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Abstract
Introduction: Functional magnetic resonance imaging (fMRI) has become very impor-
tant	 for	 noninvasively	 characterizing	 BOLD	 signal	 fluctuations,	 which	 reflect	 the	
changes	in	neuronal	firings	in	the	brain.	Unlike	the	activation	detection	strategy	uti-
lized	 with	 fMRI,	 which	 only	 emphasizes	 the	 synchronicity	 between	 the	 functional	
nodes	(activated	regions)	and	the	task	design,	brain	connectivity	and	network	theory	
are	able	to	decipher	the	interactive	structure	across	the	entire	brain.	However,	little	is	
known about whether and how the activated/less- activated interactions are associ-
ated with the functional changes that occur when the brain changes from the resting 
state to a task state. What are the key networks that play important roles in the brain 
state changes?
Methods:	We	used	the	fMRI	data	from	the	Human	Connectome	Project	S500	release	
to	 examine	 the	 changes	 of	 network	 efficiency,	 interaction	 strength,	 and	 fractional	
modularity	 contributions	 of	 both	 the	 local	 and	 global	 networks,	when	 the	 subjects	
change from the resting state to seven different task states.
Results:	We	found	that,	from	the	resting	state	to	each	of	seven	task	states,	both	the	
activated	and	less-	activated	regions	had	significantly	changed	to	be	in	line	with,	and	
comparably	 contributed	 to,	 a	 global	 network	 reconfiguration.	We	 also	 found	 that	
three	networks,	the	default	mode	network,	frontoparietal	network,	and	salience	net-
work,	dominated	the	flexible	reconfiguration	of	the	brain.
Conclusions:	This	study	shows	quantitatively	that	contributions	from	both	activated	
and less- activated regions enable the global functional network to respond when the 
brain switches from the resting state to a task state and suggests the necessity of 
considering large- scale networks (rather than only activated regions) when investigat-
ing brain functions in imaging cognitive neuroscience.
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1  | INTRODUCTION

When	 the	 brain	 is	 occupied	 by	 a	 cognitively	 demanding	 task,	 such	
as	responding	to	auditory,	visual,	or	other	stimuli,	the	neuronal	firing	
and signal processing of the affected functional regions are upregu-
lated,	 resulting	 in	 an	 increased	 cerebral	metabolic	 rate,	 as	 indicated	
by	increased	oxygen	uptake.	Two	physiological	changes	occur	during	
this process: increased local cerebral blood flow (CBF) and changes 
in	 oxygenation,	 as	 measured	 by	 the	 blood	 oxygen	 level-	dependent	
(BOLD)	 contrast	 (Glover,	2011;	Logothetis,	2008).	Although	both	of	
these fluctuations can be detected by magnetic resonance imaging 
(MRI)	techniques,	the	latter,	the	BOLD	contrast,	is	more	widely	used	
to characterize activation maps of the brain because of its comparably 
short	acquisition	time	and	high	sensitivity	 (Glover,	2011).	Therefore,	
the	BOLD	contrast	 is	used	 in	conventional	 functional	MRI	 (fMRI)	 to	
characterize	brain	activity.	To	define	an	activation	map	based	on	fMRI,	
two mental conditions usually are compared statistically: One is the 
experimental	condition	(the	task),	which	causes	specific	functional	re-
gions	to	be	activated,	and	the	other	is	the	baseline	state,	which	is	used	
to	exclude	the	regions	 identified	as	not	specific	to	the	task	 (Stark	&	
Squire,	2001;	Voyvodic,	Petrella,	&	Friedman,	2009).

In	 the	 literature,	 the	 activation	 region	 identified	 as	 described	
above	 was	 usually	 chosen	 as	 the	 region	 of	 interest	 (ROI),	 which	
was	 regarded	 as	 the	 main	 actor	 when	 executing	 a	 specific	 task.	
Subsequently,	a	functional	analysis	was	conducted.	A	large	number	
of findings based on this procedure have been reported in recent 
decades	(Chu	et	al.,	2015;	Poldrack,	2007).	However,	the	fact	that	
these studies showed both areas that were activated and those that 
were not does not mean that the so- called nonactivated regions 
were “inactive” or had nothing to do with the tasks. In this traditional 
type	of	study,	the	“less-	activated”	regions	 (L-	Act),	as	suggested	by	
Yamashita	 and	 colleagues	 (Yamashita,	 Kawato,	 &	 Imamizu,	 2015),	
were just considered to be the complementary set to the activated 
regions	(Act),	but	their	synchronicity	with	the	task	stimulus	was	con-
sidered	to	be	statistically	insignificant.	In	fact,	studies	have	revealed	
that the brain consumes a small additional portion of energy in an 
attention- demanding task state beyond what is used in the resting 
state	(Raichle,	2009,	2010).	Although	the	change	evoked	by	the	task	
stimulus	is	subtle	(Cole,	Bassett,	Power,	Braver,	&	Petersen,	2014),	
the reconfiguration of the network architecture from resting state 
to	task	state	has	received	increasing	attention.	For	example,	consis-
tent findings have indicated that the network efficiency increases 
and modularity decreases when the brain changes from the resting 
state	 to	 a	 cognitively	demanding	 task	 (Hearne,	Cocchi,	Zalesky,	&	
Mattingley,	2017;	Wen	et	al.,	2015).	Additionally,	these	changes	can	
predict	the	task	complexity	(Wen	et	al.,	2015),	individual	intelligence	
and	cognitive	capability	(Schultz	&	Cole,	2016),	and	even	the	aging	
process	 (Gallen,	Turner,	Adnan,	 &	D’Esposito,	 2016).	Therefore,	 it	
is	 reasonable	 to	question	 the	 following:	 (1)	Whether	 and	how	are	
the activated/less- activated interactions associated with the func-
tional changes that occur when the brain changes from the rest-
ing state to a task state? (2) To what degree do the less- activated 
regions contribute to network changes in global reconfiguration 

and is this comparable to the contribution of the activated regions? 
(3) What are the key networks that play important roles in brain 
state changes?

Unlike	the	activation	detection	strategy,	which	only	emphasizes	
the synchronicity between the functional nodes and the task de-
sign,	as	described	above,	functional	connectivity	and	brain	network	
theory are able to decipher the interactive structure across the 
entire	 brain	 (Bullmore	 &	 Sporns,	 2012;	 Sporns,	 2011).	 Therefore,	
to	 try	 to	 answer	 the	 above	 questions,	we	 investigated	 fMRI	 data	
from a dataset released by the Human Connectome Project (HCP) 
(Van	 Essen	 et	al.,	 2013)	 that	 included	 both	 resting	 state	 and	 task	
data	 in	 seven	 tasks	 (See	Table	1	 for	 a	 list.)	 from	 a	 functional	 net-
work	point	of	view.	First,	we	used	 three	network	metrics,	 that	 is,	
interaction	strength,	modularity,	and	the	efficiency	 index,	 to	mea-
sure	network	 reconfigurations	within	and	between	 the	Act,	 L-	Act,	
and	global	networks.	Then,	we	proposed	“fractional	modularity”	as	
a measure of the modular contribution to the global network for 
a	given	region	and	applied	 it	 to	both	the	Act	and	L-	Act	regions	to	
compare their contributions to the changes in global network mod-
ularity.	Finally,	we	examined	which	functional	subnetworks	recon-
figure the most intensively when the brain changes from the resting 
state	to	the	task	state.	All	the	source	code	in	this	study	(in	MATLAB)	
and the activation maps are available in https://github.com/nmzuo/
Act-L-Act-network.

