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Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia

The Interleukin (IL-)1 family IL33 is best known for eliciting type 2 immune responses

by stimulating mast cells (MCs), regulatory T-cells (Tregs), innate lymphoid cells (ILCs)

and other immune cells. MCs and IL33 provide critical control of immunological

and epithelial homeostasis in the gastrointestinal (GI) tract. Meanwhile, the role of

MCs in solid malignancies appears tissue-specific with both pro and anti-tumorigenic

activities. Likewise, IL33 signaling significantly shapes immune responses in the tumor

microenvironment, but these effects remain often dichotomous when assessed in

experimental models of cancer. Thus, the balance between tumor suppressing and tumor

promoting activities of IL33 are highly context dependent, and most likely dictated by the

mixture of cell types responding to IL33. Adding to this complexity is the promiscuous

nature by which MCs respond to cytokines other than IL33 and release chemotactic

factors that recruit immune cells into the tumor microenvironment. In this review, we

integrate the outcomes of recent studies on the role of MCs and IL33 in cancer with

our own observations in the GI tract. We propose a working model where the most

abundant IL33 responsive immune cell type is likely to dictate an overall tumor-supporting

or tumor suppressing outcome in vivo. We discuss how these opposing responses

affect the therapeutic potential of targeting MC and IL33, and highlight the caveats

and challenges facing our ability to effectively harness MCs and IL33 biology for

anti-cancer immunotherapy.

Keywords: interleukin 33 (IL33), mast cell (MC), innate immunity, ST2, gastrointestinal (GI) malignancies, tumor

microenvironment (TME), therapy targets, cytokine signaling

INTRODUCTION

The tumor microenvironment (TME) is a complex collection of cellular and extra cellular matrix
(ECM) components. Interactions and communications between the various components of the
TME are orchestrated by a multitude of signaling molecules, including the cytokine interleukin
(IL)33. IL33 was first discovered in 2003 as a nuclear factor in HEVEC cells (NF-HEV) (1) and
later identified as an IL1 family cytokine and ligand for the interleukin 1 receptor like 1 receptor
(IL1RL1, or commonly referred to as ST2) (2).

IL33 is expressed in fibroblasts, endothelial and epithelial cells (1, 3, 4) as well as in many cancer
cells [reviewed in (5, 6)]. Depending on stimulation or disease context, this cytokine is produced
by additional cells such as MCs (7), dendritic cells, macrophages, neutrophils, eosinophils, B cells
and red blood cells (8–11). Anatomically, the expression of IL33 is highest in barrier tissues like
the skin, the air ways and the GI tract, where IL33 release activates innate and adaptive immune
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responses upon tissue injury or various infections [reviewed
in (12)]. Indeed, tissue resident innate immune cells are the
proposed first responder for released IL33, and MCs are
present at all these environment-tissue interfaces (13). In
general, necrotic or necroptotic cell death is required for its
release (14–21), nevertheless, multiple studies suggest release
of IL33 from living cells (22–25), suggesting various modes
of active secretion and passive release with and without
necrotic/necroptotic cell death depending on cell type and
stimuli. Further research is required to unravel the exact
mechanisms of IL33 release.

IL33 cytokine exerts its activity via binding to a heterodimeric
receptor consisting of its primary receptor ST2 and a co-receptor,
IL1 receptor accessory protein (IL1RAP) (26, 27) triggering
downstream signaling pathways including MYD88, IRAK1/4,
MAP kinases and NF-kB (2, 12). Importantly, the various
biological outputs following engagement of the IL33-ST2 axis are
heavily dictated by the cellular context, which we will further
summarize in this review, with a special focus on interaction
and importance the innate-immune mast cells for IL33 signaling
in cancer. Besides acting as an extracellular ligand conferring
activity through its cognate ST2 receptor on targets cells, ST2-
independent nuclear IL33 can act as transcriptional repressor
in fibroblast, endothelial and immune cells (28, 29). Likewise,
nuclear IL33 also promotes immune suppressive functions
independent of ST2 in regulatory T (Tregs) cells (30), and cell
intrinsic IL33 plays a role in B cell development (31).

