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OBJECTIVE—The transcription factor nuclear factor-�B (NF-
�B) and the mitogen-activated protein kinases (MAPKs) c-Jun
NH2-terminal kinase (JNK) 1/2 are known to play decisive roles
in cytokine-induced damage of rodent �-cells. The upstream
events by which these factors are activated in response to
cytokines are, however, uncharacterized. The aim of the present
investigation was to elucidate a putative role of the MAPK kinase
kinase-1 (MEKK-1) in cytokine-induced signaling.

RESEARCH DESIGN AND METHODS—To establish a func-
tional role of MEKK-1, the effects of transient MEKK-1 overex-
pression in �TC-6 cells, achieved by lipofection and cell sorting,
and MEKK-1 downregulation in �TC-6 cells and human islet cells,
achieved by diced–small interfering RNA treatment, were stud-
ied.

RESULTS—We observed that overexpression of wild-type
MEKK-1, but not of a kinase dead MEKK-1 mutant, resulted in
potentiation of cytokine-induced JNK activation, inhibitor of �B
(I�B) degradation, and cell death. Downregulation of MEKK-1 in
human islet cells provoked opposite effects, i.e., attenuation of
cytokine-induced JNK and MKK4 activation, I�B stability, and a
less pronounced NF-�B translocation. �TC-6 cells with a down-
regulated MEKK-1 expression displayed also a weaker cytokine-
induced iNOS expression and lower cell death rates. Also
primary mouse islet cells with downregulated MEKK-1 expres-
sion were protected against cytokine-induced cell death.

CONCLUSIONS—MEKK-1 mediates cytokine-induced JNK- and
NF-�B activation, and this event is necessary for iNOS expres-
sion and cell death. Diabetes 57:1896–1904, 2008

T
ype 1 diabetes is an autoimmune disease that
results in destruction of the insulin-producing
�-cells (1). Cytokines, such as interleukin-1�
(IL-1�), tumor necrosis factor-� (TNF-�), and

interferon-� (IFN-�), induce �-cell death in vitro, and the
local release of the same cytokines, by islet-infiltrating
lymphocytes and macrophages, has been proposed to
mediate pancreatic �-cell destruction in vivo (2). Levels of
pro-inflammatory cytokines have been correlated to insu-
litis and �-cell destruction in NOD mice (3) and in human
pancreatic biopsies from patients with recent-onset type 1

diabetes (4). After receptor activation, cytokine-induced
signaling involves the activation of the mitogen-activated
protein kinases (MAPKs) c-Jun NH2-terminal kinase
(JNK), extracellular signal–regulated kinase (ERK), and
p38 (5,6). Interestingly, inhibition of JNK or p38 results in
protection against cytokine-induced �-cell death (7,8),
which points to a prominent role of these MAP kinases in
cytokine-induced �-cell death. In addition to the MAPKs,
IL-1�– and TNF-�–induced signaling results in activation
of the transcription factor nuclear factor-�B (NF-�B)
(9,10). In rodent islets, cytokine-induced cell death is
caused by increased nitric oxide (NO) production, which
results from activation of NF-�B–mediated inducible NO
synthase (iNOS) gene transcription (2).

The MAPKs JNK, ERK, and p38 transduce a large variety
of external signals, leading to a wide range of cellular
responses, including growth, differentiation, proliferation,
and apoptosis (11). MAPKs are activated by dual phos-
phorylation of threonine and tyrosine residues and are
organized in signaling cascades consisting of a three-kinase
set. Consequently, an MAPK kinase kinase (MAP3K, MKKK,
or MEKK) phosphorylates an MAPK kinase (MAP2K, MKK,
or MEK), which in turn activates an MAPK (11).

The 196-kDa serine/threonine protein kinase MEKK-1,
which belongs to the MAP3K family, mediates death
signals when persistently activated. Studies in various cell
types have reported that MEKK-1 promotes apoptosis in
response to genotoxic stimuli, such as UV irradiation,
etoposide, and cisplatin (12), and nongenotoxic stimuli,
including Fas stimulation, anoikis, and pro-inflammatory
cytokines (13). In most cell types, MEKK-1 activates all
three major MAPK pathways (12,14), with the strongest
effect on the JNK pathway through phosphorylation of
MKK4 (15). Besides its serine/threonine kinase activity,
MEKK-1 also acts as a ubiquitin E3 ligase (16).

