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Abstract: This paper presents a posture recognition system aimed at detecting sitting postures of a
wheelchair user. The main goals of the proposed system are to identify and inform irregular and
improper posture to prevent sitting-related health issues such as pressure ulcers, with the potential
that it could also be used for individuals without mobility issues. In the proposed monitoring
system, an array of 16 screen printed pressure sensor units was employed to obtain pressure data,
which are sampled and processed in real-time using read-out electronics. The posture recognition
was performed for four sitting positions: right-, left-, forward- and backward leaning based on
k-nearest neighbors (k-NN), support vector machines (SVM), random forest (RF), decision tree (DT)
and LightGBM machine learning algorithms. As a result, a posture classification accuracy of up to
99.03 percent can be achieved. Experimental studies illustrate that the system can provide real-time
pressure distribution value in the form of a pressure map on a standard PC and also on a raspberry
pi system equipped with a touchscreen monitor. The stored pressure distribution data can later be
shared with healthcare professionals so that abnormalities in sitting patterns can be identified by
employing a post-processing unit. The proposed system could be used for risk assessments related
to pressure ulcers. It may be served as a benchmark by recording and identifying individuals’ sitting
patterns and the possibility of being realized as a lightweight portable health monitoring device.

Keywords: pressure sensor; pressure mapping; sitting posture recognition; wheelchair seat cushion;
machine learning algorithms

1. Introduction

Individuals who require wheelchairs may be suffering from physical and or sensory
disabilities which hinder their daily activities. Not only might a large number of human
beings in different parts of the world be subjected to developing a type of pressure ulcer
due to maintaining a sedentary lifestyle, but this may also happen because of disorders
associated with reduced mobility and its complications. The well-being condition of a
wheelchair bound individual is affected by prolonged sitting time and sitting posture [1,2].
A continuous pressure over a period of time results in restricted blood flow and the
limitation of nutrition and oxygen supply to skin tissues, which may lead to localized and
deep tissue injury (DTI) [3,4]. Generally, immobility may come from a broad spectrum of
causes. The reasons for the loss of movement can be categorized into intrapersonal factors,
which are linked to psychological parameters such as extreme level of stress or anxiety, fear
of getting injured and, post-traumatic stress disorder (PTSD), as well as due to physical
modifications that may have emerged as a result of injuries including—but not limited
to—cardiovascular, cognitive and musculoskeletal conditions, which expose many groups
to the possibility of developing pressure ulcers [5,6].

The endurance of pressure varies from person to person; nonetheless, a number of
research studies have found that a pressure value greater than arterial capillary pressure
(32 mm Hg) may lead to occlusion in blood vessels [7,8]. Furthermore, those who are
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unable to have any sort of movement without the help of others, which may usually be due
to spinal cord injuries, Parkinson’s and osteoporotic fracture, are at significantly higher risk
of developing pressure ulcers [9–11]. Among the frequent users of wheelchairs, pressure
ulcer most commonly appears within a certain part of the body such as ischial tuberosities,
calcaneus and back of the knee [12]. However, due to inadequate mobility, moisture
anomalies, friction and shear, it can also develop in other skin regions. Therefore, one can
conclude that identifying the appropriate sitting posture in the first place is virtually the
best approach that can be taken to limit the prolonged intensity of the pressure and, thus,
the probability of developing an ulcer can be decreased.

There are many diverse methods that have been developed to identify the sitting
behavior of persons and to reduce the pressure ulcer development risk. Some related
works have developed studies on sitting posture recognition using force sensors and
vibration motors. The small motors vibrate after a bad posture is detected [13,14]. Another
study performs a similar method of posture selection but utilizes normal chairs [15]. A
textile pressure sensor is proposed in [16] and a sitting posture detection uses gyroscope
readings through mobile devices attached to human spinal points and incorporates decision
tree algorithm [17]. Furthermore, other studies have proved the benefit of using machine
learning algorithms such as k-NN and SVM, along with sensors to classify human activities
and reach a classification performance of around 80% [18,19]. Lying posture determination
through recognition of multitier body parts is carried out in [20] and the system recognizes
six different lying positions base on three major body parts such as head, shoulder and
hips. A camera-based posture recognition system uses ensemble convolutional neural
networks (CNNs) in home environments to cope with sudden danger to elderly people is
reported [21].