IL33—RESPONSIVE CELLS IN THE TUMOR
MICROENVIRONMENT

Since the identification of ST2 as the cognate receptor of IL33,
various cell types have been shown to express ST2 and to respond
to IL33 stimulation. However, there is a significant difference in
the quality and quantity of ST2 expression among various cell
types. Innate lymphoid cell type 2 (ILC2), Tregs andMCs express
the ST2-receptor constitutively, while all other cell types that
respond to extracellular IL33 are either ST2 negative at steady-
state and only induce ST2 expression upon activation, or express
ST2 on minor cell subsets in specific biological processes in a
tissue-dependent manner (32).

ILC2 Cells
A significant subset of innate lymphoid cell type 2 (ILC2) are
constitutive ST2 expressers. However, the proportion of ST2
positive ILC2s can vary depending on tissue origin and disease
context (32–37). Stimulation of ILC2s by IL33/ST2-signaling is
critical for their activation, induces their expansion within tissues
and triggers secretion of the type 2 cytokines IL-5 and IL-13.
This classic type 2 (innate) immune response contributes to anti-
helminth immunity, lipid metabolism and to the development
of various allergic diseases such as asthma, atopic dermatitis,
allergic rhinitis, and chronic rhinosinusitis (12, 13, 38–40).
Recently, it was reported that IL33-activated tumor infiltrating
ILC2s (TILC2) restrict pancreatic tumor growth. Moreover, IL33
induces the expression of inhibitory checkpoint receptor PD-1
in TILC2s. Antibody-mediated PD-1 blockade leads to TILC2

expansion and activation, resulting in augmented anti-tumor
immunity, and enhanced tumor control (41).

Treg Cells
Depending on the tissue and disease setting, a significant
proportion of Tregs constitutively express the ST2 receptor
(32–37). IL-33/ST2 signaling in Tregs has been shown to promote
Treg frequency and immunosuppressive capacity in colitis and
tissue injury models as well as graft vs. host disease (35, 42). In
cancer, IL33/ST2 signaling in Tregs seems particularly important
in colon cancer, where the frequency of ST2-expressing Tregs is
higher and ST2-expression is upregulated compared to normal
colon tissue. Signaling through the ST2 receptor can increase
frequency, activity and migratory potential of Tregs, which
is associated with increased colonic tumor burden (43–45).
However, there are also studies that demonstrate increased Treg
density upon genetic ST2 ablation (34).

Mast Cells
While MCs can confer their functions through cell-cell contacts,
their predominant way of shaping their cellular environment
occurs via release of preformed or newly synthesized mediators.
These paracrine acting molecules include growth factors,
proteases, leukotrienes, cytokines and chemokines which in turn
modulate biological processes and responses including: tissue
remodeling, angiogenesis, pro/anti-inflammatory responses,
immunosuppression, and cellular proliferation, survival,
recruitment, maturation and differentiation (46, 47).

MCs provide critical nodes for IL33 signaling in innate
immune cells. In external surface organs, where epithelial cells
express high levels of IL33, the number of MCs is highest (48).
MC’s are first responders during infections, where IL33 acts
as an alarmin following its release as a cellular danger signals
(49). The dual importance of IL33 and MCs in allergies is well
established (50), yet critical roles for the IL33-MC axis have also
been uncovered in allergic, autoimmune, inflammatory disease as
well as cancer and other diseases (51, 52). In addition, MCs can
potentiate the biological impact of IL33, because chymases and
tryptases released by activated MCs process full-length IL33 into
a truncated and biologically more active mature protein (53). In
addition, MCs have been described to also produce IL33 (7).

