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Tumor necrosis factor (TNF) family members participate in the body’s antitumor immunity
response and influence tumor prognosis and treatment response. However, little is known
about the roles of TNF family members in small cell lung cancer (SCLC). Therefore, we
conducted the first comprehensive investigation of TNF family members in patients with
SCLC, with the goal of using them to predict prognosis and chemotherapy benefit. Abnormal
genetic alterations and expression of TNF family members were found to be widespread in
SCLC patients. Using LASSO Cox regression analysis, we constructed a TNF family-based
signature that separated SCLC patients in the training set (n=77) into high- and low-risk
groups with distinct survival and chemotherapy benefit, and the signature was well-validated
in the validation set (n=137) by RT-qPCR. Importantly, the signature exhibited superior
predictive performance and was identified as a novel independent prognostic factor.
Additionally, different immune phenotypes were found between the low-risk and high-risk
groups, and high-risk patients had higher CMTM6 expression, suggesting that these patients
could benefit from therapeutic methods targeting CMTM6. We constructed the first clinically
applicable TNF family-based signature for predicting prognosis and chemotherapy benefit for
patients with SCLC. The findings reported here provide a new method for predicting the
prognosis of SCLC patients and optimizing clinical management.

Keywords: small cell lung cancer, antitumor immunity, tumor necrosis factor family, prognostic prediction,
chemotherapy response
INTRODUCTION

Small cell lung cancer (SCLC) is a recalcitrant malignancy that accounts for 13–15% of all lung
cancers (1). It is an aggressive neuroendocrine tumor characterized by rapid growth and early and
widespread hematogenous metastases (2). Patients with SCLC generally receive dismal prognosis,
with an average 5-year overall survival (OS) of less than 5%, and median survival of only 7–12
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months (3). Most SCLC patients are diagnosed in the advanced
stage and are thus not candidates for surgery. Chemotherapy has
been the standard treatment for first- and second-line
management of SCLC for more than three decades (4, 5).
However, patients often rapidly develop drug resistance or
relapse after remission, even if they are initially sensitive to
chemotherapy (6). The scarcity of SCLC tissue samples has
hindered the process of investigating the mechanism
underlying its rapid progression and treatment resistance and
identifying tumor-specific prognosis predictive biomarkers in
large-scale studies. Therefore, there is an urgent and unmet need
to identify biomarkers that can be used to accurately predict
prognosis and chemotherapy benefit so that clinical management
of SCLC patients can be improved.

Immunotherapy has revolutionized cancer treatment over the
past decade and has extended the life expectancy of patients with
malignant tumors, including SCLC (7, 8). It has been reported
that a high mutational burden is closely related to
immunotherapy efficacy (9). SCLC is characterized by a high
mutational burden, and these mutations can give rise to
immunogenic neoantigens, which can be presented by the
major histocompatibility complex and recognized by T cells,
leading to tumor-specific CD8+ T cell activity (10). In addition, a
highly activated host tumor immune microenvironment (TIME)
is closely associated with better clinical outcomes for SCLC
patients, indicating that immunotherapy could be a promising
treatment for SCLC (11). In recent years, immunotherapy has
achieved some encouraging results in SCLC patients. The
combination of PD-L1 inhibitors like atezolizumab and
durvalumab with chemotherapy has enhanced the OS of SCLC
patients by 2–3 months since they were approved as first-line
treatments for SCLC by the Food and Drug Administration
(FDA) (12, 13). However, therapeutic interventions targeting the
two best-described B7-CD28 family immunotherapy targets—T-
lymphocyte protein 4 (CTLA-4) and programmed cell death
protein-1 (PD-1)—have failed to achieve favorable results in
patients with SCLC (14–16).Therefore, a better understanding of
the TIME and immune checkpoint blockades has the potential to
lead to promising new SCLC treatments. The immune molecular
expression profile in the TIME is associated with conventional
chemotherapy efficacy (17). Tumors influence the TIME by
suppressing extracellular signals; the immunologic milieu can
also affect malignant behavior and progression (18). Our
previous study confirmed that TIME-related biomarkers could
be used to effectively predict radiotherapy and chemotherapy
benefit in ESCC patients (19). Hence, understanding the
complex and diverse molecular profile of the immunologic
genome in the TIME is also indispensable for maximizing the
benefits of SCLC therapy.

Tumor necrosis factor (TNF) family is a master mediator of
survival signaling in inflammation, which plays an important
role at many stages of the immune response (20). The TNF
superfamily (TNFSF) and TNF receptor superfamily (TNFRSF)
include nineteen ligands and twenty-nine receptors, which play
important roles in modulating cellular functions. T cell-related
diseases may be treated by manipulating ligand-receptor
Frontiers in Immunology | www.frontiersin.org 2
interactions involved in inflammatory and autoimmune
diseases (21). TNFSF is a type II transmembrane protein
featuring a TNF homology domain. TNFRSF members can
stimulate T-cell responsiveness and define niches for T cell
memory (21, 22). Several TNFRSF members have been
identified as emerging cancer immunotherapy targets (23–25).
Unfortunately, the expression profile and clinical relevance of the
TNF family in SCLC remain poorly understood.

