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The postpartum period is an important window during which environmental factors can

shape the life-long health of the infant. This time period often coincides with substantial

milk consumption either in the form of breast milk or from cow’s milk sources, such as

infant formulas. Although breast milk is the most beneficial source of nutrients for infants

during the first 6months after birth, its role in regulating food allergy development, through

regulation of oral tolerance, is still controversial. Breast milk contains several factors that

can impact mucosal immune function, including immune cells, antibodies, microbiota,

oligosaccharides, cytokines, and soluble receptors. However, there is considerable

variation in the assessed levels of cytokines and soluble receptors between studies

and across the lactation period. Most of these cytokines and soluble receptors are

absent, or only found in limited quantities, in commercial baby formulas. Differences

in content of these pluripotent factors, which impact on both the mother and the

neonate, could contribute to the controversy surrounding the role of breast milk regulating

oral tolerance. This review highlights current knowledge about the importance of

cytokines and soluble receptors in breast milk on the development of oral tolerance

and tolerance-relateddisorders. Understanding the mechanisms by which such milk

components might promote oral tolerance could aid in the development of improved

strategies for allergy prevention.

Keywords: food allergy, sCD14, soluble CD14, TLR2, mucosal immunology, intestinal barrier function, regulatory

T (Treg) cells

INTRODUCTION

Oral tolerance is a state of immune non-responsiveness to antigens consumed by the oral
route and derived from diet, environment, or gastrointestinal microbiota (1). Failure to develop
proper oral tolerance, early in life, has been linked to several diseases, including food allergy,
celiac disease, and inflammatory bowel diseases (IBD) (2). The incidence of allergic disease
has been rising in recent decades, most notably in developed countries in association with
environmental and lifestyle changes (3, 4). The concept of a “neonatal window of opportunity”
has been proposed to describe the prenatal or perinatal period during which dietary and
environmental factors can shape the development of the immune system and impact the
susceptibility to immune-mediated diseases, including allergy (5). This period often coincides
with substantial milk consumption either in the form of breast milk or infant formulas.
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Breast milk is a valuable nutritional fluid rich with dietary
antigens and immunomodulatory factors, including cytokines,
soluble receptors, growth factors, short-chain fatty acids,
vitamins, and microbiota, that are linked to the development of
the neonatal gastrointestinal tract (GIT) and immune system. In
this review, we will consider the role of milk components on
the development of oral tolerance early in life with a particular
emphasis on the cytokines and soluble receptors that could play
a pivotal role in skewing the neonatal immune system toward
either tolerogenic or allergic responses.

BREASTFEEDING AND ALLERGIC
DISEASES

Breastfeeding is recommended by scientists, health
organizations, and governments for all infants as a natural source
of multiple factors that promote healthy immune responses,
nutrition, protection against infection, and development (6). The
World Health Organization recommends exclusive breastfeeding
for 6 months before introducing solid foods (7). The impact
of breastfeeding on the development of allergic diseases has
been extensively studied, with conflicting results (8). Some have
reported beneficial effects (9–15), while others have found no
impact or increased risk of allergies among children that are
breastfed, notably by atopic mothers (16–19). A randomized
trial by Lucas et al. (15), found that feeding banked human
milk to preterm infants reduced the risk of cow’s milk allergy
when compared with formula feeding. In contrast, a cohort
study by Wetzig et al. (20), found that exclusive breastfeeding
for more than 5 months was associated with increased early
sensitization to eggs and atopic dermatitis. This variable effect of
breastfeeding on the prevention of food allergy may be associated
with differences in milk components related to ethnicity, diet,
and other factors.