The transcription factor NF-�B is activated by a wide
range of stimuli, including stress signals and proinflamma-
tory cytokines (17). The classical NF-�B pathway involves
the release of the p50/p65 subunits from the inhibitor of �B
(I�B) complex in the cytosol, a step induced by phosphor-
ylation of I�B by I�B kinases (IKKs). When released from
I�B, the p50/p65 dimer translocates to the cell nucleus and
regulates gene expression (17). Activation of NF-�B has
been shown to be protective in most nonislet cells (17).
However, in pancreatic islets, the role of NF-�B is far from
clear, and several recent reports propose a pro-apoptotic
role for NF-�B in pancreatic �-cells (18,19).

The chain of events that promote cytokine-induced
activation of JNK and NF-�B in �-cells is essentially
unknown. Considering the prominent role of MEKK-1 as
an activator of both JNK and NF-�B (15,20), the aim of the
present study was to investigate the effect of genetic gain
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or loss of MEKK-1 function on MAPK and NF-�B activation
in response to proinflammatory cytokines.

RESEARCH DESIGN AND METHODS

Cell culture. Murine �TC-6 cells (American Type Culture Collection, Manas-
sas, VA) at passage numbers 20–30 were maintained in Dulbecco’s modified
Eagle’s medium (Gibco, Grand Island, NY) supplemented with 10% FCS
(Sigma Chemicals, St. Louis, MO), 2 mmol/l L-glutamine, 0.1 mg/ml strepto-
mycin, and 100 units/ml benzylpenicillin. Islets from NMRI mice (Naval
Medical Research Institute-established; Mölle and Bomholt, Denmark) were
isolated by collagenase digestion as described previously (8) and incubated
free floating in working solution. Isolated human pancreatic islets were
provided by Dr. Olle Korsgren (Department of Radiology, Oncology, and
Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden). Human
islets were maintained in RPMI 1640 (Sigma) supplemented as above, and the
glucose concentration of the medium was lowered to 5.6 mmol/l. All cells
were grown at 37°C in a humidified air incubator with 5% CO2.
Plasmids. pcDNA3 (Invitrogen, Carlsbad, CA) plasmids containing either the
full-length mouse MEKK-1 or the kinase inactive MEKK-1 [MEKK-1
K(1253)3M] (mut MEKK-1) cDNA were provided by Pär Gerwins (Depart-
ment of Genetics and Pathology, Uppsala University, Uppsala, Sweden). The
plasmids were control sequenced at insertion sites and at the mutation site to
verify the integrity of construct before experimentation. For green fluorescent
protein (GFP) expression, the pd2EGFP-N1 (Clontech Laboratories, Mountain
View, CA) vector was used. To overexpress the MEKK-1 constructs in �TC-6
cells, Lipofectamine 2000 was used as previously described (21).
Diced small-interfering RNA–mediated downregulation of MEKK-1 in

human islet cells. Human islets, in groups of 100, were trypsinized (0.5%) for
5 min at 37°C and then treated with 30 units/ml DNase I (Amersham Life
Science, Piscataway, NJ) for 2 min. The resulting free islet cells were placed
in nonattachment plates and transfected with 100 ng diced small-interfering
RNA (d-siRNA) directed against mouse MEKK-1 or GL3 (a firefly luciferase
gene). d-siRNA directed against the 3�-end of coding region of the mouse
MEKK-1 gene and 5�-end of Photinus Pyralis GL3 luciferase gene was
synthesized as described previously (22). The in vitro transcription templates
were amplified from cloned cDNAs using PCR and the following primers:
MEKK-1 forward, 5�-GCGTAATACGACTCACTATAGGGCTG AAGTTCTA
AGCAGCGCACG-3�; MEKK-1 reverse, 5�-GCGTAATACGACTCACTA TAG