MCs appear to be the only cell type which constitutively
express high levels of ST2 independent of their tissue origin or
maturation/activation status (33, 54). Importantly, activation of
MCs by IL33 leads to the release of a plethora of factors that act
on various cell types in the TME and influence their recruitment,
rate of proliferation and their state of activation, differentiation
and polarization (Figure 1) (46, 55–65).

The striking overlap of cell types which respond to IL33 and
mast cell-released mediators highlights the importance of the
IL33-MC axis for the biological outcome and demonstrates the
potential of MCs as amplifiers and regulators of IL33-mediated
processes. However, most past studies have investigated the roles
of IL33/ST2 and of MCs separately. We and others have begun to
better integrate these closely related aspects of innate cell biology
in the context of GI cancer, since this organ system is known for
both high IL33 expression and high density of MCs.
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FIGURE 1 | Interactions between IL33, activated MCs and ST2-positive responder cells. Fibroblasts, endothelial and epithelial/tumor cells are the major source of

IL33 in the tumor microenvironment, and can in turn be stimulated by IL33. IL33 activates MCs and in turn MC -released chymases/tryptases cleave full length IL33

into highly active mature IL33. Subsequently, both IL33 (via ST2 receptor binding on target cells) and activated MC (via mediator release; depicted in blue) action

innate immune cells: eosinophils, basophils, neutrophils, myeloid derived suppressor cells (MDSC), macrophages (Mφ), natural killer cells (NK), type 2 innate lymphoid

cells (ILC2), dendritic cells (DC), and adaptive immune cells: natural killer T cells (NKT), regulatory T cells (Treg), CD4T cell subsets (Th1/2/17), CD8T cells (CD8), and

B cells. Mast cell mediator abbreviations: TNFα, Tumor necrosis factor alpha; TGFβ, Transforming growth factor beta; HA, Histamine; PAF, Platelet activating factor; IL,

Interleukin; VEGFa, Vascular endothelial growth factor A; FGF2, Fibroblast growth factor 2; SCF, Stem cell factor; PGD2, Prostaglandin D2; Hep, Heparin; CXCL1,

C-X-C-motif chemokine; CCL, C-C motif chemokine ligand; LTD4, Leukotriene D4; Cd1d, Cluster of differentiation 1 family glycoprotein; PD-L1, Programmed

death-ligand 1; LTC4, Leukotriene C4.

Other Cell Types
Besides the constitutively ST2-expressing ILC2, Tregs and MCs,
there are various cell types, which don’t express ST2 at steady
state but expression can be induced or is present in minor
cellular subsets. These include endothelial cells (66, 67), epithelial
and epithelial-derived cancer cells (68, 69), fibroblasts (34,
70) and other non-immune cell types. Importantly, fibroblasts,
endothelial and epithelial cells are also the major cellular sources
of IL33 production in the tumor microenvironment (Figure 1)
(3–5). The immune cells that respond to IL33 in a ST2-
dependent manner (in addition to MCs, Tregs and ILC2s) are the
innate immune cells: eosinophils, basophils, neutrophils, myeloid
derived suppressor cells (MDSC), macrophages (Mφ), natural

killer cells (NK), dendritic cells (DC), and the adaptive immune
cells: natural killer T cells (NKT), CD4T cell subsets (Th1/2/17),
CD8T cells, and B cells (Figure 1) (71–80).

IL33 AND MAST CELLS IN
GASTROINTESTINAL CANCER

Various reviews try to group the IL33-responding immune
cell types based on their role in tumor growth, whereby
MCs, (tumor associated) macrophages and Tregs are considered
pro-tumorigenic, while CD8, NK, NKT, and DC conferring
predominantly anti-tumorigenic functions (6, 74, 77, 81). Beside
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these “classical activities,” for many of these cells both anti- and
pro-tumorigenic roles have been described and formost cell types
their functions might be tumor-type and -stage dependent.

The role of IL33 in cancer has been reviewed recently (81, 82).
IL33 expression correlates with poor prognosis in some cancers,
but predicts good outcomes in others (77). Likewise for MCs,
high mast cell infiltration can correlate either with poor or good
prognosis depending on the tumor type (65).

