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ScRNA-seq and bulk RNA-seq reveal the
characteristics of ferroptosis and establish a risk
signature in cholangiocarcinoma
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Ferroptosis is a recently discovered mode of cell death that in-
hibits tumor growth. Single-cell RNA sequencing (scRNA-seq)
is a powerful tool for analyzing tumor heterogeneity and the im-
mune microenvironment at the single-cell level. We used
CIBERSORT to identify cellular immune scores and found that
monocytes had significantly infiltrated and were correlated
with prognosis in cholangiocarcinoma. scRNA-seq data were ex-
tracted from the Gene Expression Omnibus database, and the
FindCluster() package was used for cell cluster analysis, which
obtained 21 cell clusters, and there was increased TNFSF13B-
TFRC intercellular communication between monocytes and
cholangiocytes. Aweighted correlationnetwork analysiswas per-
formed with the WGCNA package to obtain monocyte-related
gene modules. Univariate and multivariate Cox analyses were
then performed to further establish the signature, and the reli-
ability of the signature was assessed by receiver operating charac-
teristic curve and decision curve analysis. A nomogramsignature
based on the Kaplan-Meier survival analysis was established.We
found that the communication between monocytes and malig-
nant cells in cholangiocarcinoma may be a regulatory factor of
ferroptosis in cancer cells. The prognostic stratification system
of the three-gene signature related to monocytes and ferroptosis
can accurately assess the prognostic risk for cholangiocarcinoma.
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INTRODUCTION
Cholangiocarcinoma (CHOL) is a highlymalignant invasive carcinoma
originating from cholangiocytes, and its incidence is currently
increasingworldwide.1 CHOLhas an insidious onset, is highly invasive,
and can invade perihepatic tissues and lymph nodes and create distant
metastases.2 Most patients with CHOL are at an advanced stage when
they are first diagnosed, and despite the availability of various treatment
options, the overall prognosis forpatients remains poor.3Althougha va-
riety of genetic prognostic signatures have been used to assess tumor
risk, there is still a lack of accurate and reliable prognostic biomarkers
for CHOL to guide treatment and provide personalized management,
which is one of the reasons why the prognosis of CHOL has not
improved.4 Therefore, early molecular diagnosis and prognosis of
CHOL are of great significance for improving the survival of patients.
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Ferroptosis is a type of programmed cell death caused by Fe-dependent
lipid peroxidation and plays an important role in inhibiting tumor cell
proliferation, invasion, and metastasis.5 Ferroptosis can trigger an im-
mune response in tumors, particularly inmalignancies that are resistant
to conventional treatments.6 Ferroptosis has a dual role in cancer
because ferroptotic tumor cells release signalingmolecules that can pro-
mote or inhibit tumor proliferation.7 At present, ferroptosis has been
widely studied in various cancers such as gastric, lung, pancreatic, and
ovarian cancers and glioblastoma.8–12However, the role of these ferrop-
tosis molecules in CHOL is not fully understood. Therefore, it is neces-
sary to explore the application value of ferroptosis to CHOL.

In recent years, with the rapid development of single-cell sequencing
technology, researchers have studied the biochemical processes and
pathogenesis of some diseases at the single-cell level.13 Single-cell
sequencing technology has been widely used in tumor, inflammation,
and other disease processes as well as stem cell development, differen-
tiation, and other physiological processes.14 Single-cell sequencing
can study tumors from various perspectives such as tumor heteroge-
neity, the tumor microenvironment, tracking the metastasis and
spread of cancer cells, and understanding the evolution of cancer
cell resistance during drug treatment.15,16 Min Zhang et al. demon-
strated the heterogeneity of CHOL and the unique tumor micro-
environment through single-cell RNA sequencing (scRNA-seq)
technology and expounded on the heterogeneity of various types of
immune cells, stromal cells, and malignant cells in the tumor micro-
environment, which is the main cause of CHOL. The immune micro-
environment provides a detailed landscape.17 In addition, scRNA-seq
can also enable researchers to penetrate the tumor microenvironment
based on cell-specific changes in the transcriptome and further
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Figure 1. The proportion of immune cells

(A) The proportion of 22 immune cells built on RNA-seq data. (B) The Kaplan-Meier curves (overall survival) of patients with different proportions of monocytes.
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develop diagnostic and prognostic markers to aid in the precise diag-
nosis and treatment of patients.18 However, the application of single-
cell sequencing data in the diagnosis and prognosis of CHOL is still
limited, particularly in combination with the bulk data and corre-
sponding prognostic information in public databases.