We focused on TNF family members and sought to determine
their expression profiles and clinical significance to SCLC.
Survival and multivariate analyses were used to identify the
genes with the greatest prognostic value. We constructed a
predictive model based on TNF family members for patients
with SCLC and used information extracted from public datasets
to validate our novel signature in different cohorts and clinical
subsets. Finally, we determined the predictive value of immune
markers for adjuvant chemotherapy (ACT) in patients with
SCLC. To the best of our knowledge, this signature is the first
prognostic indicator based on the TNF family for SCLC. Our
results may help define new therapeutic strategies, optimize the
application of precision medicine, and offer renewed hope for
patients with SCLC.
MATERIALS AND METHODS

Public mRNA Expression Datasets
and Clinical Information
We compiled comprehensive genomic profiles with complete
clinical parameters and survival information for SCLC patients
included within a training cohort (https://www.cbioportal.org/
study/summary?id=sclc_ucologne_2015) (26). Microarray
dataset GSE40275 was used to identify genes with different
expression levels between SCLC and matching normal lung
tissues (downloaded from the Gene Expression Omnibus
(GEO) at https://www.ncbi.nlm.nih.gov/geo/). For the
validation cohort, samples from 137 patients with biopsy-
proven SCLC tissues were obtained from the National Cancer
Center (NCC). The samples included archived formalin-fixed
paraffin-embedded (FFPE) blocks and were originally collected
from patients from January 2009 to November 2018. All patients
had primary tumors at stages I–IV, and the diagnoses were
independently reviewed by two expert pathologists from the
NCC. The protocol of this study was approved by the Ethics
Committee of the National Cancer Center/Cancer Hospital of
the Chinese Academy of Medical Sciences. All participants
provided written informed consent prior to completion of any
study-related procedures. Detailed information about the
samples is listed in Table 1.

RNA Extraction, cDNA Synthesis, and
Quantitative Reverse-Transcriptase
Polymerase Chain Reaction (qRT-PCR)
Validation
Total RNA was extracted from SCLC tissue samples using the
RNAiso Plus reagent (Takara, #9109) according to the
November 2021 | Volume 12 | Article 745769

https://www.cbioportal.org/study/summary?id=sclc_ucologne_2015
https://www.cbioportal.org/study/summary?id=sclc_ucologne_2015
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. TNF Family Members in SCLC
manufacturer’s protocol. cDNA was synthesized from total RNA
using the FastKing RT Kit (with gDNase) (Tiangen, KR116) in
two steps. qRT-PCT was performed using the QuantiNova SYBR
Green PCR Kit (Qiagen, 208054) with a reaction mixture
containing 1 ml complementary DNA, 5 ml SYBR Green, 1.4 ml
PCR primers (0.7 ml forward primer and 0.7 ml reverse primer), 1
ml QN ROX Reference Dye, and 1.6 ml RNase-Free water, totaling
10 ml in volume. GAPDH was selected as a control gene. Detailed
sequences of the primer pairs are listed in Table S2. All data were
log2-transformed, and expression levels were calculated using
the 2-DDCt method.

Functional Enrichment Analyses
To further explore the biological functions of TNF family-related
genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were carried out using DAVID
6.8 (http://david.abcc.ncifcrf.gov).

Gene Set Enrichment Analysis (GSEA)
GSEA was performed to interpret high-dimensional gene
expression data (http://www.broadinstitute.org/gsea) (27). The
enrichment score was the maximum distance from the middle of
the ranking used to test gene set significance. An FDR<0.05 was
regarded as indicating significant enrichment.

Gene Set Variation Analysis (GSVA)
GSVA is a non-parametric unsupervised method that allows
gene set enrichment of expression data and gene sets in each
sample (28). GSVA was implemented with the GSVA package
(http://www.bioconductor.org) under R software version 3.5.1 to
reveal the biological activity of selected signaling pathways over a
sample population.

Estimate of Immune-Microenvironment
and Tumor-Infiltrating Immune Cells
We used the ESTIMATE algorithm to infer the constituent cellular
fraction, and calculated stromal and immune scores to assess tumor
tissue purity (29). The proportion of immune cells in the TIMEwas
Frontiers in Immunology | www.frontiersin.org 3
quantitatively estimated by CIBERSORT (http://cibersort.stanford.
edu/) based on gene expression profiles available from a public
dataset. The LM22 signature algorithm containing 547 genes was
used to distinguish 22 types of immune cells.

Statistical Analysis
Social demographics and clinicopathological features are
presented as mean ± standard deviation or median (interquartile
range) for continual variables and frequency (n) and proportion
(%) for categorical variables. We used Kaplan-Meier survival
analysis and least absolute shrinkage and selection operator
(LASSO) Cox regression analysis to identify molecules of the
TNF family with high prognostic value. The signature and risk
formula were constructed using the selected genes through linear
combination of gene expression levels. Patients were separated
into high- or low-risk groups based on the optimal cutoff point. In
the survival analysis, relapse-free survival (RFS) and OS were
calculated using the Kaplan-Meier method, and between-group
differences were compared using the log-rank test. Receiver
operating characteristic (ROC) curves were used to show the
predictive accuracy of the gene signature, and the performance
of the model was determined based on the values of the area under
the curve (AUC) and concordance index (C-index). Univariate
and multivariable Cox proportional hazards regression models
were used to determine whether the signature could independently
predict the clinical outcomes of patients with SCLC after
controlling for potential confounders. The relationship between
TNF family molecules and immune checkpoints was also
evaluated using a correlational analysis, in which correlation
coefficients, CIs, and P values were generated. All statistical
analyses were performed using R 3.5.1, and a two-tail P value
<0.05 was considered statistically significant.
RESULTS