Pre-cancerous Inflammation
Chronic inflammation or infection often precedes neoplastic
transformation. Accordingly, IL33 expression is elevated in
colonic epithelial cells and myofibroblasts of ulcerative colitis
patients (83, 84) and in the chronically inflamed stomachs of
patients infected with H. pylori or during bouts of acute gastritis
(85, 86). Meanwhile, increased MC numbers are readily detected
in patients with ulcerative colitis, gastritis and various other
inflammatory disorders of the GI tract [reviewed in (87)] and
have been attributed a disease-promoting role (88).

Conversely, simultaneous ablation of MCP-6/7, mouse
orthologs of the human b tryptases TSAB1/2, significantly
protected mice from dextran sodium sulfate (DSS)-induced
colitis (89). While thi observation suggests that MCs may
promote the inflammatory environment that mediates DSS-
dependent destruction of the epithelial layer, the role of MC
during the subsequent “wound-healing reaction” remains less
clear. Although, it has been noted that tryptase-expressing MCs
persist for several weeks at the site of the original injury (90).
Consistent with a role for MC to not only release various
leukocyte attracting chemokines, but to also induce proliferative
effects on fibroblasts and other “bystander” cells (91). In turn,
soluble factors from fibroblasts, including IL-33 can then feed-
forward on MC and shape their phenotype (92). Indeed, in
response to DSS administration, IL33 activated MCs in the
colonic epithelium, which subsequently promoted restoration of
epithelial barrier function and regeneration of epithelial tissues
(93). In accordance with this, Rigoni et al. observed exacerbated
colitis in MC-deficient Kitw−Sh mice (94). Collectively these
preclinical studies suggest a functional connection between IL33
and MCs during inflammation-associated regeneration of the GI
epithelium. Similarly, tumors, “wounds that do not heal,” may
co-opt these wound-healing associated IL33-mast cell immune
responses (95).

Intestinal and Colorectal Cancer
Although IL33 is elevated in colorectal cancer (CRC) patients
when compared to normal tissues, in some studies its levels were
reduced when comparing late vs. early stage disease (70, 96–98).
Mast cell infiltration is associated with poor prognosis in
colorectal cancer patients [reviewed in (65)], and at least
one study also associated high IL33 expression with poor
survival outcomes for metastatic CRC (99). Meanwhile, IL33-
ST2 mechanisms underpinning pro- and anti-tumoral roles in
CRC have been studied in mice. Maywald et al., observed
reduced intestinal polyposis in IL33-deficient ApcMin mice,
which was associated with a lack of IL33-mediated mast cell
and myofibroblast activation (70). A tumor promoting role for

IL33 was confirmed independently (44). However, two separate
studies reported elevated tumor burden in MC-deficient ApcMin

mice when compared to their MC-proficient counterparts (100,
101). Meanwhile, intestinal polyps in Apc1468 mutant mice
have increased IL33 expression and reduced numbers of MCs
contribute to the anti-tumoral effect of IL10-deficiency (54) and
5-lipoxygenase-deficiency (102).

In the classic carcinogen-induced mouse model of sporadic
colon cancer (6x AOM), colon tumors displayed increased
expression of IL33 and ST2. However, mast cell numbers were
unchanged, while ST2-deficieny increased number and size of
the colon tumors. Surprisingly, the tumor suppressive role of
the IL33-ST2 signaling pathway occurred independently of MC
abundance, but was mediated by mesenchymal (stem) cells
and associated with a strong interferon gamma (IFNγ) gene
expression signature (34).