In this paper, we present an intuitive method of sitting posture recognition system
using pressure sensors and machine learning algorithms. The system is built on a pressure
sensor array embedded in a wheelchair seat cushion, read-out electronics and the classifi-
cation machine learning algorithms on a standard PC and embedded computing systems
(raspberry pi 3B and raspberry pi 4B). The machine learning algorithms are evaluated using
a conventional computer and raspberry pi embedded platform to verify its functionality.
We have realized that the proposed system has a high level of sitting posture classification
accuracy up to 99.03%, which may help in identifying and deciding about the most suitable
sitting posture at different times. The contributions of this paper are listed as follows:

• The paper includes a pressure sensor design employing large area electronics, based
on piezoresistive effect, using conductive inks and flexible substrates.

• A read-out electronics system is designed to acquire the pressure data from pressure
sensor using a microcontroller.

• The paper investigates the applicability of machine learning schemes in the proposed
pressure sensing system. A detailed performance comparison is presented between
kNN, SVM, random forest, decision tree and LightGBM schemes.

• The proposed system is demonstrated on an embedded platform to present a stan-
dalone pressure recognition system, which is capable of achieving same classification
accuracy as compared to a standard personal computer (PC).

• A computational comparison is presented between an embedded system and a standard
PC in order to evaluate the performance of the proposed system on different platforms.

The rest of the paper has the following organization: Section 2 describes the overall
system configuration that includes hardware and data processing characteristics, Section 3
demonstrates the results of the experiments and Section 4 reports the standalone configura-
tion of the proposed system. Section 5 presents an analysis of results and Section 6 defines
possible future directions.

2. System Configuration

The sitting posture recognition system is based on five main stages: (a) design and
fabrication of screen-printed pressure sensors, (b) design of read-out electronics, (c) data
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acquisition and data set compilation, (d) data processing and classification algorithms using
scikit-learn machine learning (version 0.24.2) [22] and LightGBM (version 3.2.1) [23] on
standard PC and (e) implementation of the same algorithms on an embedded platform, e.g.,
raspberry pi to compare results with standard PC. The implementation on an embedded
platform is carried out to investigate its potential functionalities of being used as a fully
portable monitoring system, which would then contribute to user’s comfort.

2.1. Design of Pressure Sensing Matrix

The design of pressure sensing matrix is based on a general sitting area of a wheelchair
seat cushion focusing on the ischial areas. The large area screen-printed sensor for
wheelchair seat consists of 16 pressure sensing elements, covering an effective sitting area of
505 cm2. The horizontal and vertical dimensions for the sensor matrix are 23.5 cm × 21.5 cm
as shown in Figure 1. The distance between sensing elements in sensor matrix is 5.5 cm in
X direction, while 3.0 cm for central sensing elements and 2.5 cm for outer sensing elements
in Y direction, respectively. These are common seating dimensions of a person with a
normal physique for ischial areas. The sensor is usually placed inside or underneath the
foam cushion. The assembly requires a very thin and flexible pressure sensor to be able to
tolerate mechanical deformations due to user’s movements.
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Figure 1. Area of the pressure sensor and placement of sensing elements.

Three PET sheets with a thickness of 100 µm, are employed to construct the proposed
large area sensor, described as top, center and bottom sheets for this design. Top sheet is
printed with interdigital patterns and interconnects with highly conductive Ag-ink and
acts as a conductive layer. Bottom layer is printed with carbon filler based blended ink
that has both resistive and piezoresistive properties. The center layer has openings that are
patterned by a laser cutter, works as a separator between two layers. The center layer also
functions as an adhesive bonding between top and bottom layers. The dimensions and
configuration of sensing element are depicted in Figure 2.
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Figure 2. Exploded view structure of a sensing element.