GGAGACAGGATATGCAACCGGGAG-3�; GL3 forward, 5�-GCGTAATACGA

CTCACTATAGGAACAATTGCTTTTACAGATGC-3�; and GL3 reverse, 5�-
GCGTAATA CGACTCACTATAGGAGGCAGACCAGTAGATCC-3�. The T7
polymerase promoter sequence is shown in bold. d-siRNA was introduced into
islet cells during a 2-h incubation using Lipofectamine 2000 in 200 �l
serum-free culture medium. The transfection medium was then replaced by
full culture medium, and the cells were cultured for 24–48 h.
In vitro treatment of cells and evaluation of cell viability. Transfected
cells were either left untreated or treated with a mixture of cytokines (50
units/ml IL-1�, 1,000 units/ml IFN-�, and 1,000 units/ml TNF-�) for 48 h.
Viability of �TC-6 or mouse islet cells was determined by staining the cells
with 20 �g/ml propidium iodide (Sigma) and 5 �g/ml bisbenzimide (Sigma) for
10 min at 37°C. After careful washing, cells were trypsinized and analyzed by
fluorescence microscopy using Openlab 3.0.4 software. Total number of cells
and number of propidium iodide–positive cells were counted using the NIH
Image 1.63 software by investigators not aware of sample identity.
Immunoprecipitation of MEKK-1. Cells (108) were washed twice in ice-
cold PBS and resuspended in lysis buffer (50 mmol/l Tris-HCl, pH 7.5, 150
mmol/l NaCl, 1% Nonidet P-40, 1% Triton X-100, 1% sodium deoxycholate, 0.1%
SDS, 2 mmol/l EDTA, 20 mmol/l �-glycerophosphate, 2 mmol/l sodium
orthovanadate, 10 mmol/l sodium fluoride, 5 mmol/l sodium diphosphate
decahydrate, and 0.2% protease inhibitor cocktail; Sigma) on ice for 20 min.
The lysed cells were cleared by centrifugation, and remaining extracts were
incubated with 5 �g MEKK-1 rabbit polyclonal antibody (Santa Cruz Biotech-
nologies, Santa Cruz, CA) or 5 �g purified rabbit IgG (control) (Sigma) for
2.5 h on ice. Immune complexes were purified by binding to 50 �l protein A
Sepharose (Amersham Biosciences) for 1 h at 4°C and thereafter washed three
times with lysis buffer and once with H2O. The Sepharose beads were
resuspended in SDS sample buffer (2% SDS, 0.15 mol/l Tris, pH 8.8, 10%
glycerol, 5% �-mercaptoethanol, bromphenol blue, and 2 mmol/l phenylmeth-
ylsulfonyl fluoride), and immunoprecipitates were resolved by electrophoresis.
Immunoblotting. Cells were washed with ice-cold PBS and directly lysed in
SDS-sample buffer, boiled for 5 min, and separated on SDS-PAGE. Proteins
were electrophoretically transferred to Immobilon filters (Amersham Bio-
sciences). Filters were blocked in 5% BSA for 1 h, after which they were
probed with anti–phospho-MEKK-1 T1383 (Abgent Envision Proteomics),
anti–MEKK-1 (c22), NOS-2, p65, I�B (all Santa Cruz), P-JNK, P-ERK, P-p38,
p-MKK4, total JNK, and total ERK (all Cell Signaling, Beverly, MA) antibodies.

Bound antibodies were removed from Immobilon filters by incubating for 40
min at 55°C in 2% (wt/vol) SDS and 0.1 mmol/l �-mercaptoethanol. Horserad-
ish peroxidase–linked goat anti-rabbit or anti-mouse were used as secondary
antibody. The immunodetection was performed as described for the ECL
immunoblotting detection system (Amersham Biosciences) and using the
Kodak Imagestation 4000MM. The intensities of the bands were quantified by
densitometric scanning using Kodak Digital Science ID software (Eastman
Kodak, Rochester, NY).
Extraction of nuclear proteins and electromobility shift assay. Cells
were treated with IL-1� (50 units/ml) for 30 min, after which proteins were
extracted for electromobility shift assay (EMSA), which was performed as
previously described (10). p65 antibody (0.2 �g) (Santa Cruz) was used for
supershift.

