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Abstract
Introduction: Functional magnetic resonance imaging (fMRI) has become very impor-
tant for noninvasively characterizing BOLD signal fluctuations, which reflect the 
changes in neuronal firings in the brain. Unlike the activation detection strategy uti-
lized with fMRI, which only emphasizes the synchronicity between the functional 
nodes (activated regions) and the task design, brain connectivity and network theory 
are able to decipher the interactive structure across the entire brain. However, little is 
known about whether and how the activated/less-activated interactions are associ-
ated with the functional changes that occur when the brain changes from the resting 
state to a task state. What are the key networks that play important roles in the brain 
state changes?
Methods: We used the fMRI data from the Human Connectome Project S500 release 
to examine the changes of network efficiency, interaction strength, and fractional 
modularity contributions of both the local and global networks, when the subjects 
change from the resting state to seven different task states.
Results: We found that, from the resting state to each of seven task states, both the 
activated and less-activated regions had significantly changed to be in line with, and 
comparably contributed to, a global network reconfiguration. We also found that 
three networks, the default mode network, frontoparietal network, and salience net-
work, dominated the flexible reconfiguration of the brain.
Conclusions: This study shows quantitatively that contributions from both activated 
and less-activated regions enable the global functional network to respond when the 
brain switches from the resting state to a task state and suggests the necessity of 
considering large-scale networks (rather than only activated regions) when investigat-
ing brain functions in imaging cognitive neuroscience.
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1  | INTRODUCTION

When the brain is occupied by a cognitively demanding task, such 
as responding to auditory, visual, or other stimuli, the neuronal firing 
and signal processing of the affected functional regions are upregu-
lated, resulting in an increased cerebral metabolic rate, as indicated 
by increased oxygen uptake. Two physiological changes occur during 
this process: increased local cerebral blood flow (CBF) and changes 
in oxygenation, as measured by the blood oxygen level-dependent 
(BOLD) contrast (Glover, 2011; Logothetis, 2008). Although both of 
these fluctuations can be detected by magnetic resonance imaging 
(MRI) techniques, the latter, the BOLD contrast, is more widely used 
to characterize activation maps of the brain because of its comparably 
short acquisition time and high sensitivity (Glover, 2011). Therefore, 
the BOLD contrast is used in conventional functional MRI (fMRI) to 
characterize brain activity. To define an activation map based on fMRI, 
two mental conditions usually are compared statistically: One is the 
experimental condition (the task), which causes specific functional re-
gions to be activated, and the other is the baseline state, which is used 
to exclude the regions identified as not specific to the task (Stark & 
Squire, 2001; Voyvodic, Petrella, & Friedman, 2009).

In the literature, the activation region identified as described 
above was usually chosen as the region of interest (ROI), which 
was regarded as the main actor when executing a specific task. 
Subsequently, a functional analysis was conducted. A large number 
of findings based on this procedure have been reported in recent 
decades (Chu et al., 2015; Poldrack, 2007). However, the fact that 
these studies showed both areas that were activated and those that 
were not does not mean that the so-called nonactivated regions 
were “inactive” or had nothing to do with the tasks. In this traditional 
type of study, the “less-activated” regions (L-Act), as suggested by 
Yamashita and colleagues (Yamashita, Kawato, & Imamizu, 2015), 
were just considered to be the complementary set to the activated 
regions (Act), but their synchronicity with the task stimulus was con-
sidered to be statistically insignificant. In fact, studies have revealed 
that the brain consumes a small additional portion of energy in an 
attention-demanding task state beyond what is used in the resting 
state (Raichle, 2009, 2010). Although the change evoked by the task 
stimulus is subtle (Cole, Bassett, Power, Braver, & Petersen, 2014), 
the reconfiguration of the network architecture from resting state 
to task state has received increasing attention. For example, consis-
tent findings have indicated that the network efficiency increases 
and modularity decreases when the brain changes from the resting 
state to a cognitively demanding task (Hearne, Cocchi, Zalesky, & 
Mattingley, 2017; Wen et al., 2015). Additionally, these changes can 
predict the task complexity (Wen et al., 2015), individual intelligence 
and cognitive capability (Schultz & Cole, 2016), and even the aging 
process (Gallen, Turner, Adnan, & D’Esposito, 2016). Therefore, it 
is reasonable to question the following: (1) Whether and how are 
the activated/less-activated interactions associated with the func-
tional changes that occur when the brain changes from the rest-
ing state to a task state? (2) To what degree do the less-activated 
regions contribute to network changes in global reconfiguration 

and is this comparable to the contribution of the activated regions? 
(3) What are the key networks that play important roles in brain 
state changes?

Unlike the activation detection strategy, which only emphasizes 
the synchronicity between the functional nodes and the task de-
sign, as described above, functional connectivity and brain network 
theory are able to decipher the interactive structure across the 
entire brain (Bullmore & Sporns, 2012; Sporns, 2011). Therefore, 
to try to answer the above questions, we investigated fMRI data 
from a dataset released by the Human Connectome Project (HCP) 
(Van Essen et al., 2013) that included both resting state and task 
data in seven tasks (See Table 1 for a list.) from a functional net-
work point of view. First, we used three network metrics, that is, 
interaction strength, modularity, and the efficiency index, to mea-
sure network reconfigurations within and between the Act, L-Act, 
and global networks. Then, we proposed “fractional modularity” as 
a measure of the modular contribution to the global network for 
a given region and applied it to both the Act and L-Act regions to 
compare their contributions to the changes in global network mod-
ularity. Finally, we examined which functional subnetworks recon-
figure the most intensively when the brain changes from the resting 
state to the task state. All the source code in this study (in MATLAB) 
and the activation maps are available in https://github.com/nmzuo/
Act-L-Act-network.

