometriosis 
reveals candidate genes for disease-based implantation failure and infertility. 
Endocrinology 144, 2870–2881. doi: 10.1210/en.2003-0043

Kaponis, A., Iwabe, T., Taniguchi, F., Ito, M., Deura, I., Decavalas, G., et al. (2012). 
The role of NF-kappaB in endometriosis. Front. Biosci. (Schol. Ed). 4, 1213–
1234. doi: 10.2741/s327

Kok, V. C., Tsai, H.-J., Su, C.-F., and Lee, C.-K. (2015). The risks for ovarian, 
endometrial, breast, colorectal, and other cancers in women with newly 
diagnosed endometriosis or adenomyosis: a population-based study. Int. J. 
Gynecol. Cancer 25, 968–976. doi: 10.1097/IGC.0000000000000454

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and 
memory-efficient alignment of short DNA sequences to the human genome. 
Genome Biol. 10, R25. doi: 10.1186/gb-2009-10-3-r25

Lee, B., Du, H., and Taylor, H. S. (2009). Experimental murine endometriosis 
induces DNA methylation and altered gene expression in eutopic endometrium. 
Biol. Reprod. 80, 79–85. doi: 10.1095/biolreprod.108.070391

Lee, H. W., Choi, H. Y., Joo, K. M., and Nam, D.-H. (2015). Tumor progression locus 
2 (Tpl2) kinase as a novel therapeutic target for cancer: double-sided effects 
of Tpl2 on cancer. Int. J. Mol. Sci. 16, 4471–4491. doi: 10.3390/ijms16034471

Lei, X., Wang, L., Yang, J., and Sun, L.-Z. (2009). TGFbeta signaling supports 
survival and metastasis of endometrial cancer cells. Cancer Manag. Res. 2009, 
15–24. doi: 10.2147/CMAR.S4545

Lekholm, E., Perland, E., Eriksson, M. M., Hellsten, S. V., Lindberg, F. A., 
Rostami, J., et al. (2017). Putative membrane-bound transporters MFSD14A 
and MFSD14B are neuronal and affected by nutrient availability. Front. Mol. 
Neurosci. 10, 11. doi: 10.3389/fnmol.2017.00011

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). 
The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–
2079. doi: 10.1093/bioinformatics/btp352

Li, R., Leng, A., Liu, X., Hu, T., Zhang, L., Li, M., et al. (2017). Overexpressed 
PTOV1 associates with tumorigenesis and progression of esophageal 
squamous cell carcinoma. Tumour Biol. 39, 1010428317705013. doi: 
10.1177/1010428317705013

Li, Y., Huang, C., Ding, L., Li, Z., Pan, Y., and Gao, X. (2019). Deep learning in 
bioinformatics: introduction, application, and perspective in the big data era. 
Methods. doi: 10.1016/j.ymeth.2019.04.008

Libbrecht, M. W., and Noble, W. S. (2015). Machine learning applications in 
genetics and genomics. Nat. Rev. Genet. 16, 321–332. doi: 10.1038/nrg3920

Lin, Y., Golovnina, K., Chen, Z.-X., Lee, H. N., Negron, Y. L. S., Sultana, H., et al. 
(2016). Comparison of normalization and differential expression analyses 
using RNA-Seq data from 726 individual Drosophila melanogaster. BMC 
Genom. 17, 28. doi: 10.1186/s12864-015-2353-z

Liu, C., Che, D., Liu, X., and Song, Y. (2013). Applications of machine learning 
in genomics and systems biology. Comput. Math. Methods Med. 2013, 587492. 
doi: 10.1155/2013/587492

Lu, Y., Cuellar-Partida, G., Painter, J. N., Nyholt, D. R., Australian Ovarian Cancer 
Study, International Endogene Consortium (IEC), et al. (2015). Shared genetics 
underlying epidemiological association between endometriosis and ovarian 
cancer. Hum. Mol. Genet. 24, 5955–5964. doi: 10.1093/hmg/ddv306

Ma, J., Hou, X., Li, M., Ren, H., Fang, S., Wang, X., et al. (2015). Genome-
wide methylation profiling reveals new biomarkers for prognosis 
prediction of glioblastoma. J. Cancer Res. Ther. 11 Suppl 2, C212–C215. doi: 
10.4103/0973-1482.168188

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet.journal 17, 10. doi: 10.14806/ej.17.1.200

Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., 
et al. (2015). Human genomics. The human transcriptome across tissues and 
individuals. Science 348, 660–665. doi: 10.1126/science.aaa0355

Melin, A., Sparén, P., and Bergqvist, A. (2007). The risk of cancer and the role of 
parity among women with endometriosis. Hum. Reprod. 22, 3021–3026. doi: 
10.1093/humrep/dem209

Meola, J., Rosa e Silva, J. C., Dentillo, D. B., da Silva, W. A., Veiga-Castelli, L. C., 
de  Souza Bernardes, L. A., et al. (2010). Differentially expressed genes in 
eutopic and ectopic endometrium of women with endometriosis. Fertil. Steril. 
93, 1750–1773. doi: 10.1016/j.fertnstert.2008.12.058

Mikeska, T., Bock, C., Do, H., and Dobrovic, A. (2012). DNA methylation 
biomarkers in cancer: progress towards clinical implementation. Expert Rev. 
Mol. Diagn. 12, 473–487. doi: 10.1586/erm.12.45

Mitsuhashi, Y., Horiuchi, A., Miyamoto, T., Kashima, H., Suzuki, A., and 
Shiozawa,  T. (2012). Prognostic significance of Notch signalling molecules 
and their involvement in the invasiveness of endometrial carcinoma cells. 
Histopathology 60, 826–837. doi: 10.1111/j.1365-2559.2011.04158.x

Montojo, J., Zuberi, K., Rodriguez, H., Bader, G. D., and Morris, Q. (2014). 
GeneMANIA: fast gene network construction and function prediction for 
Cytoscape. F1000Research 3, 153. doi: 10.12688/f1000research.4572.1

Mudge, J. M., Frankish, A., and Harrow, J. (2013). Functional transcriptomics in the 
post-ENCODE era. Genome Res. 23, 1961–1973. doi: 10.1101/gr.161315.113

Neelima, E., and Prasad Babu, M. S. (2017). A comparative study of machine 
learning classifiers over gene expressions towards cardio vascular diseases 
prediction. Int. J. Comput. Intl. Res. 13(3), 403-424 Available at: http://www.
ripublication.com [Accessed January 28, 2019].

Painter, J. N., O’Mara, T. A., Morris, A. P., Cheng, T. H. T., Gorman, M., Martin, L., 
et al. (2018). Genetic overlap between endometriosis and endometrial cancer: 
evidence from cross-disease genetic correlation and GWAS meta-analyses. 
Cancer Med. 7, 1978–1987. doi: 10.1002/cam4.1445

Perez-Janices, N., Blanco-Luquin, I., Torrea, N., Liechtenstein, T., Escors, D., 
Cordoba, A., et al. (2015). Differential involvement of RASSF2 hypermethylation 
in breast cancer subtypes and their prognosis. Oncotarget 6, 23944–23958. doi: 
10.18632/oncotarget.4062

Picard. Available at: http://broadinstitute.github.io/picard/ [Accessed September 
7, 2017].

Pirooznia, M., Yang, J. Y., Yang, M. Q., and Deng, Y. (2008). A comparative study of 
different machine learning methods on microarray gene expression data. BMC 
Genomics 9 Suppl 1, S13. doi: 10.1186/1471-2164-9-S1-S13

Quinlan, J. R. (1993). C4. 5: programs for machine learning. (San Mateo, CA, 
U.S.A): Morgan Kaufmann. 

Quinlan, J. R. R. (1986). Induction of decision trees. Mach. Learn. 1, 81–106. doi: 
10.1023/A:1022643204877

Ren, F., Wang, D.-B., Li, T., Chen, Y.-H., and Li, Y. (2014). Identification of 
differentially methylated genes in the malignant transformation of ovarian 
endometriosis. J. Ovarian Res. 7, 73. doi: 10.1186/1757-2215-7-73

Rinaudo, P., Boudah, S., Junot, C., and Thévenot, E. A. (2016). Biosigner: a new 
method for the discovery of significant molecular signatures from omics data. 
Front. Mol. Biosci. 3, 26. doi: 10.3389/fmolb.2016.00026

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a bioconductor 
package for differential expression analysis of digital gene expression data. 
Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616