In this study, we fully explored the role of ferroptosis in CHOL and its
association with the tumor microenvironment by exploring scRNA-
seq data in the Gene Expression Omnibus (GEO) database and by
combining the bulk data in The Cancer Genome Atlas (TCGA) and
GEO with the clinical information of CHOL patients. Finally, we es-
tablished the importance of ferroptosis-related genes and monocytes
in the tumor microenvironment in the prognosis of CHOL. A prog-
nostic signature based on ferroptosis and monocytes was established,
which can accurately assess the prognosis of patients with CHOL,
thereby allowing personalized management for patients with CHOL.

RESULTS
CIBERSORT analysis

To evaluate the role of various immune cell infiltrates in CHOL, we
analyzed the proportion of immune cells and their impact on the
prognosis of CHOL using bulk RNA-seq data. CIBERSORT is an
analytical tool that predicts the proportion of 22 immune cells based
on RNA-seq data from the TCGA database (Figure 1A). In addition, a
survival analysis showed that patients with and without a high abun-
dance of monocyte cells had a better prognosis (p = 0.01) (Figure 1B).
In response to this phenomenon, we conducted an in-depth analysis
of the infiltration of monocytes in CHOL.

scRNA-seq analysis suggests communication between

monocytes and CHOL cells

The scRNA-seq dataset (GEO: GSE138709) was used to delineate the
diversity and heterogeneity of various cell subsets in CHOL tissue.
Nonlinear dimensionality reduction was performed using Uniform
Manifold Approximation and Projection, and cells were clustered us-
ing the FindCluster() function, resulting in 22 clusters (Figure 2A).
Cholangiocytes (clusters 0, 2, and 5; markers STMN1, KRT19, and
CLDN4) and monocytes (cluster 3; markers S100A9, S100A8, and
LYZ) were classified according to cell markers (Figure 2B).

To investigate the effect ofmonocyte infiltrationonCHOLcells,weper-
formed an intercellular communication analysis between monocytes
and cholangiocytes in CHOL samples. The heatmap of all intercellular
communication showed that the communication between cholangio-
cytes andendothelial cellswas themost prominent,which is also consis-
tent with the function of liver sinusoidal endothelial cells under normal
physiological conditions. The secondmost prominent communication
was between cholangiocytes andmonocytes, macrophages (Figure 2C).
By analyzing the communication relationship between monocytes and
cholangiocytes in detail, it was found that the relationship between
TNFSF13B and TFRC was significant (Figure 2D, p < 0.01, mean =
0.293). The number of occurrences of this relationship pair ranks
21st among all the intercellular relationship pairs, which is sufficient
to show its high frequency (Figure 2E). JiaoWuet al. reported inNature
that intercellular interactions can activateNF2-YAP-TFRC signaling to
regulate ferroptosis in cancer cells.19 We speculate that monocytes can
initiate the ferroptosis pathway in CHOL cells through intercellular
communication. Therefore, we performed a KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) functional enrichment analysis on the
marker genes of this cell subset, but the significantly enriched pathways
did not include the ferroptosis pathway (Figure 2F).

scRNA-seq analysis of subdivided subpopulations within CHOL

cells

Because we did not find a TFRC-related ferroptosis signaling pathway
in the functional enrichment of CHOL cells, we continued to subdi-
vide the cell subsets of CHOL cells and obtained a total of nine clus-
ters (Figure 3A). The marker genes of each cell subset are shown in
Figure 3B. According to the heatmap analysis of ferroptosis gene sig-
natures retrieved from the KEGG database, the enrichment of
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Figure 2. Dissection of CHOL with scRNA-seq

