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Abstract

Only circulating tumor cells (CTCs) that successfully evade immune surveillance upon entering the bloodstream
can lead to clonal expansion and metastasis. Cancer progression is accompanied by pathophysiological processes
such as platelet activation and thrombosis. Platelets secrete a variety of growth factors to stimulate cancer cell
proliferation, regulate tumor angiogenesis, and subsequently mediate surface changes in cancer cells to promote
invasion and progression. As part of a dangerous alliance, CTCs and platelets induce mutual activation. Activated
platelets aggregate and encapsulate tumor cells, forming microtumor thrombi containing fibrin clots that act as
protective barriers. These platelets interact with immune cells, including NK cells, macrophages, neutrophils, and

T cells, to facilitate cancer metastasis and progression through various mechanisms. The formation of a favorable
tumor microenvironment (TME) and pre-metastatic niche aids cancer cells in evading immune surveillance.
Multiple signaling pathways and immune checkpoints are also involved in this process. Given the significant role of
platelets in tumor immune evasion, anti-cancer strategies targeting platelets and their potential use as “bionic drug
delivery systems” for anti-tumor drugs hold broad prospects in emerging tumor therapies.
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Introduction

Platelets are non-nucleated cytoplasmic fragments
released by megakaryocytes in the bone marrow, primar-
ily responsible for maintaining hemostasis and vascular
integrity. Upon disruption of endothelial continuity or
exposure to the subendothelial matrix, as well as during
inflammation-induced endothelial damage, platelet acti-
vation is triggered. This activation results in the adhesion
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of platelets and the release of multiple bioactive factors,
leading to firm attachment to the injured vessel wall and
the formation of platelet aggregates to seal the wound
[1]. Additionally, activated platelets play a role in wound
healing and tumor cell metastasis. Thrombocytosis and
hypercoagulability observed in cancer patients are asso-
ciated with an increased risk of thromboembolic events
and poor prognosis, thereby elevating the risk of metas-
tasis [2].

Platelets modulate the tumor microenvironment
(TME) by interacting with tumor epithelial cells, endo-
thelial cells, pericytes, fibroblasts, immune cells, and
other components. This complex interplay influences var-
ious stages of tumorigenesis through angiogenesis induc-
tion, promotion of sustained and uncontrolled clonal
proliferation, stimulation of invasion and metastasis,
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assistance in evading immune checkpoint regulation and
prevention of cell death [3].Furthermore, platelets may
possess the capability to initiate TME formation in the
presence of premetastatic niche, thereby acting as a “fer-
tilizer” for cancer cell metastasis within the framework of
the “seed and soil” hypothesis [4].

Although circulating tumor cells (CTCs) simultane-
ously encounter red blood cells, leukocytes, and platelets
in the bloodstream, platelets—despite being anucleate
cytoplasmic fragments—are uniquely positioned to rap-
idly adhere to CTCs via glycoprotein receptors (e.g.,
P-selectin, GPIIb/IIIa), thereby initiating microthrombus
formation and immune evasion [5]. Research has demon-
strated that platelets play a pivotal role in each stage of
the metastatic cascade, including facilitating the growth
and proliferation of primary tumor cells, local invasion,
intravasation into lymphatic or blood vessels, survival
during circulation, immune evasion, extravasation to
invade distal organ parenchyma, and colonization of dis-
tant organs, ultimately leading to clinically significant
metastases [6]. Circulating tumor microemboli (CTMs),
composed of non-discrete phenotypic populations
such as mesenchymal CTCs and homologous or het-
erotypic clusters, exhibit enhanced metastatic potential
and survival advantages compared to individual CTCs.
Platelet-rich CTMs, in particular, demonstrate superior
metastatic capabilities [7].