2  | MATERIALS AND METHODS

2.1 | Data acquisitions and preprocessing

The	HCP	data	S500	release	was	used	in	this	study.	There	were	512	
subjects’	records	in	the	data	we	obtained	from	the	HCP.	In	the	cur-
rent	work,	 only	 the	 fMRI	 data	were	utilized.	 Some	data	were	 ex-
cluded using the following criteria: (1) the data reported on the 
Known-	Issues	 page	 of	 the	HCP	website,	 htttps://wiki.humancon-
nectome.org/display/PublicData/HCP+Data+Release+Updates%
3A+Known+Issues+and+Planned+fixes;	 (2)	 data	 that	 did	 not	 have	
complete time points as indicated by the correct number of frames 
for each mental state (see Table 1); (3) data that did not have a full 
EV	record	to	accompany	the	fMRI	data;	and	(4)	data	acquired	with-
out	left–right	(LR)	or	right–left	(RL)	phase	encoding.	In	the	end,	453	
subjects	 (age	29.1	±	3.5	years,	188	male)	were	used	 in	 the	subse-
quent	 analyses.	 The	 task	 datasets	 contained	 seven	 conventional	
tasks,	including	working	memory	(WM),	gambling,	motor,	language,	
social	 cognition,	 relational	 processing,	 and	 emotion	 processing,	
each of which had been designed to activate specific functional 
regions	 (Barch	 et	al.,	 2013).	 To	 ensure	 a	 large	 population	 for	 this	
study,	subjects	who	had	biological	relationships	with	others	in	the	
HCP	data	release	were	retained	in	our	dataset	(Cole,	Bassett	et	al.,	
2014;	Smith	et	al.,	2015).

To account for the influence of the phase encoding direction during 
MRI	scanning,	both	left–right	(LR)	and	right–left	(RL)	phase	encodings	
were	adopted	in	two	separate	scan	sessions	in	the	HCP.	In	this	study,	
we	repeated	the	analysis	on	three	different	dataset	combinations,	that	
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is,	the	LR	dataset	only,	the	RL	dataset	only,	and	the	averaged	LR/RL	
dataset.	Considering	the	large	number	of	results	and	figures,	only	the	
results from the averaged dataset are presented in the manuscript and 
the	results	from	the	other	two	datasets	are	included	in	the	Supporting	
information.

The	HCP	 dataset	was	 partially	 used	 in	 our	 previous	work	 (Zuo,	
Song,	Fan,	Eickhoff,	&	Jiang,	2016),	and	the	descriptions	of	the	imag-
ing protocols and preprocessing steps used by the HCP consortium 
are	described	 in	Section	S1.	Here,	we	will	only	 repeat	 the	main	de-
scriptions and preprocessing steps. The dataset was collected on a 3T 
MRI	Skyra	scanner	 (Siemens,	Germany)	using	a	standard	32	channel	
head coil. The magnetic field produced by the coil was modeled to 
provide a customized distortion correction. The primary scanning pa-
rameters	were	as	follows:	repetition	time	(TR),	720	ms;	echo	time	(TE),	
33.1	ms;	flip	angle,	52°;	field	of	view,	208	×	180	mm;	slice	thickness,	
2.0	mm;	and	voxel	size,	2.0-	mm	isotropic	cube	(Van	Essen	et	al.,	2013).	
The	HCP	data	were	already	preprocessed,	well	aligned,	and	registered	
to the Montreal Neurological Institute (MNI) 2- mm standard space 
when we received it. The main preprocessing steps taken included 
(Glasser	et	al.,	2013):	(1)	gradient	nonlinearity	distortion;	(2)	6	degrees	

of	 freedom	 (DOF)	 FSL/FLIRT-	based	motion	 correction;	 (3)	 FSL/top-	
up- based distortion correction; (4) registration to a T1 space image; 
and	 (5)	FSL/FNIRT-	based	registration	to	MNI	2-	mm	space.	After	 re-
ceiving	the	above	preprocessed	data	from	HCP,	we	further	band-	pass-	
filtered	the	data	at	0.009–0.08	Hz	to	reduce	low-	frequency	drift	and	
high-	frequency	 noise	 (Vatansever,	 Menon,	 Manktelow,	 Sahakian,	 &	
Stamatakis,	2015).	The	mean	signal	of	the	white	matter	and	cerebro-
spinal	 fluid	 (CSF)	 and	 the	movement	 parameters	 and	 its	 derivatives	
(in	the	Movement_parameters.txt	file	 in	HCP	S500	release)	were	re-
gressed	out	as	confounding	 factors.	Since	we	used	a	 series	of	ROIs	
in this study to sample the gray matter of the entire brain (described 
below),	a	smoothing	step	was	not	applied	here.	In	addition,	global	sig-
nal regression was not conducted because its use is controversial and 
there	is	no	consensus	about	its	physiological	 interpretation	(Bassett,	
Yang,	Wymbs,	&	Grafton,	2015;	Mayhew	et	al.,	2016).

2.2 | The overall strategy of this study

The analysis pipeline used in this study is illustrated in Figure 1. 
We used four network properties to characterize the network con-
figuration:	interaction	strength,	modularity,	efficiency,	and	flexibil-
ity.	 These	properties	were	quantified	 for	 the	 resting	 state	 and	 all	
seven	task	states.	By	checking	the	changes	in	these	quantities,	we	
were able to describe the network reconfiguration when the brain 
changes	from	the	resting	state	to	a	task	state.	Step	1:	We	identified	
the activated regions for each of the seven task states in the HCP 
S500	release.	Hence,	both	the	Act	and	L-	Act	regions	(the	comple-
mentary	set	to	the	former)	could	be	identified.	Step	2:	To	examine	
whether	the	task	state	would	change	the	global	efficiency	index	in	
ways	 that	 contrasted	 to	 the	 resting	 state,	 we	 evaluated	 the	 net-
work efficiency of the entire brain for both the resting and task 
states.	Step	3:	Based	on	the	two	classes	of	regions	(Act	and	L-	Act)	
identified	in	Step	1,	we	computed	the	interaction	strength	between	
each	pair	of	regions	and	the	fractional	modularity	index	(see	below)	

TABLE  1 The number of scanning frames and the run duration 
for each task fMRI data collection in HCP data (adapted from http://
protocols.humanconnectome.org/HCP/3T/imaging-protocols.html)

Task Runs
Frames 
per run

Run duration 
(min:s)