The sensor matrix’s top layer is printed using an Ag flakes-based ink ECI-1036 by Engi-
neered Conductive Materials (ECM), which has a stated sheet resistance 12–15 mΩ/sq/25 µm.
The temperature curing is carried out for 5 min in a convection oven at 120 ◦C. On a PET
sheet that is 100 µm thick, a wet layer of 10 µm thickness has been screen-printed using
a 100–40 (100 threads per cm, 40 µm thread thickness) meshed screen employing a semi-
automatic screen printer DY-2030P. Methyl Ethyl Ketone (MEK) is utilized to clean off dust
and fat particles from PET sheets.

The sensing layer is printed using a blend of two inks, (CI-2062 by ECM) and (CI-7031
by ECM), which is a positive temperature coefficient carbon particle-based piezoresistive
ink and a non-conducting ink, which offer controllable ranges of electrical resistance.
These inks are combined with a 10% and 90% ratio, respectively, to achieve roughly
130–150 kΩ/sq/10 µm initial sheet resistance, which is empirically an ideal value (neither
too resistive nor too conductive) for the scope of the design. The blending is carried out
with a paddled stirrer at 100 rpm.

2.2. Read-Out Circuit Design for Sensor Matrix

The explicit system model is illustrated in Figure 3 shows the electrical circuitry. The
pressure data from sensor matrix are acquired and sampled in the read-out electronics using
an 8-bit Atmel ATmega-2560 microcontroller operating at 16 MHz. The microcontroller
is programmed using the Arduino software package. When connected in a 5.0 V voltage
divider configuration with 10 kΩ resistor, a single sensing element may draw a maximum
of 0.56 mA current. The entire read-out circuit utilizes an average current of 100 mA. To
get the output voltage (Vout) of each sensor element utilizing a fixed resistor of 10 kΩ
with 0.1% precision, the voltage divider configuration is utilized and the output voltage is
calculated using Equation (1).

Vout = Vin × R10k
R10k + Rsensor

(1)
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Figure 3. Explicit circuit model for standalone pressure sensing system.

The output voltage is transformed into digital values by utilizing 16 ADC channels
of an ATmega-2560 microcontroller. The read-out electronics is situated on a 5 cm × 2 cm
PCB as shown in Figure 4. The sensor matrix and read-out circuitry would easily fit within
the seat cushion due to its compact form factor. The sensor matrix is connected to the PCB
using a twenty-pin flex connector that has a 0.5 mm pitch.
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2.3. Data Set Compilation

To identify the specific sitting posture on a wheelchair and to label the collected
measurements (hereafter referred to as samples) for use in posture classification schemes,
we resort to a traditional taxonomy established by physiotherapists and physicians who
have the expertise in this field. The following explains the data collecting procedure used in
this study: 32 individuals took part in compilation of the dataset and they were instructed
to hold each of four postures (a, b, c and d) demonstrated in Figure 5, for up to 30 s (average
estimated time required to acquire a reliable sample). The stable values are then selected to
make the training data set for four postures, i.e., left-, right-, forward- and backward lean
called as class in the data set. Each individual completed one set per posture. Since the
data are comprised of 16 sensors, a total of 4096 data points (256 observations × 16 sensors)
is obtained. The average weight and weight range of the participants are presented in
Table 1.
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Table 1. Volunteers participated in data set compilation.

Participants Participants Count Weight Range (kg) Average Weight (kg)

Male 25 57–132 77
Female 7 49–88 62

The data sampling was performed at a temperature of 24 ◦C and relative humidity
of 30–40% at the lean angles of ≈25◦ and ≈35◦ degrees. Participants are 38 ± 13 years in
age and 175 ± 18 cm in height. The pressure points data for sitting and leaning positions
from volunteers have been collected through a MATLAB® GUI and that GUI simplifies the
sample acquisition process (acquiring a sample at a specific time). The seat cushion of the
wheelchair along with the placement of the sensor matrix are shown in Figure 6.
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2.4. K-Nearest Neighbor (k-NN)