RESULTS

Transient overexpression of MEKK-1 in �TC-6 cells.
To evaluate the effect of MEKK-1 overexpression in insu-
lin-producing cells, murine �TC-6 cells were transiently
transfected using Lipofectamine 2000 together with an
enhanced GFP (EGFP) expression vector alone or the
EGFP vector together with either wild-type or a kinase
inactive mut MEKK-1 vector. To increase the percentage
of transfected cells, GFP-positive cells were sorted out by
fluorescence-activated cell sorting 24 h after transfection.
By using this approach, it is possible to enrich the number
of GFP-positive �TC-6 cells to up to 80% (23). MEKK-1
overexpression was assessed by Western blot analysis,
and 2 days after the transfection, we observed a strong
increase in MEKK-1 immunoreactivity in cells transfected
with wild-type and mut MEKK-1 when compared with cells
transfected with GFP alone (Fig. 1A). MEKK-1 immunore-
activity was often observed as a double band, indicating
that the MEKK-1 protein is posttranslationally modified in
insulin-producing cells.
Cytokine-induced JNK phosphorylation is potenti-
ated by MEKK-1 overexpression in �TC-6 cells. To
investigate the effect of MEKK-1 overexpression on cyto-
kine-induced activation of the MAPKs JNK, ERK, and p38,
we transiently transfected �TC-6 cells with GFP alone or
together with either wild-type or mut MEKK-1 and treated
the cells with a mixture of cytokines (50 units/ml IL-1�,
1,000 units/ml IFN-�, and 1,000 units/ml TNF-�). We did
not detect any effect of MEKK-1 on the basal phosphory-
lation of JNK, ERK, and p38 in untreated cells (Fig. 1B).
However, in cells treated with cytokines, we observed an
increased JNK phosphorylation in wild-type MEKK-1–
overexpressing cells when compared with cells overex-
pressing GFP or mut MEKK-1 (Fig. 1B). The MEKK-1
mutant did not significantly decrease JNK phosphorylation
compared with cytokine-stimulated GFP cells. This finding
indicates that the kinase dead MEKK-1 mutant acts as null
mutation rather than a dominant-negative mutation. We
also did not observe any effect of MEKK-1 on cytokine-
induced ERK or p38 phosphorylation. These results sug-
gest that JNK activation in response to cytokines is
augmented by MEKK-1.
MEKK-1 is involved in NF-�B signaling in �TC-6 cells.
Next, we investigated whether overexpression of wild-
type or mut MEKK-1 had any effect on cytokine-induced
NF-�B activation. Thus, �TC-6 cells were transiently trans-
fected with GFP alone or together with either wild-type or
mut MEKK-1 and then treated with a cytokine mixture for
30 min. Expression of MEKK-1 did not affect I�B levels in
cells not exposed to the cytokines (Fig. 1C). However,
cytokine-exposed �TC-6 cells overexpressing wild-type
MEKK-1 displayed enhanced I�B degradation when com-
pared with cells overexpressing GFP or mut MEKK-1 (Fig.
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FIG. 1. Cytokine-induced JNK phosphorylation and NF-�B activation is potentiated by MEKK-1 overexpression in �TC-6 cells. A: �TC-6 cells were
transfected with GFP, GFP � wild-type MEKK-1, or GFP � kinase inactive mutant (mut) MEKK-1. The GFP-expressing cells were enriched by
fluorescence-activated cell sorting. Two days after the transfection and cell sorting procedure, the cells were lysed, and proteins were separated
by SDS gel electrophoresis and analyzed by immunoblotting with MEKK-1 and ERK antibodies. A representative blot from one out of three
experiments is shown. B: �TC-6 cells transiently overexpressing GFP, GFP � wild-type MEKK-1, or GFP � mut MEKK-1 were either left untreated
or treated with a mixture of cytokines (50 units/ml IL-1�, 1,000 units/ml IFN-�, and 1,000 units/ml TNF-�) 2 days after the transfection and cell
sorting procedure. After 30 min of cytokine exposure, the cells were lysed and proteins were separated by SDS gel electrophoresis and analyzed
by immunoblotting with phospho-specific antibodies against JNK, ERK, or p38. Results from immunoblots were quantified by densitometry.
Values of phospho-protein bands were related to those of non–phospho-specific protein bands. Data are presented as means � SE for three
individual experiments. *P < 0.05 using one-way ANOVA followed by Student’s t test. C: �TC-6 cells transiently overexpressing GFP, GFP �
wild-type MEKK-1, or GFP � mut MEKK-1 were either left untreated or treated with a cytokine mixture (50 units/ml IL-1�, 1,000 units/ml IFN-�,
and 1,000 units/ml TNF-�). After 30 min of cytokine exposure, the cells were lysed, and proteins were separated by SDS gel electrophoresis and
analyzed by immunoblotting with p65 and I�B antibodies (top panels). Results from immunoblots as the one shown in the top panel were
quantified by densitometry (bottom panel). Values of I�B bands were related to those of p65 bands. Data are presented as means � SE for three
individual experiments. *P < 0.05 using one-way ANOVA followed by Student’s t test.