Working memory 2 405 5:01

Gambling 2 253 3:12

Motor 2 284 3:34

Language 2 316 3:57

Social	cognition 2 274 3:27

Relational processing 2 232 2:56

Emotion	processing 2 176 2:16

F IGURE  1 The	analysis	strategy	in	this	work.	First,	the	activated	and	less-	activated	regions	were	identified	based	on	the	global	fMRI	time	
course,	and	the	global	connectivity	matrices	were	generated.	Second,	the	networks	were	partitioned	by	the	activity	and	nonactivity	masks.	
Using	the	above,	the	modularity	indices	for	the	global	and	for	the	two	classes	of	regions	were	determined.	Finally,	the	interactions	between	the	
two regions and the individual changes in these two regions were also characterized
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to	evaluate	each	regions’	contribution	to	the	whole	brain	network	
modularity.	Step	4:	We	computed	the	network	efficiency	separately	
for	the	two	regions,	using	a	nodal	flexibility	of	10	to	predefine	the	
functional	subnetworks	(Power	et	al.,	2011)	and,	further,	to	exam-
ine whether certain subnetworks contributed differently to the 
global network reconfiguration.

2.3 | Extracting activated and less- activated maps

To	 generate	 the	 activation	maps	 for	 the	 seven	 tasks,	 30	 unrelated	
subjects	were	chosen	from	the	HCP	S500	dataset	by	these	criteria:	
(1)	They	did	not	have	twins	in	the	dataset	(namely	both	the	Twin_Stat	
and	Zygosity	labels	were	NotTwin).	(2)	They	did	not	share	a	father	or	
mother	with	others	in	the	dataset.	(3)	They	had	both	LR	and	RL	data.	
And	(4)	they	were	aged	20–30	years.	We	adopted	these	requirements	
primarily to reduce the influence of bias on the entire group by remov-
ing	related	subjects	from	the	subsequent	analysis.	To	reduce	the	bias	
from	the	encoding	direction	 for	 the	activation	detection,	 the	LR/RL	
data	of	these	30	subjects	were	mixed	to	form	a	dataset	of	60.	In	this	
study,	the	Act/L-	Act	maps	were	extracted	to	assess	their	roles	in	each	
task,	so	the	extraction	strategy	itself	was	not	our	primary	emphasis.	
The sole purpose of the activation detection that we did here was to 
guarantee	that	the	extracted	maps	based	on	the	routine	parameters	
are the ones that are well accepted in the literature for each task. 
Our	goal	was	to	dissect	the	functions	of	the	Act/L-	Act	regions	quan-
titatively.	(Certainly,	different	strategies	or	parameters,	e.g.,	the	state	
contrasts	and	the	thresholds,	used	in	activation	detection	will	result	in	
different	Act/L-	Act	regions,	but	this	is	beyond	the	scope	of	this	study.)	
To	this	end,	utilizing	the	strategies	and	parameters	described	in	Barch	
et	al.’s	study	(20	subjects),	we	used	an	extended	dataset	(30	subjects)	
to generate the maps and validated them by comparing them with the 
ones reported in Barch et al.’s	work,	in	which	they	compared	their	ac-
tivation maps to traditional maps in the literature to validate the HCP 
data	quality	(Barch	et	al.,	2013).

The detection of the activation regions for the seven tasks 
was	 implemented	 using	 FSL	 (version	 5.0.9)/FEAT	 (version	 6.00)	
(Jenkinson,	 Beckmann,	 Behrens,	 Woolrich,	 &	 Smith,	 2012).	 The	
main	parameters	were	set	as	follows:	At	the	subject	level,	a	within-	
subjects	 fixed-	effects	 analysis	 in	 FSL/FEAT	was	 used	 to	 estimate	
the	average	effects	across	the	runs,	with	a	cluster-	based	threshold	
Z = 1.96	as	the	activation	threshold	and	p = .05 as the Monte Carlo- 
based	 cluster-	level	 correction.	 Then,	 at	 the	 group	 level,	 a	 mixed-	
effects	analysis	implemented	in	FSL/FLAME	(FMRIB’s	local	analysis	
of	mixed	effects)	 (Beckmann,	Jenkinson,	&	Smith,	2003)	was	used	
to	 estimate	 the	 average	 effects	 of	 interest,	 in	 this	 case,	 the	 acti-
vation	maps,	 separately	 for	 the	 seven	 task	groups,	with	 a	 cluster-	
based threshold Z = 2.32 and p = .05.	In	this	study,	only	the	positive	
activation	regions	were	used	because,	to	date,	the	physiological	in-
terpretations	of	negative	activations	obtained	from	BOLD	fMRI	re-
main	controversial	(Bianciardi,	Fukunaga,	van	Gelderen,	de	Zwart,	&	
Duyn,	2011;	Hu	&	Huang,	2015;	Shih	et	al.,	2009).	The	details	of	the	
contrasts	used	for	each	task	are	listed	in	Table	S2.	The	comparisons	
from	different	state	contrasts	are	also	presented	in	the	Supporting	

information	(Table	S1	and	Figures	S1	and	S2).	The	activation	masks	
for	the	three	separate	datasets	(LR,	RL,	and	averaged)	are	available	
on	our	website	(https://github.com/nmzuo/Act-L-Act-network);	the	
masks largely coincide across the three states.

2.4 | Definition of network nodes

In	 this	study,	a	group	of	 regions	of	 interest	 (ROIs)	across	 the	entire	
brain was used as brain network nodes to analyze the whole brain 
function	(Poldrack,	2007).	Specifically,	we	used	the	264	ROIs	identi-
fied by combining meta- analyses with functional connectivity map-
ping,	 spanning	 the	 cerebral	 cortex,	 subcortical	 structures,	 and	 the	
cerebellum	(Power	et	al.,	2011).	For	each	of	the	seven	task	states,	the	
264	ROIs	were	assigned	to	either	Act	or	L-	Act	regions	depending	on	
the activation map.

2.5 | Definitions of functional connectivity network

Functional networks were then defined by assessing the func-
tional connection strength between node pairs. Two steps were 
adopted	 to	 construct	 the	 connectivity	matrix.	 First,	 the	 averaged	
time series for each ROI was regressed out of the mean task activ-
ity	(Cole	et	al.,	2013);	then,	the	connection	strength	for	each	node	
pair	 was	 calculated	 using	 the	 corrcoef	 function	 in	MATLAB	 (ver-
sion	 2012a,	Mathworks	 Inc.),	 which	was	 shown	 to	 yield	 a	 similar	
result	to	the	psycho-	physiological	 interaction	method	(Cole,	Yang,	
Murray,	Repovs,	&	Anticevic,	2016);	 finally,	a	Fisher’s	z-	transform	
was	performed.	For	the	averaged	dataset,	the	connection	strength	
was obtained by averaging the Fisher z- transform of the correlation 
coefficients	for	the	LR	and	RL	data	from	each	subject	(Smith	et	al.,	
2013). Because the interpretation of negative connections remains 
controversial	 (Murphy,	 Birn,	 Handwerker,	 Jones,	 &	 Bandettini,	
2009),	 in	 this	 study	 the	 negative	 connections	 were	 set	 to	 0	 (Liu	
et	al.,	2016;	Sheffield	et	al.,	2015).	Second,	 the	connection	matrix	
for each subject was thresholded and binarized to have different 
densities	 (5%,	 10%	 and	 15%)	 (Bullmore	&	 Sporns,	 2009;	 Rubinov	
&	Sporns,	2010;	van	Wijk,	Stam,	&	Daffertshofer,	2010)	to	address	
the	 effects	 of	 different	 connectivity	 densities.	 In	 this	manuscript,	
we	only	present	the	results	from	using	a	density	of	15%,	with	the	
other	results	presented	in	the	Supporting	information.