K-nearest neighbor is a supervised learning algorithm where the result of a new
instance query is classified based on the majority of k-nearest neighbor categories [24].
It is one of the most popular algorithms for pattern recognition [25]. The purpose of
this algorithm is to classify a new object based on attributes and training samples [26].
The classifiers do not use any model to fit and are only based on memory [24]. The k-
NN algorithm uses neighborhood classification as the prediction value of the new query
instance. The traditional k-NN classification algorithm may have three limitations: (a)
calculation complexity due to the usage of all training samples for classification, (b) the
performance of algorithm solely depends on the training set and (c) the samples contain no
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apparent weight difference. The k-NN classification algorithm predicts the test sample’s
category according to the k training samples which are the nearest neighbors to the test
sample and determines it to that category that has the largest probability [27]. The k-NN
algorithm is rooted from this assumption that being true enough for the algorithm to be
useful. k-NN captures the perception of similarity (sometimes called distance, proximity
or closeness), calculating the distance between points on a graph [28].

2.5. Random Forest

Random forest is an ensemble learning method for classification, regression and other
tasks that operates by constructing a multitude of decision trees at training time and
outputting the class that is the mode of the classes (classification) or mean prediction
(regression) of the individual trees. Random forests correct for decision trees’ habit of
overfitting to their training sets [29]. Random forest, as its name implies, consists of a
large number of individual decision trees that operate as an ensemble [30]. The factors
that influence memory consumption and processing time are the amount of data and the
number of trees in forest. For classification, the input test sample is fed to all decision
trees and then, each decision tree associates the sample to a specific class. Majority voting
is performed on the outcome of all decision trees to classify the test sample. During
the training process, these trees are generated using random samples from training data.
To further split each node within the tree, a random number of features are used. This
randomness in tree generation, along with majority voting on the outcome of all trees in
the forest, adds diversification to the random forest classifier and makes it immune to
overfitting [31].

2.6. Support Vector Machines

Support vector machines (SVM) [32] is a powerful supervised machine learning
algorithm that is most widely used in classification as support vector classification (SVC)
and support vector regression (SVR) applications [33]. SVMs are widely popular due
to their ability to learn well with small number of parameters, their robustness against
various model violations and computational efficiency compared with other methods [34].
The support vector relates to points that are closest to the hyperplane, while the margins
correspond to distance between the support vectors. Support vectors are data points that are
closer to the hyperplane and influence the position and orientation of the hyperplane [35].
Using these support vectors, the margins of the classifier are maximized. Deleting the
support vectors will alter the position of the hyperplane, as described in Equation (2).

h(x) = wTX
0 + b0 (2)

The SVM kernel is a function that takes low dimensional input space and transforms
it to a higher dimensional space, i.e., it converts not separable problem to a separable
problem. It is mostly useful in non-linear separation problems [36].

2.7. Decision Tree

The decision tree is a hierarchical framework made up of decision rules that splits in-
dependent variables recursively into homogenous zones. It is a decision-support approach
that uses a tree-like representation of options and their potential outcomes. When making
decisions, a tree-like model of decisions and their probable repercussions is used to aid in
the decision process [37]. The decision tree integrates the elements in a hierarchical man-
ner, with the most significant feature positioned at the tree’s root. Every node in the tree
represents one of the characteristics and each leaf represents the most common class value.
This benefits from the ability to quickly apply segmentation “rules” to elements apart from
the ones that make up starting data set and the representing group is unidentified [38]. The
defining “rules” of the hierarchical segmentation of elements that utilize the link between
the class to which each unit belongs, and the variables identified for every unit. Each unit’s
class must be known before using decision trees. The technique’s aim is to discover an
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optimum decision rule, for instance, a decision rule that, given a specific set of variables,
permits a reliable estimate from which class every unit falls in [39].

2.8. LightGBM

Light gradient boosting machine (LightGBM) is a framework that utilizes gradient
boosting learning and histogram-based algorithms, while it is also similar to tree-based
machine learning algorithms. LightGBM uses vertical tree topology, while other similar
algorithms use horizontal tree topologies. This means that LightGBM grows the tree leaf-
wise (best-first) compared to level-wise for other tree-based algorithms [40]. Theoretically,
leaf-wise algorithms contribute to minimizing more loss as compared to level-wise algo-
rithms. It selects the leaf having maximum data loss to grow. Similar to any other decision
tree algorithm, LightGBM is also sensitive to overfitting for smaller datasets. The finding
of the optimum split points is usually the most time-consuming part in learning a decision
tree. LightGBM can easily operate with large data size and utilizes lower memory while
focusing on the accuracy of results [23].