Activated platelets modulate the levels of growth fac-
tors, chemokines, proteolytic enzymes, and micropar-
ticles in the TME through the secretion of various
bioactive molecules, thereby facilitating the proliferation
and invasion of CTCs. Additionally, platelets promote
tumor-induced angiogenesis by releasing of vascular
endothelial growth factor (VEGEF), supporting the for-
mation of new blood vessels that nourish tumors and
enable further extravasation [8]. By secreting transform-
ing growth factor-p1 (TGF-P1), platelet-derived growth
factor (PDGF), epidermal growth factor (EGF), and
basic fibroblast growth factor (bFGF), platelets induce
epithelial-mesenchymal transition (EMT) in tumor cells,
enhancing their aggressiveness and stemness. This pro-
cess facilitates the binding of CTCs to endothelial cells
and transendothelial migration, which is essential for
tumor extravasation, dissemination, and colonization.
Moreover, platelet-derived microparticles (PMPs), which
contain bioactive components and nucleic acids from the
platelet cytoplasm, are shed from the plasma membrane
and contribute significantly to cancer progression [9].

Platelet activation, aggregation, and adsorption

Platelet activation and adhesion at the site of intimal
injury involve intricate interactions between platelets
and the subendothelial matrix, which is rich in adhe-
sion ligands and membrane receptors. Specifically, the
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glycoprotein complex GPIb-IX-V facilitates initial plate-
let rolling and adhesion to von Willebrand factor (VWF)
at the site of endothelial injury, which subsequently pro-
motes more robust binding via the platelet GPIIb/IIla
receptors. Additionally, platelet GPVI and a2f1 receptors
directly bind to collagen, further stimulating platelet acti-
vation and aggregation [10].

Platelets within the TME can interact with CTCs that
enter the bloodstream. Physical adhesion, primarily
mediated by the pairing of adhesion molecules with their
specific receptors, is a prerequisite for this interaction
(Figure 1). During this process, platelets exhibit both sys-
temic and localized responses to cancer. They continu-
ously absorb and enrich tumor-associated free proteins,
nucleic acids, vesicles, and particles, thereby forming a
significant component of what is known as the “tumor
circulating complex” This leads to altered RNA and pro-
teome expression profiles in platelets, resulting in unique
tumor-promoting phenotypes. These circulating plate-
lets, termed tumor-educated platelets (TEPs) Figure 2 ,
represent a subset of highly activated platelets that can
serve as liquid biopsy markers to assist in cancer diagno-
sis and prognosis [11-15]. In addition to direct platelet-
tumor interactions within the TME, tumors systemically
alter megakaryocytes in the bone marrow, spleen, and
lungs, leading to the production of pre-educated plate-
lets. This process is particularly significant given the lim-
ited lifespan of platelets (7-10 days in humans and 3-5
days in mice), suggesting that sustained TEP generation
primarily stems from tumor-induced megakaryocyte
reprogramming rather than transient education within
the TME. Studies have shown that tumors increase
megakaryocyte numbers and modify their transcriptional
profiles via cytokines or extracellular vesicles, resulting
in platelets that inherently carry tumor-specific biomol-
ecules and splice variants (Fig. 2) [14, 16]. These findings
underscore the systemic nature of platelet education,
where tumor-derived signals reshape hematopoiesis to
favor the release of TEPs, which subsequently contribute
to metastasis and immune evasion.

Subsequently, CTCs induce platelet activation via
multiple mechanisms, and their metastatic potential is
contingent upon this platelet activation. For instance,
the overexpression of the CD97 receptor on the surface
of tumor cells can trigger platelet activation. Addition-
ally, soluble mediators such as matrix metalloprotein-
ases (MMPs), thromboxane A2 (TXA2), tissue factor
(TF), P2Y receptors, thrombin, and adenosine diphos-
phate (ADP) are released into the extracellular space,
further amplifying platelet activation and enhancing
adhesion and aggregation. This phenomenon, known as
Tumor Cell-Induced Platelet Aggregation (TCIPA), facili-
tates the survival of CTCs in circulation [18, 19]. Nota-
bly, MMP-2/9 plays a crucial role in this process, while
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Fig. 1 Interactions between platelets and tumor cells can lead to platelet activation and aggregation, thereby promoting the formation of TEPs (right
panel). Concurrently, these interactions facilitate tumor progression through the release of multiple platelet-derived microparticles and their associated
contents (left panel). The cross-talk between platelets and circulating tumor cells (CTCs) is primarily mediated by several receptor-ligand pairs, including
GPlIb/llla (integrin allbB3) - aVP3, P-selectin - PCLP1 (podoplanin-like protein 1)/PSGL-1 (p-selectin glycoprotein ligand 1)/mucin/CD44, glycoprotein VI
(GPVI) - galectin-3, C-type lectin-like receptor 2 (CLEC-2) - podoplanin (PDPN), GPIba - vVWF, and ADAMO - integrin a6B1. Reprinted from [17]