2.6 | Definitions of network interaction, fractional 
modularity, and efficiency

Three measurements were used to evaluate the segregations and inte-
grations	of	the	two	classes	of	regions,	the	activated	regions	(Act)	and	
less-	activated	regions	(L-	Act),	where	the	whole	brain	=	Act	∪	L-	Act.

First,	 the	 interaction	strength	was	defined	to	assess	the	 integra-
tion	 and	 segregation	 between	 the	Act	 and	 L-	Act	 regions	 (Liu	 et	al.,	
2016;	Zuo	et	al.,	2012),	as	in	the	following	Equation	1,

(1)I=
1

K ⋅L

∑

i∈Act, j∈L- Act

Aij,

https://github.com/nmzuo/Act-L-Act-network
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where Aij (i,	j	=	1,2…N,	N is the number of nodes) is the element of the 
connectivity	matrix	A; K and L	denote	the	size	of	the	Act	regions	and	
L-	Act	regions,	respectively;	and	the	term	K·L is used to normalize the 
interaction strength.

Second,	 a	 modularity	 index,	 Q,	 was	 used	 to	 characterize	 the	
tendency	of	 a	 network	 to	 approach	modularity	 (Blondel,	Guillaume,	
Lambiotte,	&	Lefebvre,	2008;	Newman	&	Girvan,	2004).	The	modular-
ity	index	is	defined	as,

where wi=
∑

j Aij is the degrees of node i in A,	the	γ is the resolution 
parameter	for	the	optimal	modular	index;	gi indicates the regions as-
signment of node i, and delta function δ indicates that only the frac-
tion where the two nodes are in the same regions will be counted in 
the	final	modular	index.	In	this	study,	the	default	resolution	parameter	
γ	=	1	 was	 adopted	when	 applying	 the	 generalized	 Louvain	 method	
(http://netwiki.amath.unc.edu/GenLouvain/GenLouvain)	 (Mucha,	
Richardson,	Macon,	Porter,	&	Onnela,	2010).	This	parameter	setting	
is	also	the	optimal	one	for	our	dataset	 (see	Figure	S6	in	the	Section	
S5	for	the	rationale	behind	the	parameter	settings).	Moreover,	to	re-
duce	the	bias	of	random	walking	while	optimizing	the	modularity,	we	
repeated	the	solution	100	times,	and	the	partition	associated	with	the	
largest	modularity	 index	was	 selected	 as	 the	 final	 partition	 scheme	
(Vatansever	et	al.,	2015).

To evaluate the contributions of the two classes of regions to the 
entire	network,	the	fractional	modularity	 index	Qf (Figure 1) of a re-
gion was computed using only the connections engaged in the region. 
Then,	two	kinds	of	Qf could be calculated separately by including con-
nections with (1) both nodes and (2) at least one node assigned to 
the one class of regions under consideration. We tested the differ-
ent	contributions	from	the	two	regions	using	a	two-	way	ANOVA	with	
[Subjects	*	States]	×	[Classes	of	Regions],	where	 the	 two	columns	of	
the	design	matrix	were	the	fractional	modularity	indices	from	the	Act	
and	L-	Act	 regions	and	the	rows	were	the	453	subjects	 in	 the	seven	
task	states.	Furthermore,	the	453	subjects	and	the	seven	task	states	
were treated separately as repeated measures.

Third,	the	global	efficiency	of	the	Act	and	the	L-	Act	regions,	as	well	
as	the	entire	network,	was	computed	for	both	the	resting	states	and	
the task states to evaluate whether the two classes of regions recon-
figured to facilitate the entire network reconfiguration. The global ef-
ficiency	of	network	A	is	defined	as	follows	(Achard	&	Bullmore,	2007;	
Latora	&	Marchiori,	2003):

where dij denotes the shortest path between the pair of nodes (i,	 j),	
which	was	calculated	using	Dijkstra’s	algorithm	 (Latora	&	Marchiori,	
2003).	When	we	 focused	on	 the	efficiency	of	a	 local	 area,	only	 the	
connections	inside	this	area,	such	as	the	Act	regions	or	the	L-	Act	re-
gions,	were	counted.	The	network	efficiency	of	a	node	is	based	on	the	
shortest path needed to assess the communication capability of the 

node	with	other	nodes	across	the	brain.	Then,	the	global	efficiency	is	
the	mean	value	of	all	the	nodal	efficiencies.	In	this	study,	this	measure	
was used to measure the functional connectional efficiency of both 
the	global	network	and	the	Act/L-	Act	regions	quantitatively.	The	net-
work efficiency was computed using open- access software developed 
by our group (https://www.nitrc.org/projects/brat).

2.7 | Measurements of the network flexibility from 
resting to task states

The previous sections have described how we investigated whether 
the	network	architecture	of	the	L-	Act	regions,	concomitant	to	the	ac-
tive	ones,	also	reconfigures	when	the	brain	changes	from	the	resting	
state to task states. For a closer look at which nodes or subnetworks 
make	the	most	contributions	to	the	network	dynamics,	the	participant	
coefficient	(PC)	(Guimera	&	Nunes	Amaral,	2005)	was	utilized	to	meas-
ure the participant intensity of each functional node or subnetwork 
during	mental	state	changes.	The	flexibility	was	defined	as	Fk = PCik−
PCjk,	where	i	and	j	indicate	two	mental	states,	that	is,	a	task	and	the	
resting	state,	for	a	specific	node	k.	The	subnetworks	defined	by	Power	
et	al.	(2011)	were	used,	and	the	individual	subnetwork	flexibility	was	
examined	by	averaging	the	flexibility	of	the	nodes	composing	the	sub-
network.	Ten	of	13	subnetworks	were	included	in	our	study,	because	
the other three subnetworks do not have specific and determined 
functional	roles	(Cole	et	al.,	2013;	Vatansever	et	al.,	2015).