(A) tSNE plot of 40,919 cells from five tumor tissues and three adjacent tissues (label colors are according to separate clusters and cells.) (B) Marker genes heatmap of each

cell subpopulation. (C) Heatmap of all cellular communications. (D) Point plot of interacting pairs betweenmonocytes and cholangiocytes. (E) The top 30 interacting pairs of all

cells. (F) KEGG functional enrichment analysis of marker genes in CHOL cells.
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ferroptosis genes in C0, C1, C3, C4, C5, C7, and C8 was higher, and
the TFRC gene was significantly overexpressed in the C4 subgroup.
The enrichment of ferroptosis genes was significantly lower in C2
and C6, and the TFRC gene was significantly underexpressed in the
C6 subpopulation (Figure 3C). Correspondingly, a contrast number
variation (CNV) analysis showed that C0, C1, C3, C4, C5, C7, and
C8 had higher degrees of copy number mutations, suggesting that
they were malignant cell subsets. C2 and C6 had lower degrees of
copy number mutations, suggesting that they are benign subpopula-
tions of cells (Figure 3D).

We performed a KEGG functional enrichment analysis on themarker
genes of the C4 and C6 subgroups. The significantly enriched path-
ways in C4 were mainly proteoglycans in cancer, pathways in cancer,
transcriptional misregulation in cancer, and a variety of metabolism-
related pathways (Figure 3E); the significantly enriched pathways in
C6 were mainly tryptophan metabolism, fatty acid degradation,
glycolysis/gluconeogenesis, and othermetabolic pathways (Figure 3F).
Most of the pathways in C4 are directly related to cancer, whereas
those in C6 are not directly related to cancer, which again confirms
the results of benign and malignant identification of cell subsets in-
ferred from CNV. Based on the significantly high expression of
TFRC in C4 and its significantly low expression in C6, we screened
all genes that were significantly upregulated in C4 and significantly
downregulated in C6 for functional enrichment analysis (Figure 3G).
The results showed that phagosome, the IL-17 signaling pathway, the
TNF signaling pathway, necroptosis, and other pathways were en-
riched, and the enrichment degree of ferroptosis ranked in the top
five.

These results showed that compared with that in benign cells, the fer-
roptosis pathway was significantly enriched in CHOL cells; mono-
cytes initiated ferroptosis in some of the cancer cell clusters through
communication with CHOL cells (TNFSF13B-TFRC).

WGCNA of gene sets associated with monocyte infiltration

To further explore the potential role of monocytes in CHOL, we
performed weighted gene co-expression analysis (WGCNA) on
CHOL-based TCGA data, constructed a co-expression network,
and identified co-expression modules (Figures 4A and 4B). Based
on two evaluation perspectives, scale independence and mean con-
nectivity, we identified the appropriate soft threshold ability from
the scale-free topological model fit (R2) to classify the monocyte in-
filtration-related gene set into 29 modules (Figure 4C). The dark
turquoise and tan modules (552 genes in total) were significantly
associated with monocyte infiltration (p < 0.05), and the results
showed a negative correlation with high monocyte infiltration and
a positive correlation with low infiltration.

We also obtained 388 ferroptosis-related genes from the FerrDb data-
base. These two modular gene sets intersected with the differentially
expressed gene sets and were then merged (Figure 4D), and a total of
473 gene sets related to ferroptosis or monocyte infiltration were ob-
tained (Figure 4E).
Construction of prognostic risk signature

First, by performing a univariate Cox analysis on these 473 genes, the
monocyte and ferroptosis-related gene signature was screened
(p < 0.05 was the threshold), and there were nine genes in total (Fig-
ure 5A). A multivariate Cox regression analysis was then performed
on the nine genes associated with the prognosis, and a three-gene
prognosis signature was constructed (Figure 5B).

The model formula is as follows:

Risk Score =
Xn

i = 1

Ci� Expi ;

where n = 3, Expi is the expression of the three genes, and Ci is
the corresponding coefficient. RiskScore = 1.543* Expression
(BNIP3) + 1.758* Expression (TMEM107) + 1.576* Expression
(CENPW). The coefficients of BNIP3, TMEM107, and CENPW
were obtained by multivariate Cox regression, which were BNIP3
(1.543), TMEM107 (1.758), and CENPW (1.576) respectively.

The protein-protein interaction network map was constructed for
these three genes and their related genes, and the genes with higher
correlations were mainly BNIP3L, RHEB, and CENP family genes
and TMEM family genes (Figure 5C).