platelet components such as thrombospondin-1 (TSP1)
and clusterin enhance MMP-9 expression through the
p38 mitogen-activated protein kinase (p38MAPK) path-
way, creating a positive feedback loop that increases can-
cer cell aggressiveness. Furthermore, CTCs can directly
or indirectly induce platelet aggregation, for example by
secreting interleukin-6 (IL-6), which leads to the release
of thrombopoietin (TPO). ADAMTS13, a protease
responsible for cleaving and inactivating vWF, also plays
a role in platelet activation. High mobility group box 1
(HMGBI, a highly conserved nuclear protein, promotes
TCIPA by binding to toll-like receptor 4 (TLR4) on plate-
lets, thereby activating the ERK5-GPIIb/IIIa pathway [20,
21].

TEPs release a variety of secretory vesicles containing
bioactive molecules, including lysosomes, alpha gran-
ules, and dense granules. These vesicles enhance platelet
activation and aggregation, promoting tumor prolifera-
tion and metastasis. Activation of the G-protein-medi-
ated signaling pathway results in enhanced secretion of
storage particles, which function as a positive feedback
mechanism to amplify the initial signal. This process
rapidly activates platelets and recruits them into the
expanding thrombus. The expression of genes associated

with platelet activation, such as the integrin subunit a2b
(ITGA2b) gene encoding the platelet protein CD41, is
essential for effective platelet aggregation [22]. These
events enable TEPs to cross-link via adhesion molecules
like GPIIb/IIIa and bind to soluble fibrinogen, forming
fibrin clots that facilitate the entanglement of tumor cells
within platelet and fibrin networks inside the vasculature,
thereby reducing exposure of CTCs surfaces. Addition-
ally, TEPs can provide a protective barrier for CTCs by
attaching to them through receptor-ligand interactions,
as illustrated in Fig. 1. By binding to CD36 and CD47
receptors on tumor cells, TEPs mediate the formation
of CTMs, allowing CTCs to adhere closely to the vas-
cular wall and avoid rapid clearance from circulation or
mechanical destruction due to high hemodynamic shear
forces [23].

Significant progress has been made in understanding
the role of platelets in tumor immune evasion. How-
ever, current research predominantly focuses on local
platelet-tumor interactions, with insufficient attention to
systemic regulatory mechanisms such as bone marrow
megakaryocyte reprogramming. Furthermore, the clini-
cal application of antiplatelet therapies remains contro-
versial due to spatiotemporal heterogeneity in efficacy
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Fig. 2 Mechanisms of platelet education within the tumor microenvironment

and potential pro-metastatic risks. This review system-
atically integrates preclinical and clinical evidence to
advance three key aspects of current knowledge: (1) We
elucidate the continuum of tumor-induced remote mega-
karyocyte education via extracellular vesicles/cytokines
that generate TEPs, providing new insights into sustained
platelet activation; (2) We present a balanced analysis of
antiplatelet strategies’ dual effects—short-term metas-
tasis suppression versus potential long-term vascular
compromise—highlighting the need for personalized
therapeutic approaches; (3) We explore the potential of
platelet-inspired delivery systems (e.g., metabolic-mod-
ulating liposomes) to overcome limitations of conven-
tional therapies. While these findings do not resolve all
existing controversies, they establish a more comprehen-
sive framework for understanding the platelet-tumor-
immune triad and identify critical translational priorities,
including dynamic TEP monitoring and optimized tar-
geted delivery systems.

The interaction between platelets and immune
cells facilitates the immune evasion of tumor cells
A summary of platelet-mediated immune cell modula-
tion is provided in Table 1, highlighting key molecular
mechanisms and functional outcomes.