3  | RESULTS

3.1 | Global network efficiency comparisons and 
modular changes

The	 comparison-	based	 global	 efficiency	 index	 showed	 that	 the	
brain networks had much higher efficiency in the task states than 
in the resting states. Figure 2 shows plots of the efficiency indi-
ces	 for	 the	whole	 brain,	 including	 those	 for	 the	 resting	 state	 and	
each	of	the	seven	task	states.	From	these	plots,	the	efficiency	indi-
ces for the seven task states can clearly be seen to be larger than 
those for the resting state. The results for the paired t test were all 
 significant (p < 1	×	10−36)	for	the	seven	task-	resting	pairs,	and	their	
p- values survived false discovery ratio (FDR) correction for multi-
ple comparisons using the mafdr	 function	 in	MATLAB	 (corrected	 
p-	values	<1	×	10−35).	Furthermore,	because	the	distributions	for	the	
modularity indices for the eight mental states did not strictly follow 
a	Gaussian	normal	distribution	(they	did	not	pass	the	Kolmogorov–
Smirnov	test	by	kstest	in	MATLAB),	a	complementary	paired	per-
mutation	test	was	used	with	10,000	permutations,	and	the	results	
consistently showed P = 0. The results with other connectivity den-
sity	 thresholds,	5%	and	10%,	 and	 three	 separate	dataset	 are	pre-
sented	in	Figure	S3.

Figure 3 illustrates the global dynamic changes by an alluvial dia-
gram	(Rosvall	&	Bergstrom,	2010)	for	node	assignments	to	either	the	
baseline (resting state) or the seven task state communities. The par-
titions	 between	 the	 communities	 for	 each	 state,	 including	 both	 the	
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baseline	(resting	state)	and	the	seven	task	states	in	Figure	3,	were	the	
representative partitions across the 453 partitions based on statisti-
cal	testing	in	comparison	with	a	null	model	(Bassett	et	al.,	2013).	The	
node flow diagrams show the intensive reconfigurations of the net-
works when the brain switched from the resting state to the seven 
task	states.	In	Figure	3,	the	last	row	indicates	the	similarity	measured	
by	the	z-	score	of	the	random	coefficient	(RC)	(Traud,	Kelsic,	Mucha,	&	
Porter,	2011)	between	the	partitions	from	the	resting	state	and	from	
the task state. For a description of the connectivity flow obtained by 
grouping	the	nodes	into	Act	and	L-	Act	regions,	see	Section	S6	where	
the	 connectivity	matrices	 (Figure	S7)	 that	 illustrate	 the	 connectivity	

reconfigurations when the brain changed state from the resting to a 
task state are shown.

3.2 | Changes in the interactions between the Act  
and L- Act regions

We	 further	 found	 that	 the	 interactions	between	 the	Act	 and	 L-	Act	
regions changed significantly along with the global change in ef-
ficiency. Figure 4 shows the comparisons of the strength of the in-
teractions	between	the	Act	and	L-	Act	regions	in	the	resting	and	task	
states.	 In	 each	of	 the	 seven	pairs	 of	 columns,	 the	 left	 presents	 the	

F IGURE  2 The efficiency indices for 
the	whole	brain	in	different	mental	states,	
including the resting state and the seven 
tasks,	that	is,	gambling,	motor,	social	
cognition,	emotion	processing,	language,	
relational	processing,	and	working	memory	
tasks. The red (long) and blue (short) 
horizontal	lines	in	each	box,	respectively,	
denote the median and mean efficiency 
indexes	across	all	of	the	453	subjects.	For	a	
closer look at the distribution of the indices 
for	the	453	subjects,	the	scatter	plot	of	
each	subject’s	index	is	overlaid	as	the	
background of each plot

F IGURE  3 Global	changes	by	alluvial	diagram	(Rosvall	&	Bergstrom,	2010)	of	the	node	assignments	to	the	two	different	regions	(Act	and	
L-	Act)	between	the	baseline	(resting	state)	and	the	seven	task	states.	The	region	partitions	for	each	state	are	the	average	partitions	obtained	by	
maximizing	the	similarity	across	the	453	participants	separately	for	each	state	(Bassett	et	al.,	2013).	Here,	only	large	partitions	are	labeled	by	Ci 
(i	=	1,	2,	…),	and	different	regions	are	separated	by	white	gaps	in	the	horizontal	direction.	The	seven	panels	indicate	the	seven	resting-	task	pairs	
where	the	left	one	is	for	the	resting	and	the	right	one	is	for	the	task.	The	last	row	indicates	the	similarity,	measured	by	the	z- score of the random 
coefficient	(RC)	(Traud	et	al.,	2011)	between	the	partitions	from	the	resting	state	and	the	task	state
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interaction strength between the two classes of regions in the task 
state and the right presents that in the resting state. The p- values for 
the paired t test for the seven task- resting pairs were (df = 452): gam-
bling: p = 7.1	×	10−108,	 t = −29.6;	 motor:	 p = 1.64	×	10−22,	 t = −10.3;	
social cognition: p = 4.27	×	10−215,	 t = −59.21;	 emotion	 processing:	
p = 2.16	×	10−7,	 t = −5.27;	 language:	 p = 6.46	×	10−102,	 t = −28.3;	
relational processing: p = 6.16	×	10−165,	 t = −43.85;	 and	 WM:	
p = 9.28	×	10−94,	t = 26.43.	These	p- values also readily survived FDR 
correction. The comparisons show that the interactions between the 
Act	and	L-	Act	 regions	were	significantly	different	 in	 the	 task	states	
compared	with	their	interactions	in	the	resting	states.	Specifically,	the	
interactions	weakened	 in	 six	of	 the	 task	 states	but	 strengthened	 in	
the WM task.

We also found that the changes in the interaction strengths cor-
related with the global efficiency changes when the brain switched 
mental states. Figure 5 shows the correlation test results for the 7 
tasks,	with	 the	 sex	 and	 age	 of	 each	 subject	 added	 as	 confounding	
factors. These results consistently demonstrated that changes in the 
interactions	between	the	Act	and	the	L-	Act	regions	were	significantly	
correlated with changes in the efficiency after FDR correction. The 
results	with	other	connectivity	density	thresholds,	5%	and	10%,	and	
three	separate	datasets	are	presented	in	Table	S3	and	Figure	S4.

3.3 | Fractional modularity analysis

Using	 a	 two-	way	 ANOVA	 with	 [Subjects	 *	 States]	×	[Classes	 of	
Regions],	we	found	that,	for	the	entire	network,	the	fractional	modu-
larity	contributions	of	the	L-	Act	regions	were	not	statistically	signifi-
cantly	different	from	those	of	the	Act	regions	(the	main	effect	p > .11). 
In	Table	2,	the	results	are	classified	by	the	node-	pair	assignment	strat-
egy	(e.g.,	whether	the	connected	nodes	were	both	in	Act	or	both	in	
L-	Act	or	one	of	each	pair	of	nodes	was	in	Act	and	the	other	in	L-	Act),	
and the fractional modularity contributions were normalized by two 
different	 factors,	 the	size	of	each	class	of	connected	regions	or	 the	
number of all possible connectivities between these two classes of 
regions. The last row of Table 2 separately denotes the main effects 
for all the cases above. These results consistently showed that the 
modularity	contributions	from	the	Act	and	L-	Act	regions	did	not	differ	
significantly in any of the seven task states. The interaction effects 

were insignificant (p > .86)	between	the	factors	of	the	subject	(or	task)	
and the two classes of regions. The results with other connectivity 
density	thresholds,	5%	and	10%,	and	three	separate	datasets	are	pre-
sented	in	Table	S5.