Breast milk composition is dynamic and changes dramatically
over time to match the needs of the growing infant. For
example, the protein concentration is about 1.4–1.6 g/dl in the
colostrum and decreases to 0.7–0.8 g/dL after 6 months (21).
The most common alternative for human milk is infant formula
derived from cow’s milk, which contains higher concentrations
of protein and fat than breast milk (22). Breast milk is enriched
with allergens that are ingested by the mother, such as β-
lactoglobulin (23), ovalbumin (24), and peanut components (25).
In a cohort study by Pitt et al. (26), the rates of peanut allergy
were found to be significantly reduced among children whose
mothers consumed peanuts while breastfeeding. A study by
Grimshaw et al. (27) showed that infants who were diagnosed
with food allergies at 2 years of age were more likely to
have received solid foods at early ages (≤16 weeks of age)
and less likely to be breastfed during the introduction of
these foods. Furthermore, according to the Canadian Healthy
Infant Longitudinal Development (CHILD) study, a delay in
the introduction of food allergens, such as peanut, cow’s milk,
and eggs, can increase the incidence of food sensitization
(28). Together, the transfer of food allergens in milk and
the timing of solid food introduction relative to breast milk

consumption appears to be critical for preventing allergic disease.
The presence of immunomodulatory components in breast
milk are thought to be critically important in regulating these
processes.

THE DEVELOPMENT OF ORAL
TOLERANCE IN EARLY LIFE

The intestinal barrier is exposed to a copious antigen burden. A
properly functioning immune system must maintain tolerance
to innocuous dietary, endogenous, and microbial antigens while
responding to pathogenic insults. Immune tolerance to orally
ingested antigens is characterized by decreased antigen-specific
delayed-type hypersensitivity, T-cell proliferation, cytokine
production, and reduced specific IgE (2). During the fetal
period, the intestinal barrier is highly permeable, absorbing
nutrients from the amniotic fluid (29). During the first week
after birth, the permeability of the intestine rapidly decreases
due to the maturation of the intercellular tight junctions between
intestinal epithelial cells (IEC) (30). This process is accelerated
in infants that ingest the colostrum while non-breastfed children
experience a prolonged increased-permeability period (31, 32).
Intestinal permeability also decreased faster in preterm infants
(≤32 weeks of gestation) fed with breast milk rather than infant
formula (33). Prolonged greater intestinal permeability could be
linked to an increased incidence of atopic and infectious diseases
in non-breastfed infants (34).

The GIT harbors a highly specialized immune system
that includes gut-associated lymphoid tissues (GALT), such as
Peyer’s patches (PPs) and mesenteric lymph nodes (MLNs).
These compartments harbor specialized antigen-presenting
cells (APCs), including CX3CR1+ macrophages and CD103+

dendritic cells (DCs). Naïve T cells could be skewed toward
different phenotypes based on their interaction with these APCs
(35). CX3CR1+ macrophages can skew naïve T cells toward Th17
in response to microbial signals (36–38). In contrast, CD103+

DCs metabolize vitamin A to produce retinoic acid (RA), which
along with TGF-β drive the conversion of naïve T cells into
antigen-specific T regulatory cells (Tregs) and inhibit Th17
differentiation (39–41). Tregs enforce oral tolerance induction
relevant to allergy via inhibition of allergen-specific Th2
responses and IgE class switching by B cells (42). The frequency
of APCs in the intestine is dependant on the microbiota and the
cytokine milieu (43, 44). Neonatal IECs have limited microbial
communities and secrete low levels of cytokines and chemokines
leading to a paucity of CD103+ tolerogenic DCs in the lamina
propria (44). However, breast milk-derived mediators, including
microbiota (e.g., Bacteroides fragilis), vitamin A and immune
factors (such as TGF-β) compensate for this deficit and enhance
the expansion of tolerogenic DCs (45–49).

Accordingly, the development of oral tolerance in children
depends on dietary factors including those derived from
maternal milk, which contribute to both immune regulation
and maturation of the intestinal barrier. Defining the important
regulatory factors in breast milk might expand our knowledge of
the mechanisms involved in the development of food allergy.
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BREAST MILK CYTOKINES AND SOLUBLE
RECEPTORS AND ORAL TOLERANCE