MEKK-1, JNK, AND NF-�B ACTIVATION

1898 DIABETES, VOL. 57, JULY 2008



1C). The data obtained from these experiments indicate
that MEKK-1 may take part in the signaling pathway
leading to NF-�B activation in insulin-producing cells.
Transient overexpression of MEKK-1 augments cyto-
kine-induced cell death in �TC-6 cells. �TC-6 cells
transiently transfected with GFP alone or together with
either wild-type or mut MEKK-1 were treated with a
mixture of cytokines. No effect of MEKK-1 was observed
in untreated cells (Fig. 2). However, �TC-6 cells overex-
pressing wild-type MEKK-1 showed increased rates of
cytokine-induced cell death when compared with cells
overexpressing GFP or mut MEKK-1 (Fig. 2). Taken to-
gether, these results indicate that MEKK-1 participates in
cytokine-induced signaling, leading to the death of insulin-
producing cells.
Cytokine treatment induces MEKK-1 1383T phos-
phorylation in �TC-6 cells. We next studied whether
MEKK-1 becomes activated in response to cytokine treat-
ment. MEKK-1 activation can be assessed by Western blot
analysis of MEKK-1 T1383 phosphorylation using phospho-
specific antibodies. The T1383 site is located in the
MEKK-1 activation loop and becomes autophosphorylated
on activation (24). �TC-6 cells were therefore left un-
treated or treated with a mixture of cytokines for 0.5, 1, or
3 h followed by immunoprecipitation of the MEKK-1
protein. Cytokine treatment for 1 h induced a significantly
increased phosphorylation of MEKK-1 compared with
untreated cells (Fig. 3).
MEKK-1 knockdown by d-siRNA in human islet cells.
MEKK-1 overexpression in primary islet cells is problem-
atic because the liposome-mediated transfection of pri-
mary islet cells is less efficient than that of �-cell lines (25).
However, in a previous study, we achieved successful
knockdown of target genes in dispersed primary islet cells
by using liposomal reagents and d-siRNA (26). The d-
siRNA technique uses the in vitro activity of recombinant
dicer to yield a pool of d-siRNA, which seems to be more
efficient than synthetic siRNA molecules (22). Therefore,
we proceeded to investigate effects of genetic MEKK-1 loss
of function in primary human islet cells. Dispersed human
islet cells were transfected either with GL3 Luciferase
(GL3 d-siRNA) or MEKK-1 d-siRNA. We observed a pro-

nounced downregulation of MEKK-1 protein levels in
human islet cells treated with MEKK-1 d-siRNA when
compared with GL3 d-siRNA (Fig. 4A).
Effects of MEKK-1 d-siRNA on JNK and MKK4 acti-
vation in human islet cells treated with cytokines.
Dispersed human islet cells were treated with GL-3 or
MEKK-1 d-siRNA, and 2 days after the transfection, the
cells were exposed to a mixture of cytokines for 30 min.
We observed a less pronounced cytokine-induced JNK
phosphorylation in the MEKK-1 d-siRNA–exposed cells
than in the control cells (Fig. 4B). Phosphorylation of p38
and ERK was, however, not affected by the MEKK-1
d-siRNA treatment. We also analyzed MKK4 phosphoryla-
tion in response to IL-1� and observed a weaker activation
at 0.5 and 1 h in cells treated with MEKK-1 d-siRNA
compared with control cells (Fig. 4C). This indicates that
IL-1�–induced MKK4 and JNK activation requires MEKK-1
activity in human islet cells.
MEKK-1 is required for IL-1�–induced NF-�B signal-
ing in human islet cells. Dispersed human islet cells
were transfected with GL3 d-siRNA or MEKK-1 d-siRNA.
Two days after the d-siRNA treatment, the cells were

FIG. 2. Transient overexpression of MEKK-1 augments cytokine-in-
duced cell death in �TC-6 cells. �TC-6 cells transiently overexpressing
GFP, GFP � wild-type MEKK-1, or GFP � mut MEKK-1 were either left
untreated or treated with a mixture of cytokines (50 units/ml IL-1�,
1,000 units/ml IFN-�, and 1,000 units/ml TNF-�) for 48 h corresponding
to days 3–4 after the transfection and cell sorting procedure. The cells
were then analyzed for cell death by fluorescence microscopy. Results
from three separate observations are presented as means � SE. *P <
0.05 and **P < 0.01, respectively, using one-way ANOVA and Student’s
t test.