3.4 | Network changes within the Act and L- Act  
regions

Using	the	areal	efficiency	(the	network	efficiency	in	either	Act	or	L-	
Act)	to	characterize	the	changes	in	these	two	classes	of	regions,	we	
found	that	both	the	Act	and	the	L-	Act	regions	had	significantly	reor-
ganized internal network architectures (p < 1.0	×	10−4 after FDR cor-
rection) when they changed from the resting to the seven task states. 
In	particular,	the	efficiency	in	the	L-	Act	regions	consistently	increased	
(see	Figure	6).

Figure 7 shows the correlation test results between the changes in 
the	efficiency	of	the	Act	(7a)	and	L-	Act	(7b)	network	when	switching	
from the resting state to the seven task states. These results consis-
tently	demonstrated	that	the	changes	in	the	efficiency	in	both	the	Act	
and	L-	Act	regions	were	significantly	correlated	with	the	changes	in	the	
global efficiency indices. The results with other connectivity density 
thresholds,	5%	and	10%,	and	three	separate	datasets	are	presented	in	
Table	S4	and	Figure	S5.

3.5 | Flexibilities of the networks during the changes 
from the resting to the task states

The	 flexibility	 metric	 for	 the	 subnetworks	 showed	 that,	 across	 the	
seven	resting-	task	state	pairs,	the	default	mode	network	(DMN),	fron-
toparietal	network	(FPN)	and	salience	network	(SN)	consistently	had	
the	 greatest	 flexibility	 among	 the	 10	 subnetworks.	 In	 Figure	8,	 the	
central panel shows the PCs of the 10 subnetworks in the resting state 
and	the	surrounding	panels	show	the	flexibilities	of	each	subnetwork	
from	the	resting	state	to	the	seven	task	states.	With	the	exception	of	
the	 subcortical	 network,	 the	DMN,	FPN,	 and	SN	networks	had	 the	
greatest	 flexibility	 (p < 1.0	×	10−28 after FDR correction when com-
paring	their	mean	flexibility	with	the	mean	flexibility	of	the	other	six	
subnetworks across the 453 subjects). The specific statistical p- values 
are	2.6	×	10−74	 (gambling),	 8.68	×	10−28	 (motor),	 2.17	×	10−30 (social 

F IGURE  4 Comparisons of the strength 
of	the	interaction	between	the	Act	and	
L-	Act	regions	in	the	resting	and	task	states.	
Within	each	column	pair,	the	left	shows	the	
interaction between the two regions in the 
task state and the right shows the resting 
state
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F IGURE  5 Correlations between the changes in the interactions between the two regions and the changes in the global efficiency. The 
individual correlation strength R and significance level p- value appear in each panel

TABLE  2 Comparisons of the fractional modularity Qf	contributed	separately	by	the	Act	and	L-	Act	regions,	classified	by	node-	pair	
assignment,	normalization	scheme,	and	repeated	measures.	The	reps	designation	indicates	the	number	of	repeated	measures.	Two	methods	
were considered and repeated according to the number of subjects and according to the number of tasks. The last row indicates the main 
effects	from	the	two-	way	ANOVA	and	is	the	difference	in	the	two	columns	composed	by	the	contributions	separately	from	the	Act	and	L-	Act	
regions	in	the	ANOVA	design	matrix.	The	interaction	effects	between	the	subjects	(tasks)	and	the	Act/L-	Act	difference	were	not	significant	
(p	>	.86)

Normalized by C(k,2)a Normalized by Act/L- Act size

Both nodes (i,j) are in the examined 
regions

At least one node of (i,j) is in the 
examined regions

Both nodes (i,j) are in the examined 
regions

At least one node of (i,j) is in 
the examined regions

reps = 453 reps = 7 reps = 453 reps = 7 reps = 453 reps = 7 reps = 453 reps = 7

F = 2.24 
p = .13

F = 2.24 
p = .13

F = 0 
p = .93

F = 0 
p = .93

F = 2.52 
p = .11

F = 2.51 
p = .11

F = 0.95 
p = .33

F = 0.95 
p = .33

aThe C(k,	2)	means	the	possible	connections	between	k	nodes,	and	the	k nodes are constrained by the rule in the second row of the table.
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cognition),	 1.72	×	10−45	 (emotion	 processing),	 1.55	×	10−110 (lan-
guage),	 6.72	×	10−71	 (relational	 processing)	 and	 1.97	×	10−88 (WM). 
The	high	flexibility	of	the	subcortical	network	 is	 logical	because	the	
subcortical network consists of many heterogeneous functional nodes 
globally	regulating	the	other	subnetworks	(Hibar	et	al.,	2015).

4  | DISCUSSION

The goal of this study was to investigate the roles of both the ac-
tivated	regions	(Act)	and	the	less-	activated	regions	(L-	Act)	of	the	
brain	during	the	execution	of	tasks,	where	Act	refers	to	the	brain	
regions “significantly activated” in the literature in a task- related 
fMRI	analysis	and	L-	Act	refers	to	the	part	of	the	brain	that	is	com-
plementary	to	Act	(Yamashita	et	al.,	2015).	Our	research	disclosed	
the following findings of the brain network about the task states 
in comparison with the resting states: (1) We found that the in-
teraction	 strength	 between	 the	 Act	 and	 L-	Act	 regions	 changed	
significantly	during	the	brain	state	changes,	and	this	change	was	
associated with a change in the brain network efficiency. (2) We 
found	 that	 the	 L-	Act	 regions	made	 contributions,	 quantified	 by	
the	 proposed	 fractional	 modularity	 index,	 to	 the	 global	 modu-
larity change that were comparable to the contributions of the 
Act	regions.	(3)	We	found	that	the	default	mode	network	(DMN),	
frontoparietal	network	(FPN),	and	salience	network	(SN)	consist-
ently	showed	greater	flexibility	than	the	other	subnetworks	when	
the brain was changing from the resting state to the seven task 
states.	 These	 findings	 indicate	 quantitatively	 that	 executing	 a	