The Expression Profiles of TNF Family
Genes Display Significant Differences
Between SCLC and Adjacent Normal
Tissues
According to previous literature, we systematically explored the
landscape of TNFSF/TNFRSF; 19 ligands and 29 receptors were
included in our study. The interactions between ligands and
receptors are summarized in Figure 1A. Firstly, we conducted a
full assessment of different biological processes based on
differentially expressed genes between SCLC samples and
adjacent normal lung samples using GSEA. The results showed
that the immune response was depressed in SCLC samples,
especially T cell activation (Figure 1B). This result suggests
that TNF family members—one of the most significant
regulator families in T cell activation—may exhibit remarkable
abnormality in SCLC patients. Next, we visualized the somatic
mutation profile landscape of TNFSF/TNFRSF members in
SCLC patients (Figure 1C). As depicted by the waterfall plot,
we observed a mutation frequency of 20.91% (23/110), with non-
synonymous mutations being the most common.
TABLE 1 | Clinicopathological characteristics of enrolled patients.

Characteristics Training Cohort (N = 77) Validation Cohort (N = 137)

Sex
Male 54 (70.13%) 105 (76.64%)
Female 23 (29.87%) 32 (23.36%)

Age, years
≥60 57 (74.03%) 65 (47.45%)
<60 20 (25.97%) 72 (52.55%)

Smoking history
Yes 72 (96.00%) 86 (62.78%)
No 3 (4.00%) 51 (37.23%)

SCLC staging
I 33 (42.85%) 46 (33.58%)
II 14 (18.18%) 45 (32.85%)
III 21 (27.27%) 46 (33.58%)
IV 9 (11.69%) 0 (0.00%)

OS state
Alive 29 (37.66%) 59 (43.07%)
Death 48 (62.34%) 78 (56.93%)
SCLC, small cell lung cancer; OS, overall survival.
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http://david.abcc.ncifcrf.gov
http://www.broadinstitute.org/gsea
http://www.bioconductor.org
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. TNF Family Members in SCLC
Next, we investigated whether the expression levels of TNF
family molecules could be used to distinguish SCLC and normal
tissue samples by principal component analysis (PCA), and our
results indicated significant between-group heterogeneity
Frontiers in Immunology | www.frontiersin.org 4
(Figure 1D). Moreover, the heatmap showed low expression of
the TNF family in SCLC samples (Figure 1E); detailed
expression level information is displayed in the boxplots
(Figures 1F, G). Additionally, we used Pearson correlation
A D

B

C

F

G

E

FIGURE 1 | Molecular characteristic and expression profile of tumor necrosis factor (TNF) family members in small cell lung cancer. (A) Interaction between the
ligands and receptors of the TNF family. Ligands and receptors are shown at the left (blue) and right (red) in the diagram. The vertical lines represent the cytoplasmic
membrane of corresponding cells, and the horizontal lines with arrows represent ligand-receptor pairs. (B) GSEA of normal lung tissues and SCLC tissues. (C) The
mutation landscape waterfall plot of TNFSF/TNFRSF members in 110 patients with SCLC from the training cohort. Each bar represents the mutation for each
sample. (D) Principal component analysis (PCA) based on the expression levels of TNF family members between adjacent normal tissue and tumor tissue in the
training set. (E) The expression details of TNF family members between SCLC samples and normal lung tissue. (F, G) Boxplots show differences in the expression
values of TNF family members. *p < 0.05; **p < 0.01; ***p < 0.00; ns, no significance.
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analysis to explore the relationships between TNFSF/TNFRSF
members (Figure S1). Nearly all of the selected molecules were
positively associated with each other, with the exceptions of
TNFRSF25, TNFRSF11A, and TNFRSF19.

Identification of Prognostic TNF Family
Genes in SCLC Patients
To identify clinically significant TNF family genes, we analyzed
all TNFSF/TNFRSF members and selected 21 genes that were
statistically associated with prognosis for the training cohort
(Figures 2A, B and Table S1). Next, we used a LASSO Cox
regression model to reduce dimensionality and identify the TNF
family members with the greatest prognostic value. TNFRSF10B,
CD40, TNFSF13B, TNFRSF21, TNFRSF25, TNFRSF1B, RELT,
and TNFSF14 were selected by the model and used to construct a
TNF family-based signature (Figures 2C, D). The weighting
coefficients are presented in Figure 2E. The results indicated that
TNFRSF10B, CD40, and TNFSF13B were risk factors for SCLC
patients, while TNFRSF21, TNFRSF25, TNFRSF1B, RELT, and
TNFSF14 were protective prognostic factors. The relationships
between the TNF family-based signature and the eight genes are
presented in Figure 2F.