NK cell
The aggregation of platelets around CTCs serves as a
physical barrier, specifically providing steric hindrance
that protects CTCs from immune-mediated clearance
by natural killer (NK) cells and T lymphocytes. GPIba on
the surface of platelets interacts with Mac-1 expressed by
NK cells, potentially modulating the cytolytic activity of
these cytotoxic lymphocytes [24]. Moreover, the immune
recognition by NK cells adheres to the principles of
“missing self” and “induced self”: cells deficient in major
histocompatibility complex class I (MHC-I) expression or
expressing stress-induced ligands that activate NK recep-
tors are preferentially targeted for elimination. Although
CTCs often exhibit reduced MHC-I expression, they can
extend pseudopods around platelets and undergo mem-
brane fusion, facilitating the transfer of platelet-derived
MHC-I-containing vesicles to the tumor cell surface.
Consequently, CTCs may acquire a “pseudo-normal”
phenotype, thereby evading immune surveillance [25].
On the other hand, platelets can inhibit immune rec-
ognition of CTCs by NK cells through multiple mecha-
nisms, thereby evading immune clearance and enhancing
CTC survival. Specifically, PDGF directly suppresses NK
cell effector functions, reducing their cytotoxic activity
and interaction with target cells. TGF-B1 inhibits NK cell
activation by suppressing mTOR activity and downregu-
lating the expression of the C-type lectin-like NKG2D
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Table 1 Mechanisms of platelet-immune cell interactions in tumor immune evasion
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Immune Cell Interaction Mechanisms Key Molecules /Pathways Functional Ref
Consequences
NK Cells 1. Platelet aggregates form physical barriers shielding CTCs TGF-B1, PDGF, ADAM10/17, Inhibits NK cell activation
from NK contact. NKG2D, GITRL, PD-L1 and cytotoxicity, promot-  [24—
2. Transfer of platelet MHC-I to CTCs masks “missing self” ing CTC survival and 29]
signals. metastasis.
3. Secretion of TGF-B1 and PDGF suppresses NK cytotoxicity.
Neutrophils 1. Induces neutrophil extracellular trap (NET) formation. TLR4-ERKS5, CXCL4, PAF-PAFR, Enhances pro-inflamma-
2. Polarizes N1 (anti-tumor) to N2 (pro-tumor) phenotypes. G-CSF, vWF tory microenvironment, [30-
3. Platelet-neutrophil aggregates (PNAs) protect CTCs from vascular permeability, and  35]
shear stress. CTC adhesion.
Macrophages 1. Recruits macrophages to tumor sites. PAF, IL-6/STAT3, CD47-SIRPq, Promotes immunosup-
2. TEP-derived miRNAs (e.g., miR-183) drive M2 polarization. TGF-31 pression, EMT, and [36—
3. CD47-SIRPa axis blocks phagocytosis. angiogenesis. 40]
Dendritic Cells 1. Inhibits DC maturation and antigen presentation. VEGF, TGF-31, PF4, 5-HT Impairs T cell priming
2. Downregulates co-stimulatory molecules (CD80/CD86). and induces immune [41-
3. Upregulates PD-L1 expression. tolerance. 44]
MDSCs 1. Recruits MDSCs via CXCL4/CXCL?7. TGF-B/Smad, CXCL4, PDGF-BB/  Suppresses T/NK cell func-
2.TGF-B1 expands and activates MDSCs. CXCR4 tion and drives fibrotic/ [45-
3. PDGF-BB induces CAF-derived CXCL12 to recruit MDSCs. immune checkpoint 49]
resistance.
T Lymphocytes 1. GARP/TGF- axis inhibits CTLs and expands Tregs. GARP-TGF-B, PD-1/PD-LT, Attenuates anti-tumor
2. PF4 suppresses IL-2 production. PF4-CXCR3 immunity and fosters im-  [50—
3. Platelet-derived PD-L1 directly inhibits T cell proliferation. munosuppressive niche.  56]
B Lymphocytes 1. Modulates humoral immunity via CD40L. CD40-CD40L, IL-10, IL-