Over the past 20 years, multiple cytokines and
immunomodulatory factors have been identified in breast
milk. This list of mediators is increasing with advances in
detection methods (Table 1). Many of these factors are derived
from the epithelial cells of the mammary gland or from immune
cells found in the milk (74) while others are transferred from
the mother’s circulation. Such breast milk components could
impact the development of neonatal oral tolerance through
both immune modulation and impacts on other systems such
as epithelial barrier function or the intestinal microbiome.
Particular challenges for research in this area are the variability
in concentrations of immune factors in breast milk and their
poorly defined ability to survive the infant’s stomach and exert
a biological effect in the GIT. Due to ethical limitations, most
studies of the effect of breast milk immune factors on the host
have been conducted either in vitro or in vivo using animal
models. Through analysis of such studies, it is widely agreed
that TGF-β, IL-10, IL-6, and sCD14, have a positive impact on
tolerance development (75) while a number of other cytokines
and soluble receptors are of potential importance. In addition to
these factors, several chemokines, such as CXCL8, CCL2, CCL5,
and CXCL10, as well as growth factors, such as EGF and IGF-(I
and II), are detected in breast milk (76, 77), but are not the focus
of this review.

CYTOKINES

Cytokines detected in breast milk, include TGF-β, IL-10, IL-6, IL-
1β, TNF, IFN-γ, IL-4, IL-5, IL-12, IL-13, G-CSF, GM-CSF, and
M-CSF (Table 1) (63, 67, 68, 78, 79). Many of these cytokines
have the potential to alter oral tolerance via their impact on the
development of the infant’s immune system and GIT (Figure 1).
They may also impact the function of the mammary gland in the
mother. Several factors might further influence the concentration
of cytokines in breast milk. For example, subclinical mastitis,
a local inflammation in the mammary gland observed in 23%
of nursing mothers, induces considerable changes in milk pro-
inflammatory cytokines that might affect infants (80).

The most abundant cytokines in breast milk are TGF-β family
members, including TGF-β1 and TGF-β2. The concentration
of TGF-β differs dramatically through the lactation period and
between individual mothers, with TGF-β2 being more abundant
in breast milk and TGF-β1 in the serum while both are relatively
scarce in infant formula (54, 81, 82). The majority of TGF-β1 and
TGF-β2 in breast milk exists in a latent form that gets activated
by the gastric acid in an infant’s stomach (83). Furthermore,
CD103+ DCs have the ability to activate latent TGF-β, which is
important for these DCs to induce Tregs (84).

TGF-β has several anti-inflammatory roles, inhibiting naïve
T cells from differentiation into Th1 and Th2 subtypes and
thereby suppressing Th1/Th2 responses (85, 86). TGF-β also
fosters stabilization of FOXP3 expression and maintains the
differentiation of Tregs (87, 88). The roles for TGF-β in the

TABLE 1 | Concentrations of cytokines and soluble receptors in human

colostrum and human milk.

Human colostrum

(0–4 days)

References Human milk

(1–6 months)

References

TGF-β1 140–3,300 pg/ml (50, 51) 80–600 pg/ml (50, 52)

TGF-β2 100–3,300 pg/ml (50, 53) 800–5,300 pg/ml (51, 54)

IL-1β 0.29–27.7 pg/ml (51, 55) 0.028–23 pg/ml (51, 52)

IL-4 1.6–172 pg/ml (55, 56) 5.6–626.8 pg/ml (54, 57)

IL-5 6.2–79 pg/ml (54, 56) 6.2–142 pg/ml (54, 56)

IL-6 7.3–80.6 pg/ml (55, 58) 3.5–148.6 pg/ml (51, 57)

IL-10 0–3,304 pg/ml (59, 60) 0–246 pg/ml (56, 59)

IL-12 3–310 pg/ml (61, 62) 3–40 pg/ml (61, 62)

IL-13 3.2–243 pg/ml (54, 63) 3.2–264 pg/ml (54, 56)

TNF 21.9–620 pg/ml (64, 65) 4.4–58 pg/ml (52, 66)

IFN-γ 2.5–708 pg/ml (51, 56) 0.7–175 pg/ml (51, 56)

G-CSF 4.38 pg/ml (67) 4.2 pg/ml (67)

GM-CSF 23.02 pg/ml (67) 1.6 pg/ml (67)

M-CSF 3,740–52,470 U/ml (68) 1,150 U/ml (68)

sTNF-R-I 3,703 pg/ml (69) 1,732 pg/ml (69)

sTNF-R-II 4,507 pg/ml (69) 931 pg/ml (69)

sIL-6R 12,761 pg/ml (69) 2,436 pg/ml (69)

sCD14 77.9–88.8µg/ml (70) 7–25µg/ml (71, 72)

sTLR2* + (73) + (73)

*Concentration of sTLR2 in human milk is not available.