FIG. 3. Cytokine treatment induces MEKK-1 T1383 phosphorylation in
�TC-6 cells. �TC-6 cells were either left untreated or treated with a
mixture of cytokines (50 units/ml IL-1�, 1,000 units/ml IFN-�, and
1,000 units/ml TNF-�) for 0.5, 1, or 3 h. After cytokine treatment, the
cells were lysed and immunoprecipitated (IP) using MEKK-1 antibody
or rabbit IgG as control. The immunoprecipitated proteins were sepa-
rated by SDS gel electrophoresis and analyzed by immunoblotting
using T1383 phospho–MEKK-1 and MEKK-1 antibodies (A). Results
from immunoblots, as the one shown in the top panel, were quantified
by densitometry (B). MEKK-1 phosphorylation was determined by
relating P-MEKK-1 bands to those of total MEKK-1. Data are presented
as means � SE for four individual experiments. *P < 0.05 vs. control
using Student’s t test.
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exposed to IL-1� for 30 min. In dispersed islet cells treated
with GL-3 d-siRNA, we observed increased degradation of
I�B after IL-1� incubation (Fig. 5). However, in MEKK-1
d-siRNA–treated cells, no IL-1�–induced I�B degradation
could be detected (Fig. 5), indicating that MEKK-1 is
required in IL-1�–induced NF-�B signaling in primary
human islet cells. To further support this finding, we
studied the nuclear translocation of NF-�B using an
EMSA. �TC-6 cells and dispersed human islet cells were
treated with GL-3 or MEKK-1 d-siRNA, and 2 days after
d-siRNA incubation, the cells were either left untreated or
treated with IL-1� for 30 min. Nuclear extracts were
prepared, and the presence of active NF-�B was deter-
mined by EMSA. In both �TC-6 cells (Fig. 6A) and dis-
persed human islet cells (Fig. 6B), IL-1� induced
translocation of NF-�B to the nuclei. Furthermore,
MEKK-1 d-siRNA–treated �TC-6 cells and dispersed hu-
man islet cells showed a pronounced reduction in the
IL-1�–induced translocation of NF-�B. No effect of
MEKK-1 d-siRNA was observed in untreated cells (Fig. 6).
These data give further support to the notion that MEKK-1
activates NF-�B in primary human islet cells in response to
stimulation with IL-1�.
Effects of MEKK-1 knockdown on iNOS induction in
�TC-6 cells. We also investigated whether MEKK-1
knockdown affects IL-1�–induced iNOS induction. �TC-6
cells were treated with GL3 or MEKK-1 d-siRNA, and 2

days after the d-siRNA treatment, the cells were treated
with IL-1� overnight. IL-1� treatment resulted in an induc-
tion of the iNOS protein in cells treated with GL-3 or
MEKK-1 d-siRNA (Fig. 7). However, the iNOS induction
was markedly inhibited in MEKK-1 d-siRNA–treated cells
when compared with cells treated with GL-3 d-siRNA (Fig.
7).
MEKK-1 d-siRNA protects �TC-6 cells from cytokine-

induced cell death. Finally, we determined the effect of
MEKK-1 knockout on cytokine-induced cell death. Be-
cause the effect of the d-siRNA treatment is transient and
because human islet cells require �7 days of cytokine
exposure for increased apoptosis and necrosis to occur
(27), only the rodent �-cell line and primary mouse islets,
which both respond more rapidly to cytokine-induced cell
death, were used for cell viability analysis. �TC-6 cells and
dispersed mouse islet cells that had been transfected with
GL3 or MEKK-1 d-siRNA were treated with a mixture of
cytokines for 48 h and analyzed for cell death by vital
staining with bisbenzimide and propidium iodide. Cyto-
kine exposure resulted in increased cell death in both cell
types treated with GL-3 d-siRNA, whereas cells treated
with MEKK-1 d-siRNA were protected from cytokine-
induced cell death, when compared with GL-3 treated cells
(Fig. 8A and B). These results indicate that MEKK-1
downregulation protects �TC-6 cells and mouse islet cells

FIG. 4. Effects of MEKK-1 d-siRNA on MEKK-1 levels and JNK, p38, ERK, or MKK4 activation in dispersed human islet cells. A: Dispersed human
islet cells were treated with GL-3 or MEKK-1 d-siRNA. Two days after the d-siRNA treatment, the cells were lysed, and proteins were separated
by SDS gel electrophoresis and analyzed by immunoblotting with MEKK-1 antibodies. A representative blot from one out of two experiments is
shown. B: Dispersed human islet cells were transfected with GL3 d-siRNA or MEKK-1 d-siRNA and either left untreated or treated with a mixture
of cytokines (50 units/ml IL-1�, 1,000 units/ml IFN-�, and 1,000 units/ml TNF-�). After the 30-min cytokine exposure, the cells were lysed, and
proteins were separated by SDS gel electrophoresis and analyzed by immunoblotting with phospho-specific JNK, ERK, and p38 antibodies. The
results were quantified by densitometric scanning of three experiments and expressed as means � SE. C: Dispersed human islet cells were treated
with GL-3 or MEKK-1 d-siRNA. Two days after the d-siRNA treatment, the cells were exposed to 50 units/ml IL-1�. After 30 min of IL-1�
treatment, the cells were lysed, and proteins were separated by SDS gel electrophoresis and analyzed by immunoblotting. MKK4 activation was
determined by calculating the ratios between P-MKK4 intensities and ERK intensities. Values are means � SE for three observations.
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from cytokine-induced cell death by inhibition of the
JNK/NF-�B–iNOS–NO signaling cascade.