Romieu-Mourez, R., Landesman-Bollag, E., Seldin, D. C., Traish, A. M., 
Mercurio, F., Sonenshein, G. E., et al. (2001). Roles of IKK kinases and protein 
kinase CK2 in activation of nuclear factor-kappaB in breast cancer. Cancer Res. 
61, 3810–3818. doi: 10.1158/0008-5472.CAN-12-3655

Sangar, F., Schreurs, A.-S., Umaña-Diaz, C., Clapéron, A., Desbois-Mouthon, C., 
Calmel, C., et al. (2014). Involvement of small ArfGAP1 (SMAP1), a novel Arf6-
specific GTPase-activating protein, in microsatellite instability oncogenesis. 
Oncogene 33, 2758–2767. doi: 10.1038/onc.2013.211

Sato, N., Tsunoda, H., Nishida, M., Morishita, Y., Takimoto, Y., Kubo, T., et al. 
(2000). Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor 
gene PTEN in benign endometrial cyst of the ovary: possible sequence 
progression from benign endometrial cyst to endometrioid carcinoma and 
clear cell carcinoma of the ovary. Cancer Res. 60, 7052–7056. 

Schairer, C., Persson, I., Falkeborn, M., Naessen, T., Troisi, R., and Brinton, L. A. 
(1997). Breast cancer risk associated with gynecologic surgery and 
indications for such surgery. Int. J. Cancer 70, 150–154. doi: 10.1002/
(SICI)1097-0215(19970117)70:2<150::AID-IJC2>3.0.CO;2-W

Selçuk, I., and Bozdağ, G. (2013). Recurrence of endometriosis; risk factors, 
mechanisms and biomarkers; review of the literature. J. Turkish Ger. Gynecol. 
Assoc. 14, 98–103. doi: 10.5152/jtgga.2013.52385

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., 
et  al. (2003). Cytoscape: a software environment for integrated models of 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1016/S0020-7292(97)00238-5
https://doi.org/10.1261/rna.062802.117
https://doi.org/10.1210/en.2003-0043
https://doi.org/10.2741/s327
https://doi.org/10.1097/IGC.0000000000000454
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1095/biolreprod.108.070391
https://doi.org/10.3390/ijms16034471
https://doi.org/10.2147/CMAR.S4545
https://doi.org/10.3389/fnmol.2017.00011
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1177/1010428317705013
https://doi.org/10.1016/j.ymeth.2019.04.008
https://doi.org/10.1038/nrg3920
https://doi.org/10.1186/s12864-015-2353-z
https://doi.org/10.1155/2013/587492
https://doi.org/10.1093/hmg/ddv306
https://doi.org/10.4103/0973-1482.168188
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1126/science.aaa0355
https://doi.org/10.1093/humrep/dem209
https://doi.org/10.1016/j.fertnstert.2008.12.058
https://doi.org/10.1586/erm.12.45
https://doi.org/10.1111/j.1365-2559.2011.04158.x
https://doi.org/10.12688/f1000research.4572.1
https://doi.org/10.1101/gr.161315.113
http://www.ripublication.com
http://www.ripublication.com
https://doi.org/10.1002/cam4.1445
https://doi.org/10.18632/oncotarget.4062
http://broadinstitute.github.io/picard/
https://doi.org/10.1186/1471-2164-9-S1-S13
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1186/1757-2215-7-73
https://doi.org/10.3389/fmolb.2016.00026
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1158/0008-5472.CAN-12-3655
https://doi.org/10.1038/onc.2013.211
https://doi.org/10.1002/(SICI)1097-0215(19970117)70:2
https://doi.org/10.1002/(SICI)1097-0215(19970117)70:2
https://doi.org/10.5152/jtgga.2013.52385


Endometriosis Machine Learning ClassifiersAkter et al.

17 September 2019 | Volume 10 | Article 766Frontiers in Genetics | www.frontiersin.org

biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/
gr.1239303

Simoens, S., Hummelshoj, L., and D’Hooghe, T. (2007). Endometriosis: cost 
estimates and methodological perspective. Hum. Reprod. Update 13, 395–404. 
doi: 10.1093/humupd/dmm010

Singh, S. K., Lupo, P. J., Scheurer, M. E., Saxena, A., Kennedy, A. E., Ibrahimou, B., 
et al. (2016). A childhood acute lymphoblastic leukemia genome-wide 
association study identifies novel sex-specific risk variants. Medicine 
(Baltimore). 95, e5300. doi: 10.1097/MD.0000000000005300

Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing 
differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 
3, Article 3, 1–25 doi: 10.2202/1544-6115.1027