However, in the AOM/DSS inflammation-associated CRC
model, ST2-deficient mice had reduced tumor burden, possibly
owing to ST2-expressing Tregs although these authors neither
investigated the number nor activation status of MCs (43).
Using the same model, Mertz et al. also observed reduced
tumor burden in ST2-deficient mice (98). Using adoptive bone
marrow chimeras, these authors attributed the anti-tumor effect
to both the radio-resistant and radio-sensitive cell compartments
and demonstrated an involvement of several hematological
cell types (98). The latter observation was consistent with
earlier work demonstrating reduced colonic tumor burden
in MC-deficient c-KitW−sh mice following the AOM/DSS
challenge (94).

Gastric Cancer
IL33-mediated spasmolytic polypeptide-expressing metaplasia
(SPEM) in the stomach of mice is associated with a strong
Th2 cytokine response, suggesting an involvement of MCs
(103). In human gastric cancer cell lines, IL33 promoted
epithelial-to-mesenchymal transition in vitro and xenograft
tumor growth in an ST2-dependent manner (104). Recently,
we illustrated that MC numbers are elevated in human gastric
cancer specimens and that high expression of an IL33-MC
activation gene signature predicts poor survival of intestinal-
type gastric cancer in patients (33). Utilizing mouse models,
we identified an IL33-MC-macrophage axis promoting gastric
cancer growth where either ST2-deficiency, lack of MCs or
lack of macrophages all restricted gastric cancer growth in the
preclinical gp130FF mouse model of inflammation-associated
gastric cancer. IL33-mediated activation of MCs and subsequent
secretion of macrophage attracting factors form part of a
mechanism resulting in the accumulation of pro-angiogenic
and pro-tumorigenic macrophages in the gastric tumors. In
ST2-deficient gp130FF mice, ILC2 and Treg density was not
altered, while frequency of MCs was decreased and associated
with reduced tumor growth. Conversely, adoptive transfer of
ST2-proficient MC stimulated tumor growth in ST2-deficient
gp130FF mice, demonstrating that IL33-ST2 signaling within
MCs is part of the tumor promoting effect of IL33 in gastric
cancer (33).
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Other Cancers of the Gastrointestinal Tract
IL33 administration promoted the growth of Kras and TGFbR2
mutant biliary tract cancers (105) and in mouse models with
constitutively active AKT/YAP pathway (106, 107). Moreover,
IL33 is overexpressed in human gallbladder cancer patients (108).
However, in pancreatic cancer patients high IL33 expression
and high number of tumor-infiltrating ILC2s correlated with
better survival (41). This is consistent with the observation in
a pancreatic cancer mouse model, that IL33 activated tumor–
associated ILC2s mediated anti-tumor immunity. MCs were
not investigated in this study, even though MC’s pancreatic
tumor promoting functions are known (109). Finally, IL33 is
highly expressed in patients with esophageal squamous cell
carcinoma. In corresponding cell lines, IL33 overexpression
promoted migration and invasiveness, while IL33 knockdown
inhibited the metastatic potential of these cells (110).

THERAPEUTIC TARGETING OF THE
IL33-MC AXIS

In recent years, a number of studies have identified compounds
that inhibit IL-33 mediated activation of MCs. Amongst
those are natural compounds from plants like berberine
(111), methoxyluteolin (112), and resveratrol (113) or
ES-62 produced from parasitic worms (114) as well as
various other drug classes including didox (synthetic
ribonucleotide reductase inhibitor) (115), chondroitin
sulfate (glycosaminoglycan) (116), triochastatin A (histone
deacetylase inhibitor) (117) and the growth factor TGFb1 (118).
However, in all these studies, drug effects were investigated
exclusively in vitro. In vivo testing in preclinical animal
models is required to increase the impact of these findings
and investigate their IL33-MC axis specificity and potential
off-target effects.

A promising example for an unbiased high-throughput
approach to identify IL33-MC modulating drugs was published
by Ramadan et al., They conducted a high-throughput screen
of over 70,000 small molecules utilizing an AlphaLISA assay,
which measures ST2-Fc fragment binding to IL33 (119). The lead
compounds were then demonstrated to exhibit activity in vitro as
well as in vivo in mouse models for graft vs. host disease.