2  | MATERIALS AND METHODS

2.1 | Data acquisitions and preprocessing

The HCP data S500 release was used in this study. There were 512 
subjects’ records in the data we obtained from the HCP. In the cur-
rent work, only the fMRI data were utilized. Some data were ex-
cluded using the following criteria: (1) the data reported on the 
Known-Issues page of the HCP website, htttps://wiki.humancon-
nectome.org/display/PublicData/HCP+Data+Release+Updates%
3A+Known+Issues+and+Planned+fixes; (2) data that did not have 
complete time points as indicated by the correct number of frames 
for each mental state (see Table 1); (3) data that did not have a full 
EV record to accompany the fMRI data; and (4) data acquired with-
out left–right (LR) or right–left (RL) phase encoding. In the end, 453 
subjects (age 29.1 ± 3.5 years, 188 male) were used in the subse-
quent analyses. The task datasets contained seven conventional 
tasks, including working memory (WM), gambling, motor, language, 
social cognition, relational processing, and emotion processing, 
each of which had been designed to activate specific functional 
regions (Barch et al., 2013). To ensure a large population for this 
study, subjects who had biological relationships with others in the 
HCP data release were retained in our dataset (Cole, Bassett et al., 
2014; Smith et al., 2015).

To account for the influence of the phase encoding direction during 
MRI scanning, both left–right (LR) and right–left (RL) phase encodings 
were adopted in two separate scan sessions in the HCP. In this study, 
we repeated the analysis on three different dataset combinations, that 
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is, the LR dataset only, the RL dataset only, and the averaged LR/RL 
dataset. Considering the large number of results and figures, only the 
results from the averaged dataset are presented in the manuscript and 
the results from the other two datasets are included in the Supporting 
information.

The HCP dataset was partially used in our previous work (Zuo, 
Song, Fan, Eickhoff, & Jiang, 2016), and the descriptions of the imag-
ing protocols and preprocessing steps used by the HCP consortium 
are described in Section S1. Here, we will only repeat the main de-
scriptions and preprocessing steps. The dataset was collected on a 3T 
MRI Skyra scanner (Siemens, Germany) using a standard 32 channel 
head coil. The magnetic field produced by the coil was modeled to 
provide a customized distortion correction. The primary scanning pa-
rameters were as follows: repetition time (TR), 720 ms; echo time (TE), 
33.1 ms; flip angle, 52°; field of view, 208 × 180 mm; slice thickness, 
2.0 mm; and voxel size, 2.0-mm isotropic cube (Van Essen et al., 2013). 
The HCP data were already preprocessed, well aligned, and registered 
to the Montreal Neurological Institute (MNI) 2-mm standard space 
when we received it. The main preprocessing steps taken included 
(Glasser et al., 2013): (1) gradient nonlinearity distortion; (2) 6 degrees 

of freedom (DOF) FSL/FLIRT-based motion correction; (3) FSL/top-
up-based distortion correction; (4) registration to a T1 space image; 
and (5) FSL/FNIRT-based registration to MNI 2-mm space. After re-
ceiving the above preprocessed data from HCP, we further band-pass-
filtered the data at 0.009–0.08 Hz to reduce low-frequency drift and 
high-frequency noise (Vatansever, Menon, Manktelow, Sahakian, & 
Stamatakis, 2015). The mean signal of the white matter and cerebro-
spinal fluid (CSF) and the movement parameters and its derivatives 
(in the Movement_parameters.txt file in HCP S500 release) were re-
gressed out as confounding factors. Since we used a series of ROIs 
in this study to sample the gray matter of the entire brain (described 
below), a smoothing step was not applied here. In addition, global sig-
nal regression was not conducted because its use is controversial and 
there is no consensus about its physiological interpretation (Bassett, 
Yang, Wymbs, & Grafton, 2015; Mayhew et al., 2016).

2.2 | The overall strategy of this study

The analysis pipeline used in this study is illustrated in Figure 1. 
We used four network properties to characterize the network con-
figuration: interaction strength, modularity, efficiency, and flexibil-
ity. These properties were quantified for the resting state and all 
seven task states. By checking the changes in these quantities, we 
were able to describe the network reconfiguration when the brain 
changes from the resting state to a task state. Step 1: We identified 
the activated regions for each of the seven task states in the HCP 
S500 release. Hence, both the Act and L-Act regions (the comple-
mentary set to the former) could be identified. Step 2: To examine 
whether the task state would change the global efficiency index in 
ways that contrasted to the resting state, we evaluated the net-
work efficiency of the entire brain for both the resting and task 
states. Step 3: Based on the two classes of regions (Act and L-Act) 
identified in Step 1, we computed the interaction strength between 
each pair of regions and the fractional modularity index (see below) 

TABLE  1 The number of scanning frames and the run duration 
for each task fMRI data collection in HCP data (adapted from http://
protocols.humanconnectome.org/HCP/3T/imaging-protocols.html)

Task Runs
Frames 
per run

Run duration 
(min:s)