Construction and Validation of the TNF
Family Based-Signature With a Training
Cohort of SCLC Patients
The essential role of T cell-related TNF family molecules and their
strong predictive value for SCLC inspired us to construct our
prognostic model. We developed a TNF-family signature based on
the expression levels of eight genes to predict OS for SCLC patients.
The risk score was calculated as follows: risk score = (0.3224 ×
TNFRSF10B) + (0.2429 × CD40) + (0.0316 × TNFSF13B) +
(-0.1292 × TNFRSF21) + (-0.2941 × TNFRSF25) + (-0.3208 ×
TNFRSF1B) + (-0.4752 × RELT) + (-0.5538 × TNFSF14). The risk
score for individuals was calculated using this formula, and all
patients with SCLC were separated into high- (n=45) and low-risk
groups (n=32) using the optimal cutoff point. The distributions of
risk scores and gene expression profiles are displayed in Figure 3A.
PCA indicated obvious between-group heterogeneity (Figure 3B).
Kaplan-Meier survival curves ofOS revealed that high-risk patients
had significantly worse OS (HR=3.38, 95% CI: 1.91, 5.97, P<0.001)
(Figure 3C). We further evaluated the predictive performance of
the signature using a time-dependent ROC curve; the AUCs were
0.798, 0.748, 0.72 after 1, 3, and 5 years, respectively (Figure 3D).
Additionally, the predictive accuracy of the signature for 3-year
survival was significantly better than that of several common
clinicopathological parameters, including sex, age, smoking
history, and cancer stage (Figure 3E). The C-index of the
signature was as high as 0.845, indicating excellent discriminatory
power (Figure 3F).

To determine whether the signature could independently
predict the OS of patients with SCLC, we conducted univariate
and multivariate Cox regression analyses using the training
cohort. We confirmed that the risk score functioned as an
independent risk factor (HR = 3.734, 95% CI: 1.871, 7.449,
P<0.001) compared with other “traditional” clinical parameters
like age, sex, smoking history, and tumor stage (Table 2).
Frontiers in Immunology | www.frontiersin.org 5
Validation of the Signature in a Validation
Cohort of SCLC Patients
To confirm whether the TNF family-based signature derived from
the training cohort was sufficiently robust for clinical application,
we validated the signature in an independent validation cohort.
The samples from the validation cohort were obtained from the
NCC and consisted of 137 SCLC FFPE samples. We measured the
gene expression levels of the FFPE samples using RT-qPCR, after
which the patients’ risk scores were calculated, and patients were
divided into high- (n=82) and low-risk (n=55) groups according to
the optimal risk score cutoff point. As shown in Figure 4A, high
and low-scoring patients had significantly different outcomes, with
high-risk patients more often experiencing an unfavorable OS
(HR=3.19, 95% CI: 2.05, 4.97, P<0.001). We also verified the
signature’s discrimination and calibration using ROC curves and
the C-index (Figures 4B–D). The signature exhibited good
performance for predicting survival at 1, 3, and 5 years, with
AUCs of 0.717, 0.667, and 0.702, respectively. In comparison, sex,
age, smoking status, and cancer stage had AUCs of 0.509, 0.527,
and 0.625, respectively. Similarly, patients with a low risk score
had a longer period of RFS in comparison with those with a high
score (HR=3.29, 95% CI: 2.18, 4.97, P<0.001) (Figure 4E).
Subsequently, ROC and C-index analyses confirmed the
robustness of the risk score (Figures 4F–H). The multivariate
analysis indicated that the risk score was independently correlated
with OS (HR=3.114, 95% CI: 1.793, 5.410, P<0.001) and RFS
(HR=3.362, 95% CI: 2.020, 5.598, P<0.001). These results confirm
that our novel signature is a reliable and effective tool for SCLC
prognosis prediction (Table 2).

Evaluation and Validation of the TNF
Family-Based Signature in Different
Clinical Subsets
To further explore the applicability of the TNF-family-based
signature in different clinical settings, we analyzed its predictive
efficiency for different clinical subgroups based on age, sex, and
smoking status. The results indicated that high-risk patients in
nearly all subgroups showed statistically significant worse OS,
with the exception of non-smokers (Figures S2A-F). As
expected, regarding sex, age, and smoking status, the signature
remained an independent prognostic biomarker for the
prediction of OS and RFS for patients with SCLC in the
validation cohort (Figures S2G-Q).

Predicting ACT Benefit in Patients
With SCLC
Considering that the TIME is an essential factor affecting the
efficacy of chemotherapy, we determined whether the risk score
could predict the benefit of ACT in patients with SCLC. The
association between risk score and chemotherapy benefit was
analyzed among patients who received ACT. In the training
cohort, patients were classified into high- (n=27) and low-risk
(n=23) groups according to the optimal cutoff point of the risk
score. There were significant between-group differences in the
Kaplan-Meier survival curves, suggesting that the OS of high-risk
patients was worse than that of low-risk patients (Figure 5A).
November 2021 | Volume 12 | Article 745769
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The ROC analysis showed that the 1-, 3-, and 5-year AUCs were
0.735, 0.727, and 0.653, respectively (Figure 5B). These findings
indicate that our novel signature demonstrated good accuracy for
predicting the prognosis of SCLC patients. The AUC of the risk
score (AUC=0.727) was higher than that of other common
Frontiers in Immunology | www.frontiersin.org 6
clinicopathological parameters like sex (AUC=0.615), age
(AUC=0.527), smoking status (AUC=0.503), or cancer stage
(AUC=0.693) (Figure 5C). The novel signature also predicted
ACT benefit in the validation cohort. Patients were divided into
high- (n=49) and low-risk (n=69) groups, and high-risk patients
A