Based on the expression values and correlation coefficients of these
three genes, a prognostic risk score was calculated for each patient
sample. Figures 5D and 5E show the total risk score (upper figure),
survival time (middle figure), and single-gene expression levels (lower
figure) for the TCGA-CHOL and GEO: GSE107943 datasets. Based
on the risk score for each patient shown in Figures 5D and 5E, the pa-
tients were divided into high- and low-risk groups using the optimal
cut off value.
Predictive performance validation on training and validation

datasets

To verify the prognostic performance of the ferroptosis-monocyte
(F-M) signature on different data platforms, TCGA-CHOL was used
as the training set, and GSE107943 was used as the validation set.
Figures 6A and 6C are the Kaplan-Meier (K-M) survival curves of
TCGA-CHOL and GSE107943, respectively. The survival outcomes
of patients with CHOL were significantly different in both datasets
(log rank p < 0.01). The receiver operating characteristic (ROC) curve
was used to evaluate the sensitivity and specificity of the F-M signature
for patient prognosis. The results showed that theTCGA-CHOLdataset
performed better, with areas under the curve (AUCs) of 0.866, 0.869,
and 0.933 for 1, 3, and 5 years, respectively (Figure 6B). The AUCs of
the GSE107943 dataset for 1 year, 3 years, and 5 years were 0.618,
0.792, and 0.910, respectively (Figure 6D).We also re-evaluated the per-
formance of this prognostic signature in predicting 1-, 3-, and 5-year
survival using decision curve analysis (DCA) based on the clinical
data attached to the TCGAdata. The results showed that the F-M signa-
ture had better predictive power than other clinical information at 1, 3,
and 5 years (Figures 6E–6G).
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Figure 3. Characteristic analysis of cholangiocytes with scRNA-seq

(A) tSNE plot of all cholangiocytes. (B) Marker genes heatmap of each cholangiocytes’ subset. (C) Heatmap of ferroptosis signature expression in each cholangiocytes’

subset. (D) Large-scale CNVs of single cells (rows) of cholangiocytes. CNVs were inferred from transcriptomes. Red, amplifications; blue, deletions. (E–F) KEGG functional

enrichment analysis of marker genes in cluster 4 (E) and cluster 6 (F). (G) KEGG functional enrichment analysis of genes that upregulated in cluster 4 and downregulated

in cluster 6.
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Figure 4. Screening of monocyte-related genes

(A) Genes are clustered into discrete modules. (B) The nature of the network topology constructed with unique power values. (C) The correlation between different modules

and the proportion of monocyte-high and low infiltration. (D) Volcano plot of differentially expressed genes (DEGs) in TCGA-CHOL. (E) Venn plot of DEGs, ferroptosis-related

genes, and monocyte-related genes.
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Figure 5. Construct a risk model

(A) Nine prognostic genes were screened from the 473 genes by univariate Cox analysis. (B) Three prognostic genes were screened from the nine genes by multivariate

Cox analysis. (C) Protein-protein interaction network of the three genes. (D, E) Distributions of risk scores and survival status of CHOL patients in the training and test

datasets.
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Construction of the nomogram signature based on K-M survival

analysis and GSEA

To realize the application potential of the signature, we integrated the
risk score into the nomogram (Figure 7A). The nomogram calibration
curve showed that the actual observed values were in good agreement
with the predicted values (Figure 7B). In fact, the nomogram risk
assessment map can also combine the risk score with the clinical char-
acteristics to achieve better clinical application value. In addition, we
54 Molecular Therapy: Oncolytics Vol. 27 December 2022
performed a survival analysis based on the K-M score for single genes.
Figures 7C–7E shows the survival analysis based on the expression
levels of BNIP3, TMEM107, and CENPW. The low expression group
of the three genes had a better prognosis, among which BNIP3 and
TMEM107 had significant prognostic results, whereas CENPW had
a p = 0.074. These results suggest that BNIP3 and TMEM107 also
have a certain ability as single genes to differentiate the survival
time of patients, whereas CENPW cannot.