Working memory 2 405 5:01

Gambling 2 253 3:12

Motor 2 284 3:34

Language 2 316 3:57

Social cognition 2 274 3:27

Relational processing 2 232 2:56

Emotion processing 2 176 2:16

F IGURE  1 The analysis strategy in this work. First, the activated and less-activated regions were identified based on the global fMRI time 
course, and the global connectivity matrices were generated. Second, the networks were partitioned by the activity and nonactivity masks. 
Using the above, the modularity indices for the global and for the two classes of regions were determined. Finally, the interactions between the 
two regions and the individual changes in these two regions were also characterized
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to evaluate each regions’ contribution to the whole brain network 
modularity. Step 4: We computed the network efficiency separately 
for the two regions, using a nodal flexibility of 10 to predefine the 
functional subnetworks (Power et al., 2011) and, further, to exam-
ine whether certain subnetworks contributed differently to the 
global network reconfiguration.

2.3 | Extracting activated and less-activated maps

To generate the activation maps for the seven tasks, 30 unrelated 
subjects were chosen from the HCP S500 dataset by these criteria: 
(1) They did not have twins in the dataset (namely both the Twin_Stat 
and Zygosity labels were NotTwin). (2) They did not share a father or 
mother with others in the dataset. (3) They had both LR and RL data. 
And (4) they were aged 20–30 years. We adopted these requirements 
primarily to reduce the influence of bias on the entire group by remov-
ing related subjects from the subsequent analysis. To reduce the bias 
from the encoding direction for the activation detection, the LR/RL 
data of these 30 subjects were mixed to form a dataset of 60. In this 
study, the Act/L-Act maps were extracted to assess their roles in each 
task, so the extraction strategy itself was not our primary emphasis. 
The sole purpose of the activation detection that we did here was to 
guarantee that the extracted maps based on the routine parameters 
are the ones that are well accepted in the literature for each task. 
Our goal was to dissect the functions of the Act/L-Act regions quan-
titatively. (Certainly, different strategies or parameters, e.g., the state 
contrasts and the thresholds, used in activation detection will result in 
different Act/L-Act regions, but this is beyond the scope of this study.) 
To this end, utilizing the strategies and parameters described in Barch 
et al.’s study (20 subjects), we used an extended dataset (30 subjects) 
to generate the maps and validated them by comparing them with the 
ones reported in Barch et al.’s work, in which they compared their ac-
tivation maps to traditional maps in the literature to validate the HCP 
data quality (Barch et al., 2013).

The detection of the activation regions for the seven tasks 
was implemented using FSL (version 5.0.9)/FEAT (version 6.00) 
(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). The 
main parameters were set as follows: At the subject level, a within-
subjects fixed-effects analysis in FSL/FEAT was used to estimate 
the average effects across the runs, with a cluster-based threshold 
Z = 1.96 as the activation threshold and p = .05 as the Monte Carlo-
based cluster-level correction. Then, at the group level, a mixed-
effects analysis implemented in FSL/FLAME (FMRIB’s local analysis 
of mixed effects) (Beckmann, Jenkinson, & Smith, 2003) was used 
to estimate the average effects of interest, in this case, the acti-
vation maps, separately for the seven task groups, with a cluster-
based threshold Z = 2.32 and p = .05. In this study, only the positive 
activation regions were used because, to date, the physiological in-
terpretations of negative activations obtained from BOLD fMRI re-
main controversial (Bianciardi, Fukunaga, van Gelderen, de Zwart, & 
Duyn, 2011; Hu & Huang, 2015; Shih et al., 2009). The details of the 
contrasts used for each task are listed in Table S2. The comparisons 
from different state contrasts are also presented in the Supporting 

information (Table S1 and Figures S1 and S2). The activation masks 
for the three separate datasets (LR, RL, and averaged) are available 
on our website (https://github.com/nmzuo/Act-L-Act-network); the 
masks largely coincide across the three states.

2.4 | Definition of network nodes

In this study, a group of regions of interest (ROIs) across the entire 
brain was used as brain network nodes to analyze the whole brain 
function (Poldrack, 2007). Specifically, we used the 264 ROIs identi-
fied by combining meta-analyses with functional connectivity map-
ping, spanning the cerebral cortex, subcortical structures, and the 
cerebellum (Power et al., 2011). For each of the seven task states, the 
264 ROIs were assigned to either Act or L-Act regions depending on 
the activation map.

2.5 | Definitions of functional connectivity network

Functional networks were then defined by assessing the func-
tional connection strength between node pairs. Two steps were 
adopted to construct the connectivity matrix. First, the averaged 
time series for each ROI was regressed out of the mean task activ-
ity (Cole et al., 2013); then, the connection strength for each node 
pair was calculated using the corrcoef function in MATLAB (ver-
sion 2012a, Mathworks Inc.), which was shown to yield a similar 
result to the psycho-physiological interaction method (Cole, Yang, 
Murray, Repovs, & Anticevic, 2016); finally, a Fisher’s z-transform 
was performed. For the averaged dataset, the connection strength 
was obtained by averaging the Fisher z-transform of the correlation 
coefficients for the LR and RL data from each subject (Smith et al., 
2013). Because the interpretation of negative connections remains 
controversial (Murphy, Birn, Handwerker, Jones, & Bandettini, 
2009), in this study the negative connections were set to 0 (Liu 
et al., 2016; Sheffield et al., 2015). Second, the connection matrix 
for each subject was thresholded and binarized to have different 
densities (5%, 10% and 15%) (Bullmore & Sporns, 2009; Rubinov 
& Sporns, 2010; van Wijk, Stam, & Daffertshofer, 2010) to address 
the effects of different connectivity densities. In this manuscript, 
we only present the results from using a density of 15%, with the 
other results presented in the Supporting information.