Song, H.-Y., Wang, Y., Lan, H., and Zhang, Y.-X. (2018). Expression of Notch 
receptors and their ligands in pancreatic ductal adenocarcinoma. Exp. Ther. 
Med. 16, 53–60. doi: 10.3892/etm.2018.6172

Sperger, J. M., Chen, X., Draper, J. S., Antosiewicz, J. E., Chon, C. H., Jones, S. B., 
et al. (2003). Gene expression patterns in human embryonic stem cells and 
human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. U. S. A. 100, 13350–
13355. doi: 10.1073/pnas.2235735100

Su, R.-W., Strug, M. R., Joshi, N. R., Jeong, J.-W., Miele, L., Lessey, B. A., et al. 
(2015). Decreased Notch pathway signaling in the endometrium of women 
with endometriosis impairs decidualization. J. Clin. Endocrinol. Metab. 100, 
E433–E442. doi: 10.1210/jc.2014-3720

Su, T., Yang, X., Deng, J.-H., Huang, Q.-J., Huang, S.-C., Zhang, Y.-M., et al. (2018). 
Evodiamine, a novel NOTCH3 methylation stimulator, significantly suppresses 
lung carcinogenesis in vitro and in vivo. Front. Pharmacol. 9, 434. doi: 10.3389/
fphar.2018.00434

Tarca, A. L., Carey, V. J., Chen, X., Romero, R., and Drăghici, S. (2007). Machine 
learning and its applications to biology. PLoS Comput. Biol. 3, e116. doi: 
10.1371/journal.pcbi.0030116

Thomas, E. J., and Campbell, I. G. (2000). Molecular genetic defects in endometriosis. 
Gynecol. Obstet. Invest. 50 Suppl 1, 44–50. doi: 10.1159/000052878

Thompson, J. A., Tan, J., and Greene, C. S. (2016). Cross-platform normalization 
of microarray and RNA-seq data for machine learning applications. PeerJ 4, 
e1621. doi: 10.7717/peerj.1621

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice 
junctions with RNA-Seq. Bioinformatics 25, 1105–1111. doi: 10.1093/
bioinformatics/btp120

Trimarchi, M. P., Yan, P., Groden, J., Bundschuh, R., and Goodfellow, P. J. (2017). 
Identification of endometrial cancer methylation features using combined 
methylation analysis methods. PLoS One 12, e0173242. doi: 10.1371/journal.
pone.0173242

Umarov, R., Kuwahara, H., Li, Y., Gao, X., and Solovyev, V. (2019). Promoter 
analysis and prediction in the human genome using sequence-based deep 
learning models. Bioinformatics. doi: 10.1093/bioinformatics/bty1068

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., 
et al. (2002). Accurate normalization of real-time quantitative RT-PCR data 
by geometric averaging of multiple internal control genes. Genome Biol. 3, 
RESEARCH0034, 1–0034.11 doi: 10.1186/gb-2002-3-7-research0034

Vestergaard, A. L., Thorup, K., Knudsen, U. B., Munk, T., Rosbach, H., 
Poulsen, J. B., et al. (2011). Oncogenic events associated with endometrial and 

ovarian cancers are rare in endometriosis. Mol. Hum. Reprod. 17, 758–761. doi: 
10.1093/molehr/gar049

Vougioukalaki, M., Kanellis, D. C., Gkouskou, K., and Eliopoulos, A. G. (2011). 
Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett. 304, 
80–89. doi: 10.1016/j.canlet.2011.02.004

Wei, S. H., Balch, C., Paik, H. H., Kim, Y.-S., Baldwin, R. L., Liyanarachchi, S., 
et al. (2006). Prognostic DNA methylation biomarkers in ovarian cancer. Clin. 
Cancer Res. 12, 2788–2794. doi: 10.1158/1078-0432.CCR-05-1551

Wenzl, R., Kiesel, L., Huber, J. C., and Wieser, F. (2003). Endometriosis: a genetic 
disease. Drugs Today (Barc). 39, 961–972. doi: 10.1358/dot.2003.39.12.799414

Willis, S., Sun, Y., Abramovitz, M., Fei, T., Young, B., Lin, X., et al. (2017). High 
expression of FGD3, a putative regulator of cell morphology and motility, is 
prognostic of favorable outcome in multiple cancers. JCO Precis. Oncol. 1, 
1–13. doi: 10.1200/PO.17.00009