Figure 6. Validation of predictive performance of

training and test datasets

(A, C) Survival curve of high- and low-risk group in training

and test datasets. (B, D) ROC curves of signature for

predicting 1-, 3-, and 5-year survival in training and test

datasets. (E–G) DCA curves of signature (compared

with clinical information) for predicting 1-, 3-, and 5-year

survival in train dataset.
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Based on the median value of the F-M signature, the TCGA-CHOL
data were divided into high- and low-score groups for KEGG
pathway-based gene set enrichment analysis (GSEA) to obtain
pathways that may be involved in the regulation of the three genes
in the F-M signature. The most significantly upregulated pathways
were the cell cycle, oocyte meiosis, pathway in cancer, complement
and coagulation cascades, and the peroxisome proliferator-activated
receptor signaling pathway (Figure 7F); the most significantly down-
regulated pathways were allograft rejection, Parkinson’s disease, auto-
immune thyroid disease, ribosome, and oxidative phosphorylation
(Figure 7G).

DISCUSSION
Numerous studies have confirmed the critical role of ferroptosis in
killing cancer cells and inhibiting tumor growth.20–22 With the in-
depth study of tumor immunotherapy, there has been increasing
Molecular Th
attention given to the interaction between can-
cer cells that undergo ferroptosis and the im-
mune microenvironment. It has been reported
that ferroptotic tumor cells promote the recruit-
ment of anticancer immune cells such as CD8+
T cells and natural killer (NK) cells by releasing
danger signals and downregulating the infiltra-
tion level of tumor-promoting cells (such as
myeloid-derived suppressor cells). In addition,
CD8+ T cells and NK cells induce cancer cell
ferroptosis by secreting GzmA and GzmB, and
CD8+ T cells induce tumor cell ferroptosis by
secreting interferon-g.23 Continued accumula-
tion of monocyte-derived macrophages leads
to overexpression of ALOX5 and accumulation
of the metabolite LTB4, which triggers the
expression of the ferroptosis-promoting gene
ACSL4 in lung epithelial cells.24 These studies
suggest that, as an important subset of immune
cells, monocytes may also participate in the fer-
roptosis of malignant cells through intercellular
communication.

In recent years, research on ferroptosis in
CHOL has gradually increased. Jin-Yi et al. re-
ported that glutathione peroxidase-regulated
ferroptosis through cysteine modification de-
pletes reduced glutathione in bile as a possible
mechanism for extrahepatic CHOL.25 There are also several articles
on prognostic gene signatures of ferroptosis in CHOL, but these arti-
cles do not delve into the possible mechanisms of ferroptosis in
CHOL.26–28

At tumor sites, monocytes/macrophages constitute the major popula-
tion of infiltrating leukocytes. Depending on the tumor type, mono-
cytes/macrophages may play a dual role as good or bad indicators of
cancer recovery.29 In this study, we used CIBERSORT in the analysis
of immune cell infiltration and found that high infiltration of mono-
cytes was associated with a better prognosis (log rank p < 0.01). To
explore the role of monocytes in malignant cells, we further analyzed
the scRNA-seq dataset (GSE138709) and defined 22 cell subsets,
including cholangiocytes (clusters 0, 2, and 5; markers STMN1,
KRT19, and CLDN4) and monocytes (cluster 3; markers S100A9,
S100A8, and LYZ). Intercellular communication analysis showed
erapy: Oncolytics Vol. 27 December 2022 55
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that the communication relationship betweenmonocytes and cholan-
giocytes was enriched, and the relationship pair TNFSF13B-TFRC
was found. TNFSF13B is a cytokine of the tumor necrosis factor
ligand family and one of the recognized markers of monocytes.30,31

TFRC is a recognized ferroptosis driver and marker, which acts as a
channel of Fe3+ in the outer membrane to regulate the occurrence
of ferroptosis.32–35 We continued to subdivide the cell subsets and
identify benign and malignant cholangiocytes and finally found that
malignant epithelial cells were significantly enriched in ferroptosis
signaling pathways compared with benign epithelial cells, and
TFRCwas significantly overexpressed in the C4 subset. More interest-
ingly, we also found that the signaling pathway of mineral absorption
was significantly enriched, and the enriched genes (FTH1, FTL) in the
pathway were closely related to Fe3+ transport. Therefore, we specu-
late that monocyte-derived TNFSF13B promotes the transport of
exogenous Fe3+ by binding to the TFRC receptor on the surface of
C4, thereby inducing the occurrence of the ferroptosis pathway.
The results in the single-cell analysis section suggest that monocytes
regulate the ferroptosis signaling pathway in CHOL cells through
intercellular communication.