2.6 | Definitions of network interaction, fractional 
modularity, and efficiency

Three measurements were used to evaluate the segregations and inte-
grations of the two classes of regions, the activated regions (Act) and 
less-activated regions (L-Act), where the whole brain = Act ∪ L-Act.

First, the interaction strength was defined to assess the integra-
tion and segregation between the Act and L-Act regions (Liu et al., 
2016; Zuo et al., 2012), as in the following Equation 1,

(1)I=
1

K ⋅L

∑

i∈Act, j∈L- Act

Aij,

https://github.com/nmzuo/Act-L-Act-network
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where Aij (i, j = 1,2…N, N is the number of nodes) is the element of the 
connectivity matrix A; K and L denote the size of the Act regions and 
L-Act regions, respectively; and the term K·L is used to normalize the 
interaction strength.

Second, a modularity index, Q, was used to characterize the 
tendency of a network to approach modularity (Blondel, Guillaume, 
Lambiotte, & Lefebvre, 2008; Newman & Girvan, 2004). The modular-
ity index is defined as,

where wi=
∑

j Aij is the degrees of node i in A, the γ is the resolution 
parameter for the optimal modular index; gi indicates the regions as-
signment of node i, and delta function δ indicates that only the frac-
tion where the two nodes are in the same regions will be counted in 
the final modular index. In this study, the default resolution parameter 
γ = 1 was adopted when applying the generalized Louvain method 
(http://netwiki.amath.unc.edu/GenLouvain/GenLouvain) (Mucha, 
Richardson, Macon, Porter, & Onnela, 2010). This parameter setting 
is also the optimal one for our dataset (see Figure S6 in the Section 
S5 for the rationale behind the parameter settings). Moreover, to re-
duce the bias of random walking while optimizing the modularity, we 
repeated the solution 100 times, and the partition associated with the 
largest modularity index was selected as the final partition scheme 
(Vatansever et al., 2015).

To evaluate the contributions of the two classes of regions to the 
entire network, the fractional modularity index Qf (Figure 1) of a re-
gion was computed using only the connections engaged in the region. 
Then, two kinds of Qf could be calculated separately by including con-
nections with (1) both nodes and (2) at least one node assigned to 
the one class of regions under consideration. We tested the differ-
ent contributions from the two regions using a two-way ANOVA with 
[Subjects * States] × [Classes of Regions], where the two columns of 
the design matrix were the fractional modularity indices from the Act 
and L-Act regions and the rows were the 453 subjects in the seven 
task states. Furthermore, the 453 subjects and the seven task states 
were treated separately as repeated measures.

Third, the global efficiency of the Act and the L-Act regions, as well 
as the entire network, was computed for both the resting states and 
the task states to evaluate whether the two classes of regions recon-
figured to facilitate the entire network reconfiguration. The global ef-
ficiency of network A is defined as follows (Achard & Bullmore, 2007; 
Latora & Marchiori, 2003):

where dij denotes the shortest path between the pair of nodes (i, j), 
which was calculated using Dijkstra’s algorithm (Latora & Marchiori, 
2003). When we focused on the efficiency of a local area, only the 
connections inside this area, such as the Act regions or the L-Act re-
gions, were counted. The network efficiency of a node is based on the 
shortest path needed to assess the communication capability of the 

node with other nodes across the brain. Then, the global efficiency is 
the mean value of all the nodal efficiencies. In this study, this measure 
was used to measure the functional connectional efficiency of both 
the global network and the Act/L-Act regions quantitatively. The net-
work efficiency was computed using open-access software developed 
by our group (https://www.nitrc.org/projects/brat).

2.7 | Measurements of the network flexibility from 
resting to task states

The previous sections have described how we investigated whether 
the network architecture of the L-Act regions, concomitant to the ac-
tive ones, also reconfigures when the brain changes from the resting 
state to task states. For a closer look at which nodes or subnetworks 
make the most contributions to the network dynamics, the participant 
coefficient (PC) (Guimera & Nunes Amaral, 2005) was utilized to meas-
ure the participant intensity of each functional node or subnetwork 
during mental state changes. The flexibility was defined as Fk = PCik−
PCjk, where i and j indicate two mental states, that is, a task and the 
resting state, for a specific node k. The subnetworks defined by Power 
et al. (2011) were used, and the individual subnetwork flexibility was 
examined by averaging the flexibility of the nodes composing the sub-
network. Ten of 13 subnetworks were included in our study, because 
the other three subnetworks do not have specific and determined 
functional roles (Cole et al., 2013; Vatansever et al., 2015).