task	will	 recruit	multiple,	 if	 not	 brain-	wide,	 subnetworks,	 rather	
than	only	activating	task-	specific	regions.	All	these	findings	have	
been	 repeated	 using	 three	 datasets	 (LR,	 RL,	 and	 the	 averaged)	
with	 different	 network	 density	 thresholds	 (5%,	 10%,	 and	 15%).	
(See	more	results	in	the	Supporting	information.)	Across	the	three	
thresholds,	 the	 main	 results	 showed	 great	 consistency,	 includ-
ing	 in	 comparisons	 of	 the	 global	 efficiency,	 in	 the	 correlations	
between	 the	changes	 in	 interaction	 strengths,	 in	 the	changes	 in	
efficiency,	 and	 in	 the	connection	changes	 in	 fractional	modular-
ity. The changes in the interactions between the activated and 
less- activated regions from the resting to the tasks also showed 
considerable	consistency,	except	that	the	gap	in	the	comparison	
between	 the	 resting	and	EMOTION	task	was	 reduced	when	 the	
threshold	changed	from	15%	to	5%,	but	it	still	showed	increased	
segregation	from	the	resting	to	the	task	state.	A	few	brain-	wide	
studies	exploring	the	common	patterns	in	different	mental	states	
have	 been	 reported	 (Betti	 et	al.,	 2013;	 Bolt,	 Nomi,	 Rubinov,	 &	
Uddin,	2017;	Cole,	Bassett	et	al.,	2014;	Krienen,	Yeo,	&	Buckner,	
2014),	 but	 no	 one,	 to	 our	 knowledge,	 has	 quantitatively	 exam-
ined	the	network	reorganization	by	comparing	the	Act	and	L-	Act	
regions.	 In	 this	 study,	we	 examined	 the	 reconfigurations	 of	 the	
Act	and	L-	Act	regions	identified	by	a	traditional	activation	detec-
tion	strategy,	from	the	perspective	of	functional	connectivity	and	
network analysis.

The resting state of the brain has a great similarity with its task- 
processing	state,	 in	both	its	energy	metabolism	(Raichle	et	al.,	2001)	
and	 its	 functional	 network	 architecture	 (Cole,	 Bassett	 et	al.,	 2014).	
Such	similarities	also	have	a	neural	basis,	which	can	be	characterized	

F IGURE  6 Comparisons of efficiency 
between the task states and resting state 
for	Act	(top	panel)/L-	Act	(bottom	panel)	
regions. The 7 column pairs in each panel 
indicate each of the seven task states. The 
left one of each column pair shows the task 
state,	and	the	right	shows	the	resting	state.	
The	results	for	the	Act	regions	do	not	show	
consistent increase trends from the resting 
state to the task state although there was a 
statistically significant difference between 
the resting and task states
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by	diffusion	MRI	(Hermundstad	et	al.,	2013).	Therefore,	it	is	quite	rea-
sonable to think that the properties of the resting state network (not 
the	 task	 state)	may	 be	 able	 to	 identify	 specific	 individuals	 (Hearne,	
Mattingley,	&	Cocchi,	2016)	and	predict	their	cognitive	performance	
(Tavor	et	al.,	2016).	On	the	other	hand,	although	the	changes	evoked	
by	 a	 task	 stimulus	 are	 subtle	 (Betti	 et	al.,	 2013;	Cole,	Bassett	 et	al.,	
2014;	Gratton,	Laumann,	Gordon,	Adeyemo,	&	Petersen,	2016),	 the	
reconfiguration of the network architecture from the resting state 
to	 the	task	state	has	 received	 increasing	attention,	and	some	global	
network	measures,	such	as	efficiency	and	modularity,	rather	than	just	
the	metrics	constrained	in	the	Act	regions,	have	been	applied	to	pre-
dict	individual	performance	(Hearne	et	al.,	2016),	intelligence	(Schultz	
&	 Cole,	 2016),	 and	 even	 the	 aging	 process	 (Gallen	 et	al.,	 2016).	

Therefore,	the	current	study	bolsters	our	understanding	of	the	under-
lying	principles	of	how	Act	and	L-	Act	behave	and	interact	during	global	
network reconfigurations.

4.1 | Segregation of and integration between the 
Act and L- Act regions

Two types of findings can be drawn from the results: (1) With the 
exception	of	the	working	memory	(WM)	task,	the	other	six	tasks	con-
sistently	resulted	in	reduced	interactions	between	the	Act	and	L-	Act	
regions.	This	may	indicate	that	the	six	tasks	specifically	recruit	the	Act	
regions	while	the	L-	Act	regions	act	in	assistant	roles.	However,	WM	is	
a highly cognitively demanding task that recruits an enormous number 

F IGURE  7 Correlations between the changes in the efficiency indices between the two classes of regions and the changes in the global 
efficiency. The individual correlation strength R and significance level p-	value	are	presented	in	each	panel.	Panels	a	and	b	indicate	the	Act	and	
L-	Act	regions,	respectively
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of	 functional	 regions	 across	 the	 brain	 (Constantinidis	 &	 Klingberg,	
2016;	Eriksson,	Vogel,	Lansner,	Bergstrom,	&	Nyberg,	2015;	Ullman,	
Almeida,	 &	 Klingberg,	 2014).	 (2)	 Although	 all	 the	 L-	Act	 regions	 for	
the seven tasks consistently showed increasing trends in network ef-
ficiency when the brain transitioned from the resting state to a task 
state	 (Figure	6),	 they	 did	 not	 show	 unified	 relationships	 between	
the	global	efficiency	changes	and	the	Act-	L-	Act	 interaction	changes	
(Figure	5).	Specifically,	for	the	six	tasks	other	than	WM,	more	segrega-
tions	between	the	Act/L-	Act	regions	correlated	with	a	higher	global	
network	efficiency,	but	for	the	WM	task,	apparently	due	to	the	global	
recruiting	of	the	functional	regions,	fewer	segregations	correlated	with	
higher	global	network	efficiency	(Godwin,	Barry,	&	Marois,	2015).	This	
last	finding	may	be	due	to	an	increased,	long-	distance	functional	syn-
chrony	across	the	Act	and	L-	Act	regions	when	exposed	to	awareness-	
demanding	tasks	(Giessing,	Thiel,	Alexander-	Bloch,	Patel,	&	Bullmore,	

2013;	 Godwin	 et	al.,	 2015).	 Segregation	 and	 integration	 between	
functional regions are critical for enabling the brain to optimize its 
computational	resources	while	controlling	the	wiring	cost	(Bullmore	&	
Sporns,	2012;	Petersen	&	Sporns,	2015;	Sporns,	2013).

In	 this	 study,	when	we	computed	 the	efficiency	of	an	areal	net-
work,	for	example,	the	Act	or	the	L-	Act,	only	the	internal	connections	
were	 counted.	According	 to	graph	 theory,	 the	 increased	global	 effi-
ciency was not necessarily associated with increased areal efficiency. 
Therefore,	our	results	collectively	indicated	that	changes	in	the	inter-
actions	between	the	Act	and	L-	Act	regions	may	have	been	a	source	of	
the changes in the modular trend and then in the increased efficiency 
of	the	global	brain	network.	Being	able	to	discriminate	between	Act	
and	L-	Act	regions	 in	activation	detection	studies	does	not	necessar-
ily indicate that there is no strong functional connectivity between 
them since the strategies of identifying activations and connections 

F IGURE  7 Continued
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characterize	 different	 facets	 of	 the	 brain	 functioning	 (Bassett	 et	al.,	
2015;	Siebenhuhner,	Weiss,	Coppola,	Weinberger,	&	Bassett,	2013).