D

B

C

F

E

FIGURE 2 | The clinical significance of TNF family members in SCLC patients. (A, B) The forest plots of hazard ratios (HRs) show the prognostic values of TNF
members. (C) Tuning parameter (l) selection cross-validation (n = 100) error curve for relevant prognostic genes. Red dots represent the partial likelihood deviance
values, and grey lines represent the standard error (SE). The vertical lines are the optimal values according to the minimum and the 1-SE criteria. (D) The LASSO
coefficient profiles of the most useful prognostic genes from the TNF family. (E) The weighting coefficient values for each prognostic gene. (F) Correlation matrix of
the risk score and eight selected genes.
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demonstrated worse OS (Figure 5E) and RFS (Figure 5I). In
addition, the ROC curves for different survival years and various
clinical factors also confirmed the predictive value of the
signature for ACT response (Figures 5F, G, J, K). The C-
indexes of the training and validation cohorts also
demonstrated the accuracy and discriminatory power of our
signature (Figures 5D, H, L).
Frontiers in Immunology | www.frontiersin.org 7
Biological Pathway and Inflammatory
Response Analysis of the TNF Family-
Based Signature
The ability of the TNF family-based signature to predict SCLC
prognosis inspired our subsequent exploration of signature-
related biological pathways. We first selected genes that were
closely related to the signature (Pearson |R| > 0.40), and 172
A

D

B

C

FE

FIGURE 3 | Identification of the TNF family-based signature in SCLCs from the training cohort. (A) The distribution of risk score, survival status, and TNF family gene
expression profiles. (B) PCA of patients with SCLC based on the expression levels of the eight selected genes. (C) The Kaplan-Meier curve of OS for patients with
SCLC based on the risk score. (D) Time-dependent ROC curves of the risk score for 1-, 3-, and 5-year OS prediction for the training cohort. (E) ROC analysis for
prediction of 3-year survival compared with other clinicopathological factors. (F) C-indexes of models based on the risk score and other clinicopathological factors.
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positive and 525 negative genes were filtered out (Figure 6A).
Next, GO and KEGG analyses were performed to determine the
biological roles of the selected genes. The genes in the TNF
family-based signature tended to be involved in immune-specific
Frontiers in Immunology | www.frontiersin.org 8
pathways, especially the T cell-related immune response
(Figures 6B, C). We also determined the association between
the risk score and inflammatory activity using a seven-metagene
cluster (consisting of genes that are highly correlated and provide
TABLE 2 | Univariate and multivariable Cox regression analysis of TNF family-based signature and outcomes of OS and RFS in training cohort (N=77) and validation
cohort (N = 137).

Variable Classification Univariable analysis Multivariable analysis

HR 95% CI P value HR 95% CI P value

Training cohort (OS)
Risk score High or Low 3.908 2.005, 7.617 <0.001 3.734 1.871, 7.449 <0.001
Sex Male or Female 3.055 1.419, 6.575 0.004 3.080 1.339, 7.087 0.008
Age ≥60 or<60 1.352 0.686, 2.663 0.384 1.307 0.639, 2.677 0.463
Smoking history Yes or No 2.437 0.334, 17.79 0.38 0.595 0.070, 5.074 0.635
SCLC_staging IV, III, II, or I 1.353 1.019, 1.797 0.037 1.270 0.958, 1.684 0.097

Validation cohort (OS)
Risk score High or Low 3.564 2.086, 6.091 <0.001 3.114 1.793, 5.410 <0.001
Sex Male or Female 1.192 0.702, 2.025 0.516 1.054 0.521, 2.131 0.884
Age ≥60 or<60 1.432 0.916, 2.24 0.115 1.502 0.941, 2.395 0.088
Smoking history Yes or No 1.185 0.743, 1.89 0.477 1.048 0.561, 1.958 0.882
SCLC_staging III, II, or I 1.537 1.161, 2.035 0.003 1.349 1.013, 1.796 0.040

Validation cohort (RFS)
Risk score High or Low 3.748 2.272, 6.183 <0.001 3.362 2.020, 5.598 <0.001
Sex Male or Female 1.549 0.921, 2.604 0.099 1.393 0.721, 2.692 0.324
Age ≥60 or<60 1.083 0.716, 1.637 0.707 1.117 0.725, 1.721 0.616
Smoking history Yes or No 1.370 0.884, 2.123 0.159 1.064 0.604, 1.875 0.830
SCLC_staging III, II, or I 1.473 1.131, 1.917 0.004 1.261 0.963, 1.651 0.092
November 202
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TNF, tumor necrosis factor; HR, Hazard Ratio; CI, Confidence Interval; OS, overall survival; RFS, relapse-free survival.
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FIGURE 4 | Validation of the prognostic performance of the TNF family based-signature in the validation cohort. (A, E) Kaplan-Meier curves of OS and RFS
according to risk-score groups in the validation cohort. (B, F) ROC curves of the TNF family-based signature for predicting OS and RFS after 1, 3, and 5 years. (C,
G) ROC curves of the TNF family-based signature for predicting 3-year outcomes of OS and RFS. (D, H) C-index for the predictive performance of the signature for
OS and RFS.
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robust clustering of samples). The expression patterns and risk
scores are presented in Figure 6D. In addition, after subjecting the
selected genes andmetagene cluster to gene set enrichment analysis
(GSVA),we found that the risk scorewas negatively related to LCK,
MHC-I, and MHC-II. These results suggest that high-risk patients
are more likely to show immunosuppression (Figure 6E).
Frontiers in Immunology | www.frontiersin.org 9
Immune Cell Infiltration and Immune
Checkpoints Associated With the Risk
Score
Immune cells and the TNF family play vital roles in immune
responses and inflammatory reactions. Considering that the
immune score and tumor purity have immunotherapeutic
A