On this theoretical basis, using TCGA CHOL data, we screened the
monocyte infiltration-related module gene set, obtained the ferropto-
sis-related gene set through the FerrDb database, and finally obtained
the monocyte and ferroptosis gene set. Univariate and multivariate
Cox regression analyses were used to construct a prognostic signature
of three genes (BNIP3, TMEM107, and CENPW). Subsequently, the
reliability of the signature was evaluated in predicting the prognosis of
CHOL by using ROC and DCA curves. On this basis, we also con-
structed a nomogram risk assessment map, which combined the
risk score with clinical characteristics to facilitate clinical application.

In recent years, increasing evidence has suggested that BNIP3,
TMEM107, and CENPW may be potential targets for CHOL. Using
TCGA data and 241 clinical samples, Yuma Wada et al. found and
verified that CENPW can be used as one of the gene markers associ-
ated with recurrence in patients with intrahepatic CHOL.36 In liver
cancer, knockdown of CENPW inhibited cell proliferation, migra-
tion, and invasion and induced G0/G1 phase arrest and apoptosis
in liver cancer cells.37 Overexpression of CENPW is associated with
poor prognosis and may be a potential predictive biomarker for hepa-
tocellular carcinoma.38 BNIP3 is a proapoptotic gene that has been
reported to significantly alleviate FTO-dependent tumor growth
retardation and metastasis.39 A recent study found that BNIP3 is
also one of the marker genes in the occurrence of ferroptosis,40 and
the lack of BNIP3 can lead to a significant increase in the level of
iron in melanoma cells.41 TMEM107 is a key regulator of cilia compo-
sition and Hedgehog signaling and inhibits epithelial-mesenchymal
transition and invasion by negatively regulating Hedgehog signaling
Figure 7. The nomogram of the signature and single-gene K-M survival curve

(A) and (B) are the nomogram and calibration curve of the signature, respectively. (C–

functional enrichment analysis of high- and low-risk groups: the most highly regulated
in cancer.42 BNIP3 and CENPW have also been reported as prog-
nostic predictors in various cancers.43–45 These studies confirm the
rationality and importance of the prognostic signature in this study.

In conclusion, we started with the impact of immune cell infiltration
on prognosis in CHOL, and from the data analysis of single-cell
sequencing, we found the possible regulatory mechanism of mono-
cytes on malignant intracellular ferroptosis. Our work not only
expands the knowledge of cancer cell ferroptosis in the tumor micro-
environment but also provides an F-M signature in the combined
TCGA-CHOL and FerrDb databases. The combined analysis of sin-
gle-cell data and TCGA-CHOL data has identified the three-gene
signature with important prognostic implications and implications
for immunotherapy in CHOL.

MATERIALS AND METHODS
Data download

CHOL scRNA-seq data GSE138709, including five tumor tissues,
three adjacent tissues, 33,694 genes, and 40,919 cells, were down-
loaded from GEO databases. TCGA-CHOL contains bulk RNA-seq
data and corresponding clinical information from 36 CHOL and
four paracancerous tissues. GSE107943 contains mRNA sequencing
data and clinical information from 30 CHOL samples and 27 para-
cancerous tissues. The TCGA-CHOL data were downloaded from
the UCSC Xena link (http://www.genome.ucsc.edu/index.html).
Data from the GSE107943 dataset were downloaded from the NCBI
GEO link (https://www.ncbi.nlm.nih.gov/geo/).

CIBERSORT estimation and Kaplan-Meier survival analysis

The CIBERSORT algorithm was utilized to assess the 22 kinds of im-
mune cell types in pancreatic ductal adenocarcinoma. We used K-M
survival analysis to appraise diversities in the CHOL (overall survival)
between the high abundance and low abundance of all immune cells.
TheRpackages survMiner and survivalwere tools to enable this process.

scRNA-seq data processing

The Seurat package SCTransform () function was used to preprocess
the single-cell transcriptome datasets. All functions were run with
default parameters, unless specified otherwise. We excluded cells with
fewer than 200 or more than 6,000 detected genes (where each gene
had to have at least one unique molecular identifier aligned in at least
three cells). And cells with more than 10 percent expression of mito-
chondria genes were excluded to remove low activity cells. The most
changed 3,000 genes were chosen by SelectIntegrationFeatures () and
the FindCluster () package used for all cell cluster analysis with the res-
olution set to 0.5.