3  | RESULTS

3.1 | Global network efficiency comparisons and 
modular changes

The comparison-based global efficiency index showed that the 
brain networks had much higher efficiency in the task states than 
in the resting states. Figure 2 shows plots of the efficiency indi-
ces for the whole brain, including those for the resting state and 
each of the seven task states. From these plots, the efficiency indi-
ces for the seven task states can clearly be seen to be larger than 
those for the resting state. The results for the paired t test were all 
significant (p < 1 × 10−36) for the seven task-resting pairs, and their 
p-values survived false discovery ratio (FDR) correction for multi-
ple comparisons using the mafdr function in MATLAB (corrected  
p-values <1 × 10−35). Furthermore, because the distributions for the 
modularity indices for the eight mental states did not strictly follow 
a Gaussian normal distribution (they did not pass the Kolmogorov–
Smirnov test by kstest in MATLAB), a complementary paired per-
mutation test was used with 10,000 permutations, and the results 
consistently showed P = 0. The results with other connectivity den-
sity thresholds, 5% and 10%, and three separate dataset are pre-
sented in Figure S3.

Figure 3 illustrates the global dynamic changes by an alluvial dia-
gram (Rosvall & Bergstrom, 2010) for node assignments to either the 
baseline (resting state) or the seven task state communities. The par-
titions between the communities for each state, including both the 

(2)Q=
1

2w

∑

i,j∈A

[

Aij−

(

γ
+
wiwj

2w

)]

δ

(

gi,gj
)

,

(3)E=
1

N
(

N−1
)

∑

i≠j,∈A

1

dij
,

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
https://www.nitrc.org/projects/brat
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baseline (resting state) and the seven task states in Figure 3, were the 
representative partitions across the 453 partitions based on statisti-
cal testing in comparison with a null model (Bassett et al., 2013). The 
node flow diagrams show the intensive reconfigurations of the net-
works when the brain switched from the resting state to the seven 
task states. In Figure 3, the last row indicates the similarity measured 
by the z-score of the random coefficient (RC) (Traud, Kelsic, Mucha, & 
Porter, 2011) between the partitions from the resting state and from 
the task state. For a description of the connectivity flow obtained by 
grouping the nodes into Act and L-Act regions, see Section S6 where 
the connectivity matrices (Figure S7) that illustrate the connectivity 

reconfigurations when the brain changed state from the resting to a 
task state are shown.

3.2 | Changes in the interactions between the Act  
and L-Act regions

We further found that the interactions between the Act and L-Act 
regions changed significantly along with the global change in ef-
ficiency. Figure 4 shows the comparisons of the strength of the in-
teractions between the Act and L-Act regions in the resting and task 
states. In each of the seven pairs of columns, the left presents the 

F IGURE  2 The efficiency indices for 
the whole brain in different mental states, 
including the resting state and the seven 
tasks, that is, gambling, motor, social 
cognition, emotion processing, language, 
relational processing, and working memory 
tasks. The red (long) and blue (short) 
horizontal lines in each box, respectively, 
denote the median and mean efficiency 
indexes across all of the 453 subjects. For a 
closer look at the distribution of the indices 
for the 453 subjects, the scatter plot of 
each subject’s index is overlaid as the 
background of each plot

F IGURE  3 Global changes by alluvial diagram (Rosvall & Bergstrom, 2010) of the node assignments to the two different regions (Act and 
L-Act) between the baseline (resting state) and the seven task states. The region partitions for each state are the average partitions obtained by 
maximizing the similarity across the 453 participants separately for each state (Bassett et al., 2013). Here, only large partitions are labeled by Ci 
(i = 1, 2, …), and different regions are separated by white gaps in the horizontal direction. The seven panels indicate the seven resting-task pairs 
where the left one is for the resting and the right one is for the task. The last row indicates the similarity, measured by the z-score of the random 
coefficient (RC) (Traud et al., 2011) between the partitions from the resting state and the task state
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interaction strength between the two classes of regions in the task 
state and the right presents that in the resting state. The p-values for 
the paired t test for the seven task-resting pairs were (df = 452): gam-
bling: p = 7.1 × 10−108, t = −29.6; motor: p = 1.64 × 10−22, t = −10.3; 
social cognition: p = 4.27 × 10−215, t = −59.21; emotion processing: 
p = 2.16 × 10−7, t = −5.27; language: p = 6.46 × 10−102, t = −28.3; 
relational processing: p = 6.16 × 10−165, t = −43.85; and WM: 
p = 9.28 × 10−94, t = 26.43. These p-values also readily survived FDR 
correction. The comparisons show that the interactions between the 
Act and L-Act regions were significantly different in the task states 
compared with their interactions in the resting states. Specifically, the 
interactions weakened in six of the task states but strengthened in 
the WM task.

We also found that the changes in the interaction strengths cor-
related with the global efficiency changes when the brain switched 
mental states. Figure 5 shows the correlation test results for the 7 
tasks, with the sex and age of each subject added as confounding 
factors. These results consistently demonstrated that changes in the 
interactions between the Act and the L-Act regions were significantly 
correlated with changes in the efficiency after FDR correction. The 
results with other connectivity density thresholds, 5% and 10%, and 
three separate datasets are presented in Table S3 and Figure S4.