GIT are multifaceted and include enhancing oral tolerance
(89), promoting intestinal integrity (90), stimulating IgA class-
switching in B cells (91), promoting colonization and increased
abundance of microbiota (92), and regulating inflammatory
responses (85, 86). According to a systemic review by Oddy
et al. (93), high levels of TGF-β1 and TGF-β2 in breast
milk were inversely correlated with the incidence of allergic
diseases in childhood. Furthermore, the levels of TGF-β were
higher in maternal colostrum of infants who developed post-
weaning atopy compared with those with pre-weaning atopy
(50). Furthermore, levels of TGF-β1 were significantly lower in
the breast milk of allergic mothers compared to non-allergic
mothers, potentially linked to increased symptoms of atopic
dermatitis in infants born to allergic mothers (59). Although
TGF-β can induce pathogenic Th17 responses in the presence of
IL-6, the production of RA from CD103+ DCs in the intestine
is thought to antagonize and override IL-6-driven induction of
Th17 and promote Treg differentiation (40).

IL-10 is an important anti-inflammatory cytokine detected in
both the breast milk whey fraction and fat. Breast milk derived
IL-10 has a molecular weight >80 kD, higher than that of IL-10
in serum, suggesting that it might be bound to other molecules
or post-transcriptionally modified (60). The bioactivity of IL-
10 in breast milk has been confirmed (51). IL-10 increases the
survival and expansion of B cells, inhibits Th1 responses and
downregulates major histocompatibility complex-II expression
on monocytes, thus, limiting their antigen presenting cell
function (94). IL-10 has been heavily implicated in the regulation
of intestinal inflammation and regulating responses to the
microbiome.
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FIGURE 1 | Mechanism of milk cytokines and soluble receptors in promoting oral tolerance in the neonatal intestine. Milk factors enhance the development of

tolerogenic dendritic cells (DCs) (CD103+) in the neonatal gastrointestinal tract (GIT). These DCs sample milk antigens and migrate to the mesenteric lymph node

(MLN). Tolerogenic DCs in the MLN drive the differentiation of naïve T cells into T regulatory cells (Tregs) and the expression of α4β7 integrins and CCR9 receptors that

are essential for homing of Tregs to the lamina propria (LP) and Peyer’s patches (PP). Tregs enhance oral tolerance by inhibiting inflammation and T helper 2 (Th2)

responses and induce secretion of IgA from B cells. Milk derived cytokines (gray boxes) and soluble receptors (green boxes) form a network of immunomodulators

that interact together and impact oral tolerance via a variety of mechanisms. Milk cytokines, including as TGF-β, IL-10, IL-6, TNF, and IFN-γ, affect the integrity,

proliferation, and apoptosis of intestinal epithelial cells (IECs). High levels of cytokines in breast milk could also have adverse effects, such as high concentrations of

TNF that could be seen in mastitis and induce apoptosis in the IECs. The effects of TNF can be attenuated via the corresponding soluble receptors, sTNF-R-I, and

sTNF-R-II that are found in breast milk. Furthermore, soluble toll-like receptor 2 (sTLR2) and soluble CD14 (sCD14) in breast milk can modulate the inflammatory

response toward pathogens in the neonate’s GIT by regulating TLR2 and TLR4 mediated cell activation, respectively.

IL-6 is a pleiotropic cytokine reported to have both pro-
inflammatory (95) and anti-inflammatory (96) impacts with a
key role in the regulation of the acute phase response which
both enhances innate anti-bacterial host defense and limits
some of the negative impacts of inflammation. IL-6 is also an
important regulator of mucous production by goblet cells (97).
It has been detected in the whey portion of breast milk in
both high molecular weight ≥100 kD and 25–30 kD isoforms
and at relatively consistent levels in breast milk for the first
3 months post-partum (98, 99). This cytokine has been linked
to the production of IgA in the neonatal intestine by inducing
follicular T helper cells in the germinal centers of PP (98). It also
stimulates the mammary epithelium to transport more IgA into
milk (100). The levels of IgA in breast milk are highly correlated
with the concentrations of TGF-β, IL-10, and IL-6 in breast milk
(54). High levels of IgA in breast milk have been reported to be
protective against allergic disease development, including cow’s
milk allergy (24, 100).