3. Results

In this section, the characterization of the pressure in terms of pressure–voltage
response, pressure–resistance relationship, senor durability and sensor drift are presented.
The classification performances of the machine learning algorithms—k-NN, SVM, decision
tree, random forest and LightGBM—are also discussed.

3.1. Characterization of Pressure Sensor

The pressure–voltage relationship is obtained using a 5.0 V voltage divider configu-
ration utilizing a high precision divider resistor of 10 kΩ. Voltage readings are acquired
using a digital multimeter (Rhode and Schwarz HMC-8012) and the applied force using a
dynamometer (Lutron FG-6020SD) mounted on a manual horizontal translation stage. The
acquired voltage–pressure graph is then presented in Figure 7.
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The resistance data as a function of applied force are obtained by employing a similar
experimental setup as for pressure–voltage test without voltage divider. A rubber-based
actuator (30 Shore D) has been attached to a dynamometer. The force sensitivity range is
measured as ~0.2 to 30 N and the activation force is ~0.2 N in this sensor design. The test is
performed at room temperature and the resulting curve is presented in Figure 8.
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For the durability test, we put a sensing element under 100 N force (about 3.3 times the
normal range) for a period of 24 h, utilizing a precision motorized force tester (Mecmesin
MultiTest 2.5-dV). The resistance is logged using a UT61D multimeter. The resistance as a
function of force is measured once again after the durability test and the result is presented
in Figure 8. The result showed a slight increase in the resistance; however, the overall
sensing behavior remained nearly unchanged. Then, we considered the sensor for physical
and mechanical deformation and it was realized that the sensor PET sheet does not deform
physically at 100 N (10 Kg) load. The result for the sensor drift is shown in Figure 9, while
the measured drift was 1.41% at 100 N over 24 h. It is also noted that a pressure in excess
of 200 N/cm2 causes irreversible damage to the sensor.
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3.2. Performance of Machine Learning Algorithms

In order to evaluate the performance and advantages of each step in the sitting posture
monitoring system, the results of the classification algorithms are detailed in terms of
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classification behavior and required system time to compile the algorithm. This will also
serve as a reference to evaluate the overall performance of the system. The classifiers are
trained using the training data that comprise four different sitting postures, as mentioned
in previous section. The test data are then used to determine the average classification
accuracy of each classifier. The classifiers are trained without any dimensionality reduction.
The key parameters of the classification algorithms are summarized in Table 2.

Table 2. Machine learning algorithms’ functional parameters.

No Classifier Parameters

1 k-nearest neighbors (k-NN) n_neighbors = 3, leaf_size = 30,
metric = ‘minkowski’

2 Random Forest (RF) n_estimators = 100, criterion = ‘gini’,
min_samples_split = 2, min_samples_leaf = 1

3 Support Vector Machines
(SVM)

SVM type: SVC, degree = 3, C = 1.0, kernel = ‘rbf’, gamma = ‘scale’,
random_state = None

4 Decision Tree (DT) Criterion = ‘gini’, min_samples_split = 2,
min_samples_leaf = 1

5 Light Gradient Boosting Machine (LightGBM)
n_estimators = 100, boosting_type = ‘gbdt’, num_leaves = 31,

max_depth = −1,
learning_rate = 0.1, subsample_for_bin = 200,000

The data are in numeric form, processed by the microcontroller’s ADCs from all
16 sensing elements. The dataset is composed of four categorical classes (right-lean, left-
lean, forward-lean and backward-lean in the dataset). There are 16 columns of numerical
data, so there are 16 independent variables and the total number of observations are 256,
whereas there are a total of 4096 data points. For training purposes, all 16 ‘sensors’ data are
used; hence, the dimensionality reduction methods are not utilized. The train–test data
splitting is carried out using the (train_test_split) function and the train size is 0.8, or 80%,
while test size is 0.2, or 20%. The random state is not set for any of the mentioned machine
learning algorithm; thus, the test data would be randomized in each run.