3.3 | Fractional modularity analysis

Using a two-way ANOVA with [Subjects * States] × [Classes of 
Regions], we found that, for the entire network, the fractional modu-
larity contributions of the L-Act regions were not statistically signifi-
cantly different from those of the Act regions (the main effect p > .11). 
In Table 2, the results are classified by the node-pair assignment strat-
egy (e.g., whether the connected nodes were both in Act or both in 
L-Act or one of each pair of nodes was in Act and the other in L-Act), 
and the fractional modularity contributions were normalized by two 
different factors, the size of each class of connected regions or the 
number of all possible connectivities between these two classes of 
regions. The last row of Table 2 separately denotes the main effects 
for all the cases above. These results consistently showed that the 
modularity contributions from the Act and L-Act regions did not differ 
significantly in any of the seven task states. The interaction effects 

were insignificant (p > .86) between the factors of the subject (or task) 
and the two classes of regions. The results with other connectivity 
density thresholds, 5% and 10%, and three separate datasets are pre-
sented in Table S5.

3.4 | Network changes within the Act and L-Act  
regions

Using the areal efficiency (the network efficiency in either Act or L-
Act) to characterize the changes in these two classes of regions, we 
found that both the Act and the L-Act regions had significantly reor-
ganized internal network architectures (p < 1.0 × 10−4 after FDR cor-
rection) when they changed from the resting to the seven task states. 
In particular, the efficiency in the L-Act regions consistently increased 
(see Figure 6).

Figure 7 shows the correlation test results between the changes in 
the efficiency of the Act (7a) and L-Act (7b) network when switching 
from the resting state to the seven task states. These results consis-
tently demonstrated that the changes in the efficiency in both the Act 
and L-Act regions were significantly correlated with the changes in the 
global efficiency indices. The results with other connectivity density 
thresholds, 5% and 10%, and three separate datasets are presented in 
Table S4 and Figure S5.

3.5 | Flexibilities of the networks during the changes 
from the resting to the task states

The flexibility metric for the subnetworks showed that, across the 
seven resting-task state pairs, the default mode network (DMN), fron-
toparietal network (FPN) and salience network (SN) consistently had 
the greatest flexibility among the 10 subnetworks. In Figure 8, the 
central panel shows the PCs of the 10 subnetworks in the resting state 
and the surrounding panels show the flexibilities of each subnetwork 
from the resting state to the seven task states. With the exception of 
the subcortical network, the DMN, FPN, and SN networks had the 
greatest flexibility (p < 1.0 × 10−28 after FDR correction when com-
paring their mean flexibility with the mean flexibility of the other six 
subnetworks across the 453 subjects). The specific statistical p-values 
are 2.6 × 10−74 (gambling), 8.68 × 10−28 (motor), 2.17 × 10−30 (social 

F IGURE  4 Comparisons of the strength 
of the interaction between the Act and 
L-Act regions in the resting and task states. 
Within each column pair, the left shows the 
interaction between the two regions in the 
task state and the right shows the resting 
state
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F IGURE  5 Correlations between the changes in the interactions between the two regions and the changes in the global efficiency. The 
individual correlation strength R and significance level p-value appear in each panel

TABLE  2 Comparisons of the fractional modularity Qf contributed separately by the Act and L-Act regions, classified by node-pair 
assignment, normalization scheme, and repeated measures. The reps designation indicates the number of repeated measures. Two methods 
were considered and repeated according to the number of subjects and according to the number of tasks. The last row indicates the main 
effects from the two-way ANOVA and is the difference in the two columns composed by the contributions separately from the Act and L-Act 
regions in the ANOVA design matrix. The interaction effects between the subjects (tasks) and the Act/L-Act difference were not significant 
(p > .86)

Normalized by C(k,2)a Normalized by Act/L-Act size

Both nodes (i,j) are in the examined 
regions

At least one node of (i,j) is in the 
examined regions

Both nodes (i,j) are in the examined 
regions

At least one node of (i,j) is in 
the examined regions

reps = 453 reps = 7 reps = 453 reps = 7 reps = 453 reps = 7 reps = 453 reps = 7

F = 2.24 
p = .13

F = 2.24 
p = .13

F = 0 
p = .93

F = 0 
p = .93

F = 2.52 
p = .11

F = 2.51 
p = .11

F = 0.95 
p = .33

F = 0.95 
p = .33

aThe C(k, 2) means the possible connections between k nodes, and the k nodes are constrained by the rule in the second row of the table.



     |  9 of 16ZUO et al.

cognition), 1.72 × 10−45 (emotion processing), 1.55 × 10−110 (lan-
guage), 6.72 × 10−71 (relational processing) and 1.97 × 10−88 (WM). 
The high flexibility of the subcortical network is logical because the 
subcortical network consists of many heterogeneous functional nodes 
globally regulating the other subnetworks (Hibar et al., 2015).

4  | DISCUSSION

The goal of this study was to investigate the roles of both the ac-
tivated regions (Act) and the less-activated regions (L-Act) of the 
brain during the execution of tasks, where Act refers to the brain 
regions “significantly activated” in the literature in a task-related 
fMRI analysis and L-Act refers to the part of the brain that is com-
plementary to Act (Yamashita et al., 2015). Our research disclosed 
the following findings of the brain network about the task states 
in comparison with the resting states: (1) We found that the in-
teraction strength between the Act and L-Act regions changed 
significantly during the brain state changes, and this change was 
associated with a change in the brain network efficiency. (2) We 
found that the L-Act regions made contributions, quantified by 
the proposed fractional modularity index, to the global modu-
larity change that were comparable to the contributions of the 
Act regions. (3) We found that the default mode network (DMN), 
frontoparietal network (FPN), and salience network (SN) consist-
ently showed greater flexibility than the other subnetworks when 
the brain was changing from the resting state to the seven task 
states. These findings indicate quantitatively that executing a 