IL-1β was probably the first cytokine to be quantified in
breast milk using radioimmunoassay (RIA). Munoz et al. (101)

reported that IL-1β was present in high concentrations in the
colostrum and day 7 milk, however, more modest levels have
been reported in more recent studies (51, 78, 102). Although
IL-1β has been shown to attenuate skewing of T cells toward
Tregs, Järvinen et al. (100) have shown that IL-1β together
with IL-6, IL-10, and TGF-βl in breast milk are associated with
enhanced tolerance to cow’s milk. However, the impact of breast
milk-derived IL-1β on tolerance development in neonates is
still not clear, as both the cytokine and its natural antagonists,
such as IL-1 receptor antagonist, are observed together in the
milk.

In vitro and in vivo animal studies have suggested an
important role for milk-derived cytokines on intestinal epithelial
proliferation and repair. These activities are essential for
maturation and healing of the GIT and involve milk derived
cytokines such as TNF (103), IL-10 (104), and IL-6 (105).
In addition, TNF and TGF-βl usually have an anti-apoptotic
effect on IECs (103, 106), although very high concentrations
of TNF will induce apoptosis (107). Intestinal permeability,
which is a crucial factor in the regulation of oral tolerance,
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could be substantially altered by breast milk cytokines. In vitro
experiments suggest that IL-10 enhances intestinal integrity and
compromises the barrier disrupting effect of IFN-γ, a process
confirmed by severe chemical-induced colitis and observations
of increased intestinal permeability in IL-10 receptor 1 null
mice (108). A study by Kuhn et al. (109) has shown a
decrease in the expression of epithelial barrier proteins and
a thinner mucus layer in the intestines of IL-6−/− mice,
suggesting a role of IL-6 in intestinal integrity. In addition,
milk cytokines could also impact the mammary gland itself. For
example, TNF is an important regulator of the development
and branching of glands in the breast (110) such factors could
impact both the available supply and constituents of breast
milk.

The extent to which breast milk-derived cytokines exert
their effects on the neonatal GIT also depends on several
neonatal factors. Their concentrations in milk vary dramatically
during the lactation period and are often higher in the
colostrum (76). The ability of cytokines to retain bioactivity
after passage through the infant’s stomach is also critical. The
pH in the neonatal stomach is higher than in adults (pH
3–5), which might allow more cytokines to exert biological
effects and help compensate for the paucity of cytokine
responses in neonates (111). Other factors might also impact
the efficacy of milk-derived cytokines including the existence
of soluble receptors or receptor antagonists in breast milk
or the neonatal GIT, which might either regulate binding
of the cytokines to their receptors or compete with them
(69).

SOLUBLE RECEPTORS

Soluble receptors are thought to have immunoregulatory
roles in many biological fluids, including breast milk. They
regulate signaling of milk-borne cytokines and innate immune
stimulators through membrane-bound receptors in the neonates
(Figure 1). Breast milk contains several soluble cytokine
receptors, such as sIL-6R and sTNF-RI and sTNF-RII, receptor
antagonists, such as IL-1RA, and soluble innate immune
receptors, such as sCD14 and sTLR2 (Table 1). These receptors
might in some circumstances be bound to their ligands or
carrier proteins, which could explain the larger observed
molecular weight of some cytokines in milk (≥100 kD and
25–30 kD for IL-6, from 80 to 195 kD for TNF, and
>80 kD for IL-10) (69). However, this issue has not been
well-studied.

Soluble receptors for classical inflammatory cytokines
are found in breast milk throughout lactation. The levels
of sIL-6R are low under normal conditions in both
colostrum and mature milk and its affinity to IL-6 is
also low (69, 112). The exact role of this receptor in
breast milk is not clear yet, however, in vivo experiments
have shown an augmentation of IL-6 function by sIL-6R
(113).