For k-NN, default settings from scikit-learn are used. However, the number of neigh-
bors are set to 3 in our implementation (n_neighbors = 3). It is also noted that the clas-
sification accuracy is also similar when (n_neighbors = 5) is used. The k-NN algorithm
provided sufficiently better average accuracy for posture classification and less compile
time. While using the SVM algorithm, the default settings from scikit-learn are used and
(gamma = ‘scale’) is employed. SVM illustrates the worst (least accuracy) among the clas-
sifiers due to its binary classification tendency; however, the compile time is sufficiently
short. In random forest, default settings from scikit-learn are used that have the required
estimators (n_estimators = 100). Random forest yielded very good average classification
accuracy: up to 98.65%. Random forest requires high processing resources because of
its complexity and takes a longer time to compile, making it not very suitable for use on
the raspberry pi 3B. While employing the decision tree algorithm, the default settings
from scikit-learn and criterion = ‘gini’ are used. The decision tree also resulted in a better
average accuracy and short compile time. For LightGBM, the default settings are used
and n_estimators = 100 are already set in the settings. Light GBM performed the best,
although it took relatively more compile time than the others; however, it is still faster than
the random forest. The average accuracies from the five classifiers are shown as a boxplot
in Figure 10.
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4. Standalone System

A raspberry pi 3B using the Raspbian OS constructs the core of the portable informa-
tion and monitoring system. The incoming data are processed in Spyder IDE using Python
programming language and relevant information is, hence, displayed on the 7-inch touch
display, as shown in Figure 11.
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Figure 11. Standalone embedded system mounted on a wheelchair.

In the standalone monitoring system, the pressure data coming from read-out elec-
tronics are received through serial communication over USB on raspberry pi 3B. As the
standalone embedded system is capable of internet connectivity through onboard Wi-Fi,
the data can be easily sent and stored on a web database, cloud or a network attached
storage (NAS) system for the evaluation of daily sitting routines and long-term evaluation
of sitting behavior. Different IDEs for Python can be used to run the posture recognition al-
gorithms. The average compile time for popular Python IDEs for raspberry pi is compared
in Table 3. To evaluate the compile time of employed machine learning algorithms for a
standalone embedded system, raspberry pi 3B and raspberry pi 4B were used.
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Table 3. Average compile time on popular Python IDEs.

IDE/Version Algorithm Raspberry Pi 3B
Average Compile Time (s)

Raspberry Pi 4B
Average Compile Time (s)

Spyder 3.3.3

k-NN 0.951 0.452
Random forest 2.181 0.942
SVM (linear) 0.904 0.423
Decision Tree 0.812 0.394

Light GBM 1.576 0.638

Thonny 3.3.1

k-NN 8.305 3.182
Random forest 12.65 3.936
SVM (linear) 8.734 3.214
Decision Tree 8.556 3.375

Light GBM 9.956 4.526

Geany 1.33

k-NN 5.805 2.754
Random forest 7.812 3.245
SVM (linear) 6.154 2.702
Decision Tree 6.632 2.762

Light GBM 6.305 2.824

The proposed standalone embedded system was also compared with a standard desk-
top PC (processor: Intel Core i7, RAM 32 Gb, 256 Gb SSD storage); as naturally expected,
the standard PC surpassed the standalone embedded system in terms of computing time,
evaluated using Spyder IDE. The average accuracy and average compile time were com-
pared for different machine learning algorithms between a standard PC and a standalone
embedded system and the results are listed in Table 4.

Table 4. Average accuracy and compile time on Spyder IDE (Python 3.7.3).