Cell-cell communication analysis was conducted with the scRNA-seq
data by using the CellPhoneDB software (version v2.0.0) (www.
E) K-M survival curves according to BNIP3, TMEM107, and CENPW. (F, G) GSEA

pathways (F) and the lowest regulated pathways (G).
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cellphonedb.org). Only receptors and ligands expressed in >10% of
cells of any type from cancer or paracancer group were further eval-
uated, while a cell-cell communication was considered nonexistent if
the ligand or the receptor was unmeasurable. Averaged expression of
each ligand-receptor pair was analyzed between various cell types,
and only those with p value < 0. 01 were used for the prediction of
cell-cell communication between any two cell types.

The CNV evaluation based on scRNA-seq data was conducted by in-
fercnv R package. We chose hidden Markov model to predict the
CNV states. Gene location data were from AnnoProbe R package.
Subclones of specific subtypes were divided by hierarchy clustering
based on CNV. Subclone was clustered by SC3 R package.

Functional enrichment analysis in Metascape

Gene Ontology terms and KEGG pathway enrichment analyses play a
vital role in identifying characteristic biological attributes for high-
throughput transcriptome data. We used Metascape (http://
metascape.org/), a gene annotation and analysis resource,46 to
perform a functional enrichment analysis, which included cellular
component, molecular function, and biological process, and a
KEGG pathway analysis of the hub genes.

Weighted gene co-expression analysis

Co-expression networks were created utilizing the "WGCNA" pack-
age in R software. The CHOL samples in the TCGA databases were
clustered to determine the existence of remarkable outliers. Following
this, the co-expression network was developed utilizing the automatic
network construction function, and the soft threshold was computed
using the pickSoftThreshold function. The co-expression similarity
was derived according to the soft threshold, and the adjacency was
calculated thereafter. Next, the modules were ascertained using hier-
archical clustering as well as dynamic tree-cut functions. Finally, gene
significance as well as module membership were determined to corre-
late modules with monocytes cell content.

FerrDb database

FerrDb (http://www.zhounan.org/ferrdb/) is the first specialized
ferroptosis regulatory gene and disease database that summarizes
the possible ferroptosis marker genes that can upregulate or down-
regulate ferroptosis.47 We extracted and merged all types of ferrop-
tosis genes in this database and ultimately obtained 588 ferroptosis
genes.

Risk signature construction

First, monocytes and ferroptosis genes related to CHOL prognosis
were screened by univariate Cox analysis; p < 0.05 represented the
prognosis-related genes. Subsequently, multivariate Cox analysis
was performed on monocytes and ferroptosis genes associated with
prognosis to construct a risk signature. The model formula was as
described previously, and the coefficients in the formula were ob-
tained by multivariate Cox regression analysis. The protein-protein
interaction network was made with Genemania (http://genemania.
org/).48
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The ROC curve analysis and DCA were used to evaluate the accuracy
of the signature in the training dataset and testing dataset.

Nomogram

In this study, we used the R software package "rms" to integrate sur-
vival time, survival status, T stage, TNM stage, age, gender, and the
expression levels of BNIP3, TMEM107, and CENPW, and we used
the Cox analysis to build a nomogram. We assessed the prognostic
significance of these features in the TCGA samples and assessed the
power of the nomogram by means of calibration curves and ROC
curves.

Gene set enrichment analysis

The GSEA method was used to explore the potential KEGG pathway
implicated in the high-risk group and low-risk group. The reference
gene set was retrieved from c2.cp.kegg.v7.1.symbols files, and the sig-
nificant pathways were screened based on the criterion: p < 0.05 and
FDR < 0.25.

Statistical analysis

The statistical analysis was performed in R software (version 4.0.2).
K-M survival curve analysis with log rank test was applied to
analyze overall survival. Univariate and multivariate Cox regression
analyses were used to evaluate prognostic significance. ROC curve
analysis and its AUC value was used to evaluate the reliability
and sensitivity of the prognostic signature. p < 0.05 was regarded
as statistically significant.

Data and code availability

The original contributions presented in the study are included in the
article, and further inquiries can be directed to the corresponding
author.
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