Targeting IL33/ST2
Development and characterization of inhibitors of IL33-ST2
signaling is an active field of research. Various synthetic
molecules, antibodies and natural compounds either
targeting the IL33-ST2 interaction directly, or inhibiting
MyD88-IRAK and other downstream signaling pathways, or
disrupting production of mediators are in now pre-clinical
testing (74).

Targeting the IL33-ST2 interaction strategies are favored
due to the knowledge gained from the naturally occurring
soluble ST2 receptor isoform (sST2), a secreted “decoy receptor,”
which binds IL33 and thereby sequestering the ligand from
binding to membrane-bound ST2. High sST2 expression has

been associated with anti-tumor responses in several cancers
(120). However, the most advanced modalities targeting the
IL33-ST2 interaction are antibodies, with five different anti-
IL33 or anti-ST2 antibodies being tested in clinical phase 1
trials and found to be safe for use in humans (NCT02170337,
NCT01928368, NCT02958436, NCT02999711, NCT03112577,
NCT02345928, NCT03096795). Currently, there are multiple
phase 2 trials ongoing/completed investigating the efficacy of
IL33-ST2 inhibition against various allergic and inflammatory
diseases and diabetic kidney disease (Table 1A).

To date, no clinical trials have been conducted in cancer
patients. Indeed, only a limited number of studies have used IL33-
ST2 neutralizing antibodies in preclinical tumor models in vivo
(Table 1B). Strikingly, all these studies demonstrated anti-tumor
effects of anti-IL33 and anti-ST2 antibody treatments. However,
as a cautionary tale, multiple studies demonstrate anti-tumor
effects upon administration of recombinant IL33 (34, 41).

Targeting MCs
A plethora of strategies to target MC receptors, intracellular
signaling components and MC-derived mediators have been
tested, with some now being used in the clinic. Traditionally,
agents targeting MCs were studied and applied in allergies and
related disorders (129, 130). Accordingly, mast cell stabilizers,
drugs like Cromolyn sodium, Nedocromil, and Lodoxamide,
which block MC degranulation are utilized for indications like
asthma and other allergic diseases (130).

A number of tyrosine kinase inhibitors including Nilotinib,
Sunitinib, Dasatinib, Imatinib, and Masitinib are in clinical trials
or in clinical practice as anti-cancer drugs (130). All these small
molecule inhibitors have high affinity for the tyrosine kinase
receptor KIT, in addition to other tyrosine kinases. KIT is a
key molecule for MC development, proliferation, survival and
function and inhibition of KIT reduces MC numbers and inhibits
their function. For example, Imatinib was shown to reduce
asthma symptoms in a MC-dependent manner (131), yet the
impact of these TK inhibitors on MCs and their contribution
to the anti-tumor effect has not been investigated systematically.
In the first instance, it would be important to establish whether
tumors with high MC numbers respond better to anti-KIT
tyrosine kinase inhibitors.

The field of targeting IL33-ST2 signaling is quickly
progressing, with neutralizing antibodies being the most
promising agents. While these antibodies advance rapidly in
clinical trials for various inflammatory disorders, their use as
anti-cancer agents is only just beginning. More work is required
to better dissect tumor-promoting from tumor suppressing roles
conferred by the IL33-ST2 axis in order to predict in which
tumor microenvironment inhibition of IL33-ST2 signaling or
MCs will be beneficial.

CHALLENGES FOR THE FIELD

The importance of IL33 and MCs in GI cancer has been well
documented. In recent years, there has been some progress in
understanding the mechanisms of how the IL33-MC axis acts
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TABLE 1A | Clinical trials utilizing antibodies targeting IL33/ST2.