task will recruit multiple, if not brain-wide, subnetworks, rather 
than only activating task-specific regions. All these findings have 
been repeated using three datasets (LR, RL, and the averaged) 
with different network density thresholds (5%, 10%, and 15%). 
(See more results in the Supporting information.) Across the three 
thresholds, the main results showed great consistency, includ-
ing in comparisons of the global efficiency, in the correlations 
between the changes in interaction strengths, in the changes in 
efficiency, and in the connection changes in fractional modular-
ity. The changes in the interactions between the activated and 
less-activated regions from the resting to the tasks also showed 
considerable consistency, except that the gap in the comparison 
between the resting and EMOTION task was reduced when the 
threshold changed from 15% to 5%, but it still showed increased 
segregation from the resting to the task state. A few brain-wide 
studies exploring the common patterns in different mental states 
have been reported (Betti et al., 2013; Bolt, Nomi, Rubinov, & 
Uddin, 2017; Cole, Bassett et al., 2014; Krienen, Yeo, & Buckner, 
2014), but no one, to our knowledge, has quantitatively exam-
ined the network reorganization by comparing the Act and L-Act 
regions. In this study, we examined the reconfigurations of the 
Act and L-Act regions identified by a traditional activation detec-
tion strategy, from the perspective of functional connectivity and 
network analysis.

The resting state of the brain has a great similarity with its task-
processing state, in both its energy metabolism (Raichle et al., 2001) 
and its functional network architecture (Cole, Bassett et al., 2014). 
Such similarities also have a neural basis, which can be characterized 

F IGURE  6 Comparisons of efficiency 
between the task states and resting state 
for Act (top panel)/L-Act (bottom panel) 
regions. The 7 column pairs in each panel 
indicate each of the seven task states. The 
left one of each column pair shows the task 
state, and the right shows the resting state. 
The results for the Act regions do not show 
consistent increase trends from the resting 
state to the task state although there was a 
statistically significant difference between 
the resting and task states
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by diffusion MRI (Hermundstad et al., 2013). Therefore, it is quite rea-
sonable to think that the properties of the resting state network (not 
the task state) may be able to identify specific individuals (Hearne, 
Mattingley, & Cocchi, 2016) and predict their cognitive performance 
(Tavor et al., 2016). On the other hand, although the changes evoked 
by a task stimulus are subtle (Betti et al., 2013; Cole, Bassett et al., 
2014; Gratton, Laumann, Gordon, Adeyemo, & Petersen, 2016), the 
reconfiguration of the network architecture from the resting state 
to the task state has received increasing attention, and some global 
network measures, such as efficiency and modularity, rather than just 
the metrics constrained in the Act regions, have been applied to pre-
dict individual performance (Hearne et al., 2016), intelligence (Schultz 
& Cole, 2016), and even the aging process (Gallen et al., 2016). 

Therefore, the current study bolsters our understanding of the under-
lying principles of how Act and L-Act behave and interact during global 
network reconfigurations.

4.1 | Segregation of and integration between the 
Act and L-Act regions

Two types of findings can be drawn from the results: (1) With the 
exception of the working memory (WM) task, the other six tasks con-
sistently resulted in reduced interactions between the Act and L-Act 
regions. This may indicate that the six tasks specifically recruit the Act 
regions while the L-Act regions act in assistant roles. However, WM is 
a highly cognitively demanding task that recruits an enormous number 

F IGURE  7 Correlations between the changes in the efficiency indices between the two classes of regions and the changes in the global 
efficiency. The individual correlation strength R and significance level p-value are presented in each panel. Panels a and b indicate the Act and 
L-Act regions, respectively
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of functional regions across the brain (Constantinidis & Klingberg, 
2016; Eriksson, Vogel, Lansner, Bergstrom, & Nyberg, 2015; Ullman, 
Almeida, & Klingberg, 2014). (2) Although all the L-Act regions for 
the seven tasks consistently showed increasing trends in network ef-
ficiency when the brain transitioned from the resting state to a task 
state (Figure 6), they did not show unified relationships between 
the global efficiency changes and the Act-L-Act interaction changes 
(Figure 5). Specifically, for the six tasks other than WM, more segrega-
tions between the Act/L-Act regions correlated with a higher global 
network efficiency, but for the WM task, apparently due to the global 
recruiting of the functional regions, fewer segregations correlated with 
higher global network efficiency (Godwin, Barry, & Marois, 2015). This 
last finding may be due to an increased, long-distance functional syn-
chrony across the Act and L-Act regions when exposed to awareness-
demanding tasks (Giessing, Thiel, Alexander-Bloch, Patel, & Bullmore, 

2013; Godwin et al., 2015). Segregation and integration between 
functional regions are critical for enabling the brain to optimize its 
computational resources while controlling the wiring cost (Bullmore & 
Sporns, 2012; Petersen & Sporns, 2015; Sporns, 2013).

In this study, when we computed the efficiency of an areal net-
work, for example, the Act or the L-Act, only the internal connections 
were counted. According to graph theory, the increased global effi-
ciency was not necessarily associated with increased areal efficiency. 
Therefore, our results collectively indicated that changes in the inter-
actions between the Act and L-Act regions may have been a source of 
the changes in the modular trend and then in the increased efficiency 
of the global brain network. Being able to discriminate between Act 
and L-Act regions in activation detection studies does not necessar-
ily indicate that there is no strong functional connectivity between 
them since the strategies of identifying activations and connections 

F IGURE  7 Continued
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characterize different facets of the brain functioning (Bassett et al., 
2015; Siebenhuhner, Weiss, Coppola, Weinberger, & Bassett, 2013).