Wold, S., Sjöström, M., and Eriksson, L. (2001). PLS-regression: a basic tool 
of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130. doi: 10.1016/
S0169-7439(01)00155-1

Wu, Y., Strawn, E., Basir, Z., Halverson, G., and Guo, S.-W. (2007). Aberrant 
expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, 
and DNMT3B in women with endometriosis. Fertil. Steril. 87, 24–32. doi: 
10.1016/j.fertnstert.2006.05.077

Xue, Q., Lin, Z., Cheng, Y.-H., Huang, C.-C., Marsh, E., Yin, P., et al. (2007a). 
Promoter methylation regulates estrogen receptor 2 in human endometrium and 
endometriosis. Biol. Reprod. 77, 681–687. doi: 10.1095/biolreprod.107.061804

Xue, Q., Lin, Z., Yin, P., Milad, M. P., Cheng, Y.-H., Confino, E., et al. (2007b). 
Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 
5’ CpG island in endometriosis. J. Clin. Endocrinol. Metab. 92, 3261–3267. doi: 
10.1210/jc.2007-0494

Yeung, P., Sinervo, K., Winer, W., and Albee, R. B. (2011). Complete 
laparoscopic excision of endometriosis in teenagers: is postoperative 
hormonal suppression necessary? Fertil. Steril. 95, 1909–1912.e1. doi: 
10.1016/j.fertnstert.2011.02.037

Yu, H.-C., Lin, C.-Y., Chang, W.-C., Shen, B.-J., Chang, W.-P., Chuang, C.-M., et al. 
(2015). Increased association between endometriosis and endometrial cancer: 
a nationwide population-based retrospective cohort study. Int. J. Gynecol. 
Cancer 25, 447–452. doi: 10.1097/IGC.0000000000000384

Zhang, X., Jiang, P., Shuai, L., Chen, K., Li, Z., Zhang, Y., et al. (2016). miR-589-5p 
inhibits MAP3K8 and suppresses CD90+ cancer stem cells in hepatocellular 
carcinoma. J. Exp. Clin. Cancer Res. 35, 176. doi: 10.1186/s13046-016-0452-6

Conflict of Interest Statement: The authors declare that the research was 
conducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Copyright © 2019 Akter, Xu, Nagel, Bromfield, Pelch, Wilshire and Joshi. This is an 
open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/humupd/dmm010
https://doi.org/10.1097/MD.0000000000005300
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.3892/etm.2018.6172
https://doi.org/10.1073/pnas.2235735100
https://doi.org/10.1210/jc.2014-3720
https://doi.org/10.3389/fphar.2018.00434
https://doi.org/10.3389/fphar.2018.00434
https://doi.org/10.1371/journal.pcbi.0030116
https://doi.org/10.1159/000052878
https://doi.org/10.7717/peerj.1621
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.1371/journal.pone.0173242
https://doi.org/10.1371/journal.pone.0173242
https://doi.org/10.1093/bioinformatics/bty1068
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1093/molehr/gar049
https://doi.org/10.1016/j.canlet.2011.02.004
https://doi.org/10.1158/1078-0432.CCR-05-1551
https://doi.org/10.1358/dot.2003.39.12.799414
https://doi.org/10.1200/PO.17.00009
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.fertnstert.2006.05.077
https://doi.org/10.1095/biolreprod.107.061804
https://doi.org/10.1210/jc.2007-0494
https://doi.org/10.1016/j.fertnstert.2011.02.037
https://doi.org/10.1097/IGC.0000000000000384
https://doi.org/10.1186/s13046-016-0452-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data
	Introduction
	Materials and Methods
	Subjects and Tissue Collection
	Transcriptomics and Methylomics Data Preprocessing Workflow
	Differential Analysis
	Network and Functional Enrichment Analysis
	Machine Learning Classifiers
	Decision Tree
	Biosigner

	Machine Learning Experimental Approach
	Cross-Validation and Model Performance

	Results
	Data Preprocessing and Differential Analysis
	Decision Tree Results Using Transcriptomics Data
	Biosigner Results Using Transcriptomics Data
	Performance Evaluation of Models Using Transcriptomics Data
	Decision Tree Results Using Methylomics Data
	Biosigner Results Using Methylomics Data
	Performance Evaluation of Models Using Methylomics Data

	Discussion
	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