4.2 | The Act and L- Act regions reconfigured 
comparably to enable the global network changes

Judging	from	our	study,	the	brain	changes	globally	for	a	single	task,	
which	is	the	main	reason	why	graph	theory,	which	emphasizes	that	
different functional regions serve in different roles to direct the en-
gagement	of	the	others	(Bressler	&	Menon,	2010),	have	been	bor-
rowed	to	address	the	way	in	which	the	brain	works	(Sporns,	2011).	
Joint efforts between functional regions are universally found in the 
brain,	especially	when	it	is	exposed	to	external	stimuli.	For	example,	

an	 interaction	pattern	was	 found	 in	an	excitatory-	inhibitory	coun-
terpart between the salience network (main actor) and the central 
executive	network	when	the	brain	processes	unexpected	events	in	
the	environment	(Palaniyappan,	Simmonite,	White,	Liddle,	&	Liddle,	
2013).	 In	 a	 whole	 brain	 network	 study	 that	 was	 similar	 to	 ours,	
Bassett et al. (2015) found that after visual- motor dual- task train-
ing,	 the	 nonvisual-	motor	 regions	 of	 the	 brain	 acted	 as	 a	 potential	
driver promoting the motor- visual integration needed to perform 
the	 acts.	 In	 the	 literature,	 the	 active	 regions	 are	 often	 regarded	
as	the	actor,	that	 is,	that	they	are	in	charge	of	executing	the	tasks	
(Eickhoff,	 Bzdok,	 Laird,	 Kurth,	 &	 Fox,	 2012;	 Wager,	 Lindquist,	 &	
Kaplan,	 2007).	 Meanwhile,	 as	 shown	 by	 our	 experimental	 results	
from	the	perspective	of	the	brain	network,	the	L-	Act	regions	made	

F IGURE  8 Comparisons	of	the	participant	coefficients	(the	central	one	for	the	resting	state)	and	the	flexibilities	(the	surrounding	ones	for	the	
seven	resting-	tasks	pairs)	for	the	subnetworks.	As	the	right-	bottom	panel	shows,	each	colored	bar	indicates	the	specific	subnetworks.	Except	
for	the	subcortical	network,	the	DMN,	FPN,	and	SN	networks	had	the	greatest	flexibility	(p	<	1.0	×	10−28 after FDR correction when comparing 
their	mean	flexibility	with	the	mean	flexibility	of	the	other	six	networks	across	the	453	subjects)
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comparable contributions and changed in ways that may possibly 
enable them to act as directors behind the scenes organizing the 
computational	 resources	 to	 facilitate	 the	 task	 execution.	A	 similar	
result	was	presented	by	Yamashita	and	colleagues	when	predicting	
the	learning	plateau	using	the	connectivity	between	the	Act	and	L-	
Act	 regions	 (2015).	Collectively,	 these	 results	are	well	 in	 line	with	
the	 “driver	 network”	 hypothesis	 proposed	 in	 Bassett	 et	al.’s	 work	
(2015).	Thus,	an	actor-	director	model	may	provide	a	new	dimension	
for	characterizing	the	collaborations	between	the	traditional	Act	and	
L-	Act	regions.

4.3 | A triple- network model dominating the 
flexibility during the state changes of the brain

The three subnetworks that we found to be the most important to 
our	study,	the	DMN,	the	FPN,	and	the	SN,	have	been	investigated	
extensively	 in	recent	years.	A	triple	network	comprising	these	has	
been proposed as a unifying model that globally regulates various 
brain	 functions	 (Menon,	 2011),	 including	 attention	 and	 inhibitory	
control,	execution	capability. This regulation process may be imple-
mented by integrating the different roles of these three networks 
(Chen	et	al.,	2013;	Sridharan,	Levitin,	&	Menon,	2008).	The	FPN	is	
responsible for coordinating load- specific cognitive resources (Cai 
et	al.,	2016),	for	example,	for	exerting	inhibitory	control	on	the	DMN	
activity	 when	 excited	 by	 an	 external	 stimulus	 (Chen	 et	al.,	 2013;	
Sherman	et	al.,	2014).	The	appropriate	assignment	of	that	regulation	
seems	to	be	performed	by	the	SN	(Cai	et	al.,	2016;	Sheffield	et	al.,	
2015). This triple- network configuration is strengthened during de-
velopmental	maturation	 (Sherman	et	al.,	2014;	Supekar	&	Menon,	
2012).	In	this	study,	we	quantitatively	supported	the	dominance	of	
the	flexibility	of	these	three	networks	when	they	were	engaged	in	
different	task	executions	(seven	tasks	in	total),	including	visual/au-
ditory/motor	 tasks,	memory	and	 retrieval,	 attention,	and	 rewards.	
Noteworthily,	these	three	subnetworks	are	not	constrained	to	cer-
tain	Act	or	L-	Act	regions.	Because	of	the	pivotal	roles	of	these	three	
networks,	 aberrant	 engagement	 and	 disengagement	 in	 them	 can	
cause	various	psychiatric	and	neurological	disorders	(Cole,	Repovs,	
&	Anticevic,	2014;	Menon,	2011),	including	schizophrenia	(Sheffield	
et	al.,	 2015),	 anxiety	 disorders	 (Sylvester	 et	al.,	 2012),	 obsessive-	
compulsive	 disorder	 (Stern,	 Fitzgerald,	Welsh,	 Abelson,	 &	 Taylor,	
2012),	borderline	personality	disorder	 (Doll	et	al.,	2013),	and	psy-
chopathy	(Philippi	et	al.,	2015).

5  | CONCLUSIONS

The activation region detected from functional MRI data is gener-
ally recognized as the main actor in performing a dedicated task. 
However,	what	 the	 L-	Act	 regions	 are	 doing	 at	 the	 same	 time	 re-
mains	largely	unknown.	This	study	quantitatively	demonstrated	that	
both	the	Act	and	the	L-	Act	regions	underwent	segregation	and	inte-
gration in ways that resulted in a reconfiguration of the global net-
work.	Furthermore,	both	types	of	regions	reorganized	comparably	

to support the modular changes in the global brain network. More 
importantly,	 we	 discovered	 that	 the	 default	 mode	 network,	 the	
frontoparietal	network,	and	the	salience	network	consistently	had	
the	greatest	 flexibility	compared	 to	other	subnetworks	across	 the	
seven	 different	 tasks.	 These	 findings	 quantitatively	 signify	 that	
executing	a	 task	 recruits	multiple,	 if	not	brain-	wide,	 subnetworks,	
rather than only activating task- specific regions. The clarification of 
the	relationship	between	the	Act	and	L-	Act	regions	and	their	roles	
in the global network reconfigurations may provide a new perspec-
tive	for	understanding	the	changes	in	the	brain	network	when	ex-
posed to cognitively demanding tasks and establishes the necessity 
of using network theory to investigate brain functions in imaging 
cognitive neuroscience.
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