Antibody Company Clinical trial Phase Indication Status/Results

MSTT1041A, Genentech/ NCT02918019 2b Uncontr. severe asthma Completed

AMG 282,

RG6149

Amgen NCT03747575 2 Atopic dermatitis Active, not recruiting

(anti-ST2)

REGN3500, Sanofi/Regeneron NCT03387852 2 asthma Completed, met 1st & 2nd endpoint

SAR440340 NCT03546907 2 COPD* Recruitment completed

(anti-IL33) NCT03736967 2 Atopic dermatitis Recruiting

NCT03738423

GSK3772847, GSK/ NCT03207243 2a Severe asthma Recruitment completed

CNTO 7160

(anti-ST2)

J&J NCT03393806 2 Asthma with AFAD* Active, not recruiting

ANB020, Anaptysbio NCT02920021 2 Peanut allergy Completed (121)

Etokimab NCT03469934 2 Eosinophilic asthma Recruitment completed

(anti-IL33) NCT03533751 2 Atopic dermatitis Completed (122)

NCT03614923 2 Chron. Rhinosinusitis with NP* Recruiting

MEDI3506 AstraZeneca NCT04170543 2a Diabetic kidney disease Recruiting

(anti-IL33) NCT04212169 2 Atopic dermatitis Recruiting

*COPD, chronic obstructive pulmonary disease; *AFAD, allergic fungal airway disease; *NP, Nasal Polyps.

TABLE 1B | Studies utilizing antibodies IL33/ST2 in tumor models in mice.

Reference Antibody Cancer model Result MCs analyzed

Guabiraba et al. (123) Anti-IL33, anti-mouse, clone 396118,

MAB3626, R&D

CT26 colon cancer cell line

subcutaneous

aIL33+Irinotecan ->

anti-tumor effect

No

Nakagawa et al. (105) Anti-IL33, R&D KTC-K19CreERT extrahepatic

cholangiocarcinoma mice

Anti-tumor effect No

Wu et al. (124) Anti-IL33, anti-human, MAB36254,

R&D

Renal cancer cell lines 786O and

OSRC2 subcutaneous in nude BalbC

Anti-tumor effect No

Anti-ST2, anti-human, Clone

MAB523, R&D

Anti-tumor effect No

Zhou et al. (125) Rabbit anti-mouse, R&D CT26 colon cancer cell line

subcutaneous

Anti-tumor effect No

Rabbit anti-mouse, R&D Anti-tumor effect No

Kim et al. (126) Anti-ST2, anti-mouse, clone 245707,

MAB10041, R&D

KrasG12DxCCSP-Cre lung cancer

model

Anti-tumor effect No

Lin et al. (127) Anti-ST2, monoclonal anti-human,

R&D

Ln229 glioma cell line subcutaneous

in NSG mice

Anti-tumor effect NSG are MC-def.

Maywald et al. (70) Anti-ST2, mu-IgG1-FC–anti-muST2,

Amgen

ApcMin intestinal cancer model Anti-tumor effect Yes, MC number + activation

decreased in IL33KO/anti-St2

treated tumors

Kudo-Saito et al. (128) Anti-IL33, anti-mouse, R&D B16F10 melanoma subcutaneous

and intravenous

Anti-tumor Yes, MC increased in BM

metastasis

in GI cancers. While there is an increasing interest in targeting
this signaling node in various diseases, the few drug candidates
currently undergoing clinical testing have not been utilized in
cancer trials yet. This is due to the dichotomous actions of IL33
and MCs in cancer. Below we dicuss some of the aspects of
IL33 and MC biology which need to be addressed in order to
advance the field toward harnessing IL33/MCs targeting as a
novel treatment option for GI cancers.