D

B

C

F

G

H

E

J

K

L

I

FIGURE 5 | Association between risk score and the survival benefit of adjuvant chemotherapy in patients with SCLC. Kaplan-Meier (A) and ROC analyses of OS
according to different risk groups in the training cohort (B, C). (D) C-indexes for evaluating the performance of the signature for predicting the OS of the training
cohort. Kaplan-Meier (E) and ROC analyses of OS according to different risk groups in the validation cohort (F, G). (H) C-indexes for evaluating the performance of
the signature for predicting the OS of the validation cohort. Kaplan-Meier (I) and ROC analyses of RFS according to different risk groups in the validation cohort
(J, K). (L) C-indexes for evaluating the performance of the signature for predicting the RFS of the validation cohort.
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implications for cancer patients, we analyzed the relationship
between the risk score and immune infiltration status by
determining the ESTIMATE score, immune score, stromal
score, and tumor purity for the high-risk and low-risk groups.
As shown in Figure 7A, the high-risk group had lower stromal
and immune scores in comparison with the low-risk group, while
the former group had greater SCLC tumor purity. We further
evaluated the immune infiltration of 22 types of immune cells
using CIBERSORT. The relative proportion and composition of
immune cells were determined for the high- and low-risk groups
of the training cohort, which was stratified using the TNF family
based-signature (Figure 7B). The density plots showed that the
low-risk and high-risk groups had different immune landscapes.
For example low-risk patients exhibited significantly greater
infiltration of CD8+ T cells (P= 0.0166) (Figures 7C–F).

Various novel immune checkpoint molecules have been
identified recent years; however, the clinical effects of ICIs, like
Frontiers in Immunology | www.frontiersin.org 10
monoclonal antibodies targeting PD-1 and PD-L1, remain
unsatisfactory for SCLC patients. We therefore explored the
association between the TNF family based-signature and other
classic and novel immunotherapy checkpoint targets. The
correlation chord chart showed that the risk score was negatively
correlated with the expression levels of immune checkpoints ICOS,
ICOSLG, TIGIT, PDCD1, B7-H5, IL4l1, SIGLEC15, IL18BP, and
SELPLG (Figure 7G). Of note, the risk score was significantly
positively correlated with the expression level of CKLF-like
MARVEL transmembrane domain-containing 6 (CMTM6), a
potential immunotherapy target for high-risk patients (Figure 7H).
DISCUSSION

Due to rapid growth, early metastasis and limited treatment
options, SCLC is one of the most lethal tumors. Chemotherapy
A

D

B

C

E

FIGURE 6 | Biological pathways and inflammatory activities of the TNF family-based signature in SCLC from GO and KEGG pathway analyses. (A) The most highly
associated genes from the TNF family based-signature in SCLC patients from training cohort. (B) Gene enrichment with GO terms of the identified genes. (C) Gene
enrichment with KEGG terms of the identified genes. (D) Heatmap of the expression profiles of seven metagenes. (E) Correlations between the risk score and seven
clusters of metagenes.
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remains the key backbone of SCLC treatment, and accurate
prediction of prognosis and treatment response would surely
help to further optimize the choice of personalized treatment and
prognosis management for SCLC. Recently, the field of cancer
genomics has developed rapidly, and various novel therapeutic
targets and prognostic markers have been discovered for
multiple types of malignant tumors. Unfortunately, the relative
scarcity of tumor tissue samples has limited investigations of
potential predictive markers for treatment response that could be
applied in clinical settings to patients with SCLC.
Immunotherapy has achieved success as a treatment for
patients with many different types of tumors, but its efficacy
has been limited in SCLC patients (7). Considering the limited
knowledge of immune heterogeneity and the anti-tumor status of
Frontiers in Immunology | www.frontiersin.org 11
the TIME of SCLC, exploration of immune mechanisms and
TIME regulators are essential for the development of improved
treatments for SCLC patients.