Processor/RAM Algorithm Average Accuracy % Average Compile
Time (s)

Desktop CPU Core i7
Intel 4790K (4.0 GHz)

32 GB
DDR3-1600 MHz

k-NN 98.07 0.054
Random forest 98.65 0.167
SVM (linear) 95.96 0.051
Decision Tree 98.85 0.049

Light GBM (64-bit) 99.03 0.131

Raspberry Pi 3B
BCM2837 (1.2 GHz)

1 GB
LPDDR2-900 MHz

k-NN 97.88 0.951
Random forest 98.46 2.181
SVM (linear) 95.00 0.904
Decision Tree 97.11 0.812

Light GBM (32-bit) 99.03 1.576

Raspberry Pi 4B
BCM2711 (1.5 GHz)

4 GB
LPDDR4-3200 MHz

k-NN 98.27 0.452
Random forest 98.07 0.942
SVM (linear) 95.00 0.423
Decision Tree 97.81 0.394

Light GBM (32-bit) 99.03 0.638

An interactive pressure map shows the current pressure exerted by a sitting person in
real-time on the raspberry pi screen, as shown in Figure 12. The volunteer in this test was a
male, had a weight of 95 kg and a heavy-boned physique. The pressure map illustrates the
pressure intensity of all sixteen unit elements of the sensor array. The pressure intensity
is shown with RGB color space. It also shows numerical values of current pressure with
respect to sitting orientation. The values are updated every one second on the screen. The
real-time animated pressure map is drawn on-screen using PyQt5 framework and the
updating frequency is 5 Hz.
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The average power consumption for the developed embedded system, including
touch display and read-out electronics (based on a mean value of current), w 4.28 W
(818 mA and 5 V) for raspberry pi 3B, whereas raspberry pi 4B consumes 5.68 W (1083 mA
and 5 V), as shown in Figure 13. The readings for the current consumption and voltages
were carried out using a digital multimeter (Rhode and Schwarz HMC-8012) by employing
the standard electrical methods.
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5. Discussion and Conclusions

This research presented the layout of a standalone embedded system comprising five
classification algorithms that are capable of identifying sitting posture abnormalities on a
wheelchair with a prediction performance of up to 99.03%. As a result of the pressure data
that are processed by machine learning algorithms, our system is able to classify four lean-
ing positions by means of some effective classification algorithms using machine learning
(for instance, k-NN, SVM, decision tree, random forest and LightGBM, as discussed in the
previous section). The results from k-NN, SVM and decision tree show the possibility to
implement these algorithms in real-time posture recognition schemes, as the processing
is efficient and easy in terms of processing speed and resource consumption. All of the
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classification algorithms that are employed in this work resulted in a satisfactory accuracy.
LightGBM offers better accuracy than the others, but it requires a slightly larger compile
time; however, it is still faster than the random forest algorithm.

The use of machine learning in sitting posture recognition for wheelchair users im-
proves the recognition accuracy from the obtained pressure data. Recognizing an improper
sitting posture is easily feasible and the user would be advised accordingly. The sitting
posture recognition system offers an effective way for rehabilitation and pressure ulcer
prevention for wheelchair users and it is equally beneficial for able-bodied users. The
standalone embedded system for posture recognition and information was developed that
can be easily mounted on any wheelchair (powered or non-powered) to show informa-
tion related to sitting posture. The raspberry pi 3B and raspberry pi 4B are capable of
performing the pressure distribution monitoring task easily; nonetheless, the run-time
classification might be difficult for the raspberry pi 3B, as it requires a longer compile time
to use machine learning algorithms. In addition, raspberry pi 4B carry out tasks more
quickly; however, it will consume a bit more power in doing so.

6. Future Work

The pressure data collection stage can be improved in order to further enhance the
overall classification accuracy of the system. Pressure data from more volunteers can be
added to the dataset to improve its accuracy. Furthermore, the proposed algorithms could
also be utilized efficiently in post-processing of the data, both on the raspberry pi and on
a standard PC. In future works, some other predictor data variables, such as age, height
and weight, can be used to develop more precise classification algorithms. Currently, the
pressure monitoring program is running manually on the embedded monitoring system;
however, it could be made to run at the startup of the raspberry pi system. The on-screen
menu and user interface can be modified and enhanced to be made even more interactive
for users.
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