IL-1RA is detected in human colostrum and milk in amounts
higher than serum. It binds to the IL-1 receptor due to homology

with IL-1α and IL-1β (69, 114). However, it is considered an
antagonist as it competes with IL-1α/IL-1β for receptor binding
and thus regulates their effects (69, 114, 115). The importance
of IL-1RA in milk has not been well-studied, but it likely
limits the inflammatory response in the neonatal GIT. The
two soluble receptor forms of the TNF receptors are sTNF-
RI and sTNF-RII. These been reported in both the human
colostrum and milk and shown to modulate the effect of TNF
on its receptor. Only a small fraction of the TNF in breast
milk is free to activate cells while the majority is speculated
to be neutralized by the soluble receptors (69). High levels of
TNF have been detected in milk from mothers with mastitis;
however, this was accompanied by elevated levels of sTNF-RII
and IL-1RA, which might protect nursing infants from high
pro-inflammatory cytokine levels in the context of such breast
infections (116).

Soluble forms of innate immune receptors, CD14 and TLR2,
have also been detected in breast milk (117). A single (48 kD)
form of sCD14 has been observed in human milk, whereas
sTLR2 is detected in six isoforms (ranging from 20 to 85 kD)
(73, 118). There is substantial evidence that the responsiveness
of TLRs to their ligands, such as the lipopolysaccharides
(LPS) and bacterial lipopeptides in the neonatal intestine, is
regulated by sTLRs and sCD14 leading to the inhibition of
potentially damaging responses (119) allowing for more efficient
development of tolerance to commensal microbiota. CD14 is a
co-receptor for both TLR2 and TLR4 and facilitates recognition
of their ligands (120). The interaction between sCD14 and
sTLR2 in breast milk increases the binding capacity of sTLR2 to
bacterial products, such as the peptidoglycan of Gram-positive
bacteria (121). Furthermore, sCD14 can complex with LPS and
limits LPS-mediated cellular stimulation (118, 122). The role
of TLR2 in oral tolerance is still not clear as signaling via this
receptor differs between commensal and pathogenic bacteria
(123). Our group has shown that TLR2 activators in food
might skew the immune system toward an allergic response
by inhibiting oral tolerance development (124). In contrast, B.
fragilis, that contains polysaccharide A signals via TLR2 on
Tregs leading to suppression of Th17 response and enhanced
colonization of this bacteria in the intestine (123). Therefore,
establishment or disruption of tolerance via TLR2 might require
the involvement of other microenvironmental ligands and/or
receptors and be highly dependent on intestinal location. sTLR2
in breast milk has also been implicated in the prevention of
HIV infection and inhibition of inflammation (125) although
the mechanisms whereby this occurs are not well-understood.
Improved intestinal barrier function or altered populations of,
or receptor expression by local immune effector cells may
contribute to altered vulnerability to infection. Little work has
been done examining either the role of sTLR2 in oral tolerance or
its impact on the developing microbiota in the neonate. Several
further soluble receptors that exist in serum, saliva, or urine,
including sTLR4, sIL-4-R, sIL-5-R, sIFN-γ-R, sTGF-β-R, sGM-
CSF-R (126), might be of additional potential importance in
regulating the impact of milk-borne cytokines, however, these
receptors have not been well-studied and defined in breast
milk.
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CONCLUSION

Breast milk contains a network of immune mediators, including
several cytokines and soluble receptors that have not been
well-studied in the development of oral tolerance in neonates.
Strong evidence suggests a critical role for breast milk-derived
immune mediators in preventing the development of allergic
diseases, in part through modulation of the neonatal immune
system and GIT maturation. Such mediators include soluble
receptors and receptor antagonists that can minimize the adverse
effects of such cytokines and pattern recognition receptors in
the neonates GIT and developing the mucosal immune system.
Differences in results from studies examining the presence and
concentrations of cytokines and soluble receptors in breast milk
may relate to the studied populations, collection time, sample
storage, and methods of detection, as reviewed by Agarwal
et al. (76). Much further work is needed to determine the
extent to which milk derived cytokines and soluble receptors
influence the development of oral tolerance and the subsequent

expression of allergic disease. Breast milk dependent early
life immune regulation, while challenging to study, provides
important opportunities for immune interventions with long-
lasting health impacts.
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