DISCUSSION

Both JNK and NF-�B, the latter presumably via IKK�
phosphorylation, are activated in insulin-producing cells
when exposed to the cytokines IL-1� and TNF-� (5,8,10).
The third cytokine presently used, IFN-�, however, acti-
vates Signal transducer and activator of transcription
(STAT)-1/3 and augments the actions of IL-1�, possibly by
stimulating AP-1 expression and MAPK activation (28,29).
Prolonged and pronounced activation of JNK, which oc-
curs in response not only to pro-inflammatory cytokines
but also to islet isolation and amyloid formation, leads to
�-cell death (30,31). Activation of NF-�B is also a pro-
apoptotic event in rodent �-cells because it participates in
iNOS induction leading to the generation of toxic levels of
NO. A number of protein kinases have been identified as
activators of IKK� and JNK in response to proinflamma-
tory cytokines. For example, phosphorylation of JNK
and/or IKK requires transforming growth factor-�–acti-
vated kinase-1 (TAK1) (32) or MEKK-2 (33) in synovio-
cytes, mixed linage kinase 3 (MLK3) in T-cells (34),
MEKK-1 in embryonic stem cells (35), NF-��–inducing
kinase (NIK) in HeLa cells (36), and apoptosis signal
regulating kinase-1 (ASK1) in human umbilical vein endo-
thelial cells (HUVECs) (37). However, the main intracellu-
lar activator(s) of JNK/IKK� in �-cells has, to our
knowledge, hitherto not been identified. With this back-

ground, and using the genetic gain and loss of MEKK-1
function approach, we presently propose an essential role
of MEKK-1 in cytokine-induced �-cell JNK/IKK� activa-
tion. More specifically, we observed expression and cyto-
kine-induced phosphorylation of MEKK-1 in �-cells, and
that loss of MEKK-1 resulted in a weaker activation of
MKK4, JNK, I�B degradation, NF-�B translocation, and
iNOS induction in response to cytokines. In line with these
results, MEKK-1 downregulation protected also against
cytokine-induced cell death. It is well established that
enhanced production of NO is the main cause of rodent
�-cell death and that this event requires NF-�B activity (2).

An interesting issue is whether MEKK-1 knockdown
would have protected against cytokine-induced death of
human �-cells. Human �-cells do not benefit from iNOS
inhibitors when exposed to cytokines (38,39). This raises

FIG. 5. MEKK-1 is required for I�B degradation in human islet cells.
Dispersed human islet cells were transfected with GL3 d-siRNA or
MEKK-1 d-siRNA. Two days after the d-siRNA treatment, the cells were
incubated with 50 units/ml IL-1� for 30 min. The cells were then lysed,
and proteins were separated by SDS gel electrophoresis and analyzed
by immunoblotting with p65 and I�B antibodies (top panel). Results
from immunoblots as the one shown in the top panel were quantified by
densitometry. Intensities of I�B and p65 bands were used for calcula-
tion of I�B over p65 ratios. Data are presented as means � SE for three
individual experiments. *P < 0.05 using one-way ANOVA followed by
Student’s t test.

FIG. 6. MEKK-1 is required for IL-1�–induced nuclear translocation of
NF-�B. �TC-6 cells (A) and human islet cells (B) were treated with GL3
or MEKK-1 d-siRNA. Two days after the d-siRNA treatment, the cells
were exposed to 50 units/ml IL-1� for 30 min. Nuclear extracts were
prepared and NF-�B activity was determined by EMSA. The last lane
contains nuclear extracts from IL-1�–exposed cells and the p65 anti-
body to induce a supershift. The bottom panels show densitometric
scanning results. Results are means � SE for three separate experi-
ments. *P < 0.05 vs. GL3 � IL-1� using Student’s t test.
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the possibility that NF-�B could exert an anti-apoptotic
effect in human islet cells, as it does in many other cell
types (17), and that the pro-apoptotic effects of JNK
activation are in part neutralized by NF-�B, thereby ex-
plaining the weaker apoptotic response of human �-cells
compared with rodent �-cells. Unfortunately, the effect of
siRNA in islet cells is only transient (1–3 days) (26), and
the toxic effect of cytokines requires �7 days of cytokine
exposure (27). Thus, a different approach than that pres-
ently used would have been necessary to clarify this
particular issue.