The TNF family is expressed in nearly all cells and regulates a
wide range of cellular activities, including cell survival, tissue
remodeling, and immunity (30). Notably, TNF family members
are immunoregulators that play pivotal roles in immune
responses, particularly in co-stimulation of T cell responses
(31, 32). TNF receptors are implicated in immune surveillance
in pancreatic b cell cancer (33). TNF is also present in the TIME
of many cancers, where it is thought to enhance cancer growth.
TNF produced by myeloid cells was found to promote
inflammation-associated tumors (34), and TNF derived from
macrophages was implicated in inflammation and subsequent
A

D

B

C F

G H

E

FIGURE 7 | Relationship between the risk score and tumor-infiltrating immune cells as well as immune checkpoints. (A) ESTIMATE score, immune score, stromal
score, and tumor purity in high- and low-risk patients. (B) Difference in tumor-infiltrating immune cells between the high- and low-risk groups. (C-F) Difference in
immune cell infiltration abundance between the high- and low-risk groups. (G, H) Correlation chord chart showing the correlations between risk scores and other
immune checkpoint molecules.
November 2021 | Volume 12 | Article 745769

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. TNF Family Members in SCLC
tumor development (35, 36). In addition, TNF in the TIME can
cause genetic damage and have other direct effects on malignant
cells; for instance, TNF in the TIME can induce tumor cells to
undergo the epithelial-mesenchymal transition (EMT), thus
facilitating metastasis (37–39). Before these mechanisms were
fully appreciated, clinical trials of TNF were initiated, but these
trials failed due to severe toxicity (40–43). To move forward with
the clinical application of TNF treatment, additional studies are
needed to illuminate the roles of TIME-derived TNF in human
cancers and its relative importance in tumor prognosis and
treatment for early and late stage SCLC patients.

This study was the first retrospective study of SCLC patients
to construct an immune-specific signature based on TNF family
members for prognosis and treatment benefit prediction. The
eight-gene TNF-signature was constructed using a training
cohort and verified with qPCR using FFPE specimens from a
validation cohort. The signature was an independent prognostic
factor for patients with SCLC and showed precise predictive
value in several distinct clinical subgroups. Notably, the signature
was also useful for predicting chemotherapy response. Our
exploration of the association between the signature and
immune-inflammatory responses showed that tumor-
infiltrating CD8+ T cells were predominant in low-risk
patients. Additionally, the risk score was positively associated
with other novel immune checkpoints, suggesting that high-risk
patients were more likely to benefit from ICI-based therapies.

TNF family members are promising therapeutic targets for
reversing tumor immunosuppression, enhancing host antitumor
immune response, and improving clinical outcomes for patients
with SCLC (44). To better understand the TNF/TNFR family
profiles of SCLC patients, 19 ligands and 29 receptors were
selected and analyzed in our study. We compared the TNF
profiles of SCLC samples and adjacent tissues, and we found
that TNF family members were expressed at significantly lower
levels in tumor tissues, suggesting that significant heterogeneity
exists between tumor tissue and normal tissues. Based on this
heterogeneity, a TNF family-based prognostic predictive
signature was constructed, including TNFRSF25, CD40,
TNFRSF10B, TNFSF14, TNFSF13B, TNFRSF1B, TNFRSF21,
and RELT, and the signature was shown to possess excellent
predictive value for predicting the prognosis of SCLC patients.

TNFRSF25 (DR3), a cell surface receptor, is mainly expressed
by T cells, for which it mediates apoptotic signaling and
differentiation (45). TNFRSF25 also enhances the CD4+ T cell
response and promotes CD8+ T cell responses and antitumor
immunity (46). TNFRSF1B (CD120b) is a membrane receptor
that binds TNFa. TNFa is a proinflammatory cytokine that is
synthesized by activated macrophages (47). Altered gene and/or
protein expression of TNFRSF1B may be a prognostic biomarker
for patients with NSCLC (48). CD40, also known as TNFRSF5,
regulates cellular and humoral immunity, but the specific
physiological functions of CD40 are dependent on cell type
and the microenvironment. CD40 may be an effective
prognostic marker for lung cancer (49). TNFRSF10B (DR5) is
primarily localized on the plasma membrane, where it functions
as an apoptotic receptor to induce cell apoptosis. A DR5-
Frontiers in Immunology | www.frontiersin.org 12
targeting antibody has been developed and tested in clinical
trials as a therapeutic intervention for cancer patients (50, 51).
TNFSF14 (LIGHT, HVEML, CD258), a secreted protein, is a
highly effective stimulator of antitumor immune responses,
which also influences the plasticity of the TIME (52). TNFSF14
binds the decoy receptor TNFRSF14 to deliver costimulatory
signals to T cells (53). TNFSF14 is a promising cancer
immunotherapy target that appears to moderate survival and
apoptosis in lymphocytes and tumor cells (52). TNFSF13B
(BAFF, CD257) is a cytokine with three receptors: BAFF-R,
TACI, and BCMA (54). BAFF may influence the maturation,
proliferation, and class switching of B cells (55). A high
expression level of BAFF may lead to increased lung
inflammation and worsened alveolar wall destruction (56).
TNFRSF21 (DR6) is an extensively post-translationally
modified type I transmembrane protein that acts as a death
domain-containing receptor (57). DR6 is expressed ubiquitously
in most human tissue types, and particularly in the heart, brain,
pancreas, lymphoid organs, as well as by non-lymphoid cancer
cell lines (58). High expression of DR6 is associated with elevated
levels of anti-apoptosis molecules, and it contributes to tumor
cell survival and immune evasion (59). TNFRSF19L (RELT), a
type I transmembrane glycoprotein, predominates in immune
cells and lymphoid tissues (60). High expression of RELT in
epithelial cells induces cell death (61), and RELT-knockdown
mice demonstrated negative regulation of the early T cell
response phase (62). These findings illustrate that high RELT
expression down-regulates immune responses.