4.2 | The Act and L-Act regions reconfigured 
comparably to enable the global network changes

Judging from our study, the brain changes globally for a single task, 
which is the main reason why graph theory, which emphasizes that 
different functional regions serve in different roles to direct the en-
gagement of the others (Bressler & Menon, 2010), have been bor-
rowed to address the way in which the brain works (Sporns, 2011). 
Joint efforts between functional regions are universally found in the 
brain, especially when it is exposed to external stimuli. For example, 

an interaction pattern was found in an excitatory-inhibitory coun-
terpart between the salience network (main actor) and the central 
executive network when the brain processes unexpected events in 
the environment (Palaniyappan, Simmonite, White, Liddle, & Liddle, 
2013). In a whole brain network study that was similar to ours, 
Bassett et al. (2015) found that after visual-motor dual-task train-
ing, the nonvisual-motor regions of the brain acted as a potential 
driver promoting the motor-visual integration needed to perform 
the acts. In the literature, the active regions are often regarded 
as the actor, that is, that they are in charge of executing the tasks 
(Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Wager, Lindquist, & 
Kaplan, 2007). Meanwhile, as shown by our experimental results 
from the perspective of the brain network, the L-Act regions made 

F IGURE  8 Comparisons of the participant coefficients (the central one for the resting state) and the flexibilities (the surrounding ones for the 
seven resting-tasks pairs) for the subnetworks. As the right-bottom panel shows, each colored bar indicates the specific subnetworks. Except 
for the subcortical network, the DMN, FPN, and SN networks had the greatest flexibility (p < 1.0 × 10−28 after FDR correction when comparing 
their mean flexibility with the mean flexibility of the other six networks across the 453 subjects)
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comparable contributions and changed in ways that may possibly 
enable them to act as directors behind the scenes organizing the 
computational resources to facilitate the task execution. A similar 
result was presented by Yamashita and colleagues when predicting 
the learning plateau using the connectivity between the Act and L-
Act regions (2015). Collectively, these results are well in line with 
the “driver network” hypothesis proposed in Bassett et al.’s work 
(2015). Thus, an actor-director model may provide a new dimension 
for characterizing the collaborations between the traditional Act and 
L-Act regions.

4.3 | A triple-network model dominating the 
flexibility during the state changes of the brain

The three subnetworks that we found to be the most important to 
our study, the DMN, the FPN, and the SN, have been investigated 
extensively in recent years. A triple network comprising these has 
been proposed as a unifying model that globally regulates various 
brain functions (Menon, 2011), including attention and inhibitory 
control, execution capability. This regulation process may be imple-
mented by integrating the different roles of these three networks 
(Chen et al., 2013; Sridharan, Levitin, & Menon, 2008). The FPN is 
responsible for coordinating load-specific cognitive resources (Cai 
et al., 2016), for example, for exerting inhibitory control on the DMN 
activity when excited by an external stimulus (Chen et al., 2013; 
Sherman et al., 2014). The appropriate assignment of that regulation 
seems to be performed by the SN (Cai et al., 2016; Sheffield et al., 
2015). This triple-network configuration is strengthened during de-
velopmental maturation (Sherman et al., 2014; Supekar & Menon, 
2012). In this study, we quantitatively supported the dominance of 
the flexibility of these three networks when they were engaged in 
different task executions (seven tasks in total), including visual/au-
ditory/motor tasks, memory and retrieval, attention, and rewards. 
Noteworthily, these three subnetworks are not constrained to cer-
tain Act or L-Act regions. Because of the pivotal roles of these three 
networks, aberrant engagement and disengagement in them can 
cause various psychiatric and neurological disorders (Cole, Repovs, 
& Anticevic, 2014; Menon, 2011), including schizophrenia (Sheffield 
et al., 2015), anxiety disorders (Sylvester et al., 2012), obsessive-
compulsive disorder (Stern, Fitzgerald, Welsh, Abelson, & Taylor, 
2012), borderline personality disorder (Doll et al., 2013), and psy-
chopathy (Philippi et al., 2015).

5  | CONCLUSIONS

The activation region detected from functional MRI data is gener-
ally recognized as the main actor in performing a dedicated task. 
However, what the L-Act regions are doing at the same time re-
mains largely unknown. This study quantitatively demonstrated that 
both the Act and the L-Act regions underwent segregation and inte-
gration in ways that resulted in a reconfiguration of the global net-
work. Furthermore, both types of regions reorganized comparably 

to support the modular changes in the global brain network. More 
importantly, we discovered that the default mode network, the 
frontoparietal network, and the salience network consistently had 
the greatest flexibility compared to other subnetworks across the 
seven different tasks. These findings quantitatively signify that 
executing a task recruits multiple, if not brain-wide, subnetworks, 
rather than only activating task-specific regions. The clarification of 
the relationship between the Act and L-Act regions and their roles 
in the global network reconfigurations may provide a new perspec-
tive for understanding the changes in the brain network when ex-
posed to cognitively demanding tasks and establishes the necessity 
of using network theory to investigate brain functions in imaging 
cognitive neuroscience.
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