Diversity of Cell Types Responding to IL33
While there is now ample evidence that the IL33-MC axis is
important for many cancers, the multitude of cell types in
the TME able to respond to IL33 and mediated either pro-
or anti-tumorigenic effects presents a formidable challenge for
predicting the outcome of anti-IL33/anti-ST2 therapies. We
propose that a detailed investigation of the spatial distribution
of IL33-expressing cells and ST2-presenting responder cells
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in combination with full immunophenotyping of tumors will
help addressing these issues. Since oxidation of IL33 in the
extracellular space occurs rapidly and drastically reduces its
ability to bind ST2 and trigger downstream signaling activation
(132), we speculate that only the ST2-expressing cells in
close spatial proximity of IL33-rpoducing cells will respond to
IL33. Novel technologies like multiplex immunofluorescence
microscopy, will allow spatial identification of cell types
expressing IL33 and ST2, enabling prediction of responder
cell types. Because Tregs and ILC2s are also constitutively
expressing ST2, these cell types should be the included in
studies attempting to predict anti-tumor effects of IL33-
ST2 inhibition.

Also, further research is required to better understand
the temporal dimension of IL33 secretion and the cell types
responding during early vs. late stages of tumorigenesis.
Indeed some studies suggest that IL33 expression is decreased
in more advanced disease (97, 98) while serum levels of
IL33 increased in patient with advanced gastric cancer
(133). Tissue resident ST2-expressing cells, like MCs and
ILC2s are the dominant IL33 responders during the early
stages of tumor development. However, it is not known
whether these cells can lose their responsiveness to IL33
in the changing tumor microenvironment, for example,
by downregulating expression of ST2, nor has it has been
investigated whether the dominant IL33 responses shift with
increasing tumor size and progression of disease toward ST2-
positive cells newly recruited into the tumors. Nevertheless,
there is significant evidence of the role of MCs and IL33
in late stage cancers, particular in the context of tissue
remodeling, epithelial to mesenchymal transition and invasion
(104, 128, 134, 135).

MC Heterogeneity
Many effects of IL33 are mediated through MC activation.
However, the true extent of MC heterogeneity within the TME
is not well understood. Only a few whole transcriptome studies
are published, all of them were performed on bulk MCs isolated
from healthy mice or humans. As part of the FANTOM5 project,
Motakis et al. (136) elucidated the transcriptome of human
skin MCs and compared against ex vivo cultured MCs. They
found MC-specific gene signatures distinguishing the skin MCs
from various other cell types, and discovered significant changes
in gene expression profiles suggesting significant de-or trans-
differentiation associated with in vitro propagation of MCs
cultured (136). This warrants careful interpretation of findings
obtained from in vitro studies. Transcriptional profiling of MCs
from various tissues against other major immune cell lineages,
revealed not only distinct differences between the various
cell types but also considerable transcriptional heterogeneity
between MCs recovered from different tissues (137). Indeed, a
recent review suggested to replace the currently used system
of histological classification of MCs with a system based on

MC protease expression to more accurately reflect the tissue-
specific versatility of MCs (138). Single cell sequencing studies
of cancer-associated MCs are required to elucidate the true
extent of mast cell heterogeneity to better understand the
various biological consequences of mast cell activation in the
cancer setting.

Diversity of Mast Cell Activation Signals
Following on from the initial study by Schmitz et al., the
ability of IL33 to activate MCs has been studied extensively
(2, 139). However, MCs are key sentinel cells that express
many receptors on their surface (46, 140), resulting in
a multitude of environmental factors able to trigger
their activation.

Allergen IgE-mediated activation of MCs was the first to be
identified and is well characterized in the context of allergic
pathologies, yet many other factors can activate MCs in an
IgE-independent manner (52, 139).

Numerous studies have shown that IL33-elicited responses
in MCs differ from IgE stimulation and that IL33-mediated
responses in MCs are modified, and often potentiated,
when secondary stimuli like IgE, substance P or IL3 are
present (112, 141–144). Further research is required to
uncover other MC-activating factors present in the tumor
microenvironment and how they impact IL33 signaling and
MC activation.

CONCLUSIONS

Diverse functions for both IL33 and mast cells were uncovered
in the context of cancer initiation and progression. However,
only by focusing on the IL33/MC axis, rather than studying
these key regulators of immunity separately, and by utilizing
novel technologies, will the full potential of targeting IL33
signaling and MC activation be discovered and exploited for
anti-cancer therapies.
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