After exploring the functions of the eight genes comprising
the TNF signature, we verified its robustness by validating it
using a large SCLC cohort with FFPE specimens and clinical
subgroups. The results of the validation analysis confirmed the
high predictive value and accuracy of the TNF family-based
signature. These findings inspired us to explore the underlying
mechanisms of action and elucidate the role of these genes in
SCLC biology. Functional annotation of TNFSF/TNFRSF genes
revealed that the signature was closely associated with immune-
related processes. Considering the role of the TIME, the
signature-related immune landscape was also investigated.
Noticeably, we found that low-risk patients showed
significantly more infiltrated CD8+ T cells, which are crucial
for antitumor immunity (63). The correlations between the
signature and seven metagenes were analyzed to provide
additional insight into the mechanisms underlying
inflammation and immune responses in SCLC patients (64).
The risk score was negatively associated with monocyte/myeloid
lineage-specific functions and the antigen-presenting process of
T cells, thereby revealing the immunosuppressed status of high-
risk patients.

In addition, the TNF family-based signature was confirmed as
an independent prognostic indicator that effectively stratified
patients into high- and low-risk groups with distinct prognosis
and survival. Low-risk patients had more favorable outcomes
than their high-risk counterparts, largely because they had a
greater number of tumor-infiltrating CD8+ T cells. In agreement
with our results, CD8+ T cell infiltration has been shown to be an
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independent positive prognostic factor that is strongly associated
with better outcomes in patients with lung cancer (65), colorectal
cancer (66), esophageal cancer (67), and other cancers.
Noticeably, our signature can be used to predict the ACT
response of SCLC patients; low-risk patients derived a greater
benefit from ACT. These results were slightly consistent with
prior studies (68, 69). The proportion of tumor-infiltrating CD8
+ T cells was statistically higher in the low-risk group. Previously
published evidence suggests that tumor-infiltrating cells have
profound effects on chemotherapy efficacy against various
tumors (70). CD8+ T cells are important tumor-infiltrating
lymphocytes that play a vital role in antitumor immunity (71).
Thus, chemotherapy may induce antitumor immunity by
triggering tumor-infiltrating immune cells (72).

ICIs have shown therapeutic potential in several
malignancies, including SCLC (73). The expression levels of
immune checkpoints can predict the therapeutic response to
immunotherapy. Well-studied biomarkers like PD-L1 and TMB
are not sufficient to predict the prognosis of SCLC patients.
Therefore, novel immunotherapeutic targets are needed to
overcome this limitation, and immune checkpoints are being
actively researched (74). Our analysis of the correlations between
our TNF family-based signature and classical and novel immune
checkpoints revealed that the risk score of SCLC patients was
positively associated with the expression level of CMTM6.
CMTM6, a member of the CMTM family, is a novel immune
checkpoint that is localized at the plasma membrane of various
cells. Previous studies have shown that CMTM6 influences the
maintenance of cancer stem cells and the EMT (75). In addition,
depletion of CMTM6 delays tumor growth, enhances tumor-
specific T cell activity and reduces the number of exhausted T
cells (75). CMTM6 plays an essential role in maintaining cell
surface PD-L1 protein stability by preventing it from undergoing
ubiquitin-mediated degradation (76). Therefore, CMTM6 may
be a useful immunotherapy, especially for patients with
resistance to anti-PD-1/PD-L1 treatments. Interestingly, our
study suggested that our signature was positively associated
with the expression level of CMTM6, but it had no significant
correlation with the expression level of PD-L1. There are several
potential explanations for this finding. Firstly, PD-L1 expression
is usually low or absent in SCLC (77, 78). In the present study,
the PD-L1 expression level of the selected samples was too low to
allow correlational analysis with the TNF family-based signature.
Secondly, CMTM6 regulates PD-L1 at the protein level instead of
the mRNA level, so CMTM6 was not expected to affect PD-L1
mRNA expression. CMTM6 is not a general regulator of protein
translation or stability (79). We focused on the transcriptional
level in this study, so any effects of CMTM6 at the protein level
were outside its scope. Thirdly, the effects of CMTM6 are not
limited to PD-L1, and its effects in the TIME may be mediated by
other mechanisms. The results described above suggest that
CMTM6 may be a target for SCLC immunotherapy, especially
for high-risk patients with few therapeutic options.

Several limitations of the study should be considered. Firstly,
patients and clinicians mainly selected an ACT approach in real-
life clinical practice settings, and no random group assignment
Frontiers in Immunology | www.frontiersin.org 13
scheme was used. Secondly, the predictive capacity of the eight-
gene-related signature may not be stable within the TIME
because it is a heterogeneous mixture. Finally, the study cases
were collected retrospectively, and the predictive value of the
signature for ACT requires further validation in large, well-
designed, and prospective trials.

In conclusion, our study was the first full-scale study of the
expression patterns and clinical relevance of TNF familymolecules
in SCLC. Our novel TNF family-based signature independently
predicted the prognosis of patients with SCLC andwas a useful tool
for evaluating the survival benefit from ACT. Analysis of similar
genetic expression patterns may be the best way to advance
prognostication and the development of personalized precision
medicine approaches for patients with SCLC.
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