Previous investigations on the role of MEKK-1 in �-cells
are scarce. However, it has been reported that expression
of the constitutively active kinase domain of MEKK-1
promotes JNK activation (40). It has also been reported
that expression of the MEKK-1 kinase domain resulted in
a lowered insulin gene transcription (41), a finding that
concurs well with the present study. In addition, in a very
recent study, we report that MEKK-1 participates in NO-,
hydrogen peroxide–, and streptozotocin-induced islet cell
death (21), which indicates that multiple forms of stress
converge at MEKK-1 in insulin-producing cells.

We presently report that MEKK-1 activates JNK, but not
ERK or p38, in insulin-producing cells when stimulated
with cytokines. This finding is in line with studies per-
formed on non–�-cells showing that increased MEKK-1
activity leads to the preferential activation of JNK over p38
and ERK (15,42). In this context, it should also be noted
that �-cells seem to use a TAB1-dependent, MKK3/6-
independent p38 autophosphorylation mechanism to acti-
vate p38 in response to cytokines (43) or NO (44).
Interestingly, inhibition of either JNK or p38 leads often to
improved �-cell survival (7,8). This indicates that a pro-

nounced activation of one of the two MAPKs, is required
for certain forms of �-cell death.

MEKK-1 was phosphorylated on the threonine residue
1383 in response to cytokines. This is in line with previous
studies identifying the amino acid positions T1383 and
T1395 as activation sites in MEKK-1 (24,45). The mecha-
nisms by which MEKK-1 is phosphorylated and subse-
quently activated are not well understood, but it has been
suggested that Rac1 (46), receptor-interacting protein (47),
TRAF2 (48), and RhoA (49) by a direct interaction pro-
mote MEKK-1 autophosphorylation and activation.

In summary, our results support a pivotal role of
MEKK-1 in cytokine-induced death of rodent �-cells and
possibly also that of human islet cells. Because many other
cell types rely on other MAP3Ks, such as ASK1, TAK,
MEKK-2, DLK, and MLK3, for inflammatory signal trans-
duction, it may be that developing and applying MEKK-1–
specific inhibitors can selectively target the inflammation

FIG. 7. MEKK-1 knockdown attenuates IL-1�–induced iNOS induction
in �TC-6 cells. �TC-6 cells were treated with GL3 or MEKK-1 d-siRNA.
Forty-eight hours after d-siRNA treatment, the cells were either left
untreated or treated with 50 units/ml IL-1� overnight. The cells were
then lysed, and proteins were separated by SDS gel electrophoresis and
analyzed by immunoblotting with iNOS and ERK antibodies. The
percentage of iNOS induction was calculated by relating iNOS bands to
those of ERK-1. Data are presented as means � SE for three individual
experiments. *P < 0.05 using Student’s t test.

FIG. 8. MEKK-1 downregulation protects against cytokine-induced
�TC-6 and mouse islet cell death. �TC-6 cells (A) and dispersed mouse
islet cells (B) that had been transfected with GL3 or MEKK-1 d-siRNA
were either left untreated or treated with a mixture of cytokines (50
units/ml IL-1�, 1,000 units/ml IFN-�, and 1,000 units/ml TNF-�) for 48 h
and analyzed for cell death by vital staining with bisbenzimide and
propidium iodide followed by fluorescence microscopy. Results from
three separate observations are shown in A and are given as means �
SE. *P < 0.05 using Student’s paired t test. B: Results from eight
separate observations are shown as means � SE. *P < 0.05 using
repeated measurement two-way ANOVA followed by Student’s t test.
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of �-cells that occurs in diabetes. In this context, it is
noteworthy that the 5q11-q13 region, which contains the
MEKK-1 gene, has been reported to be associated with
type 1 diabetes of Scandinavian families (50). Thus, there
might exist polymorphisms of the MEKK-1 gene that
differentially affect �-cell death in both type 1 and type 2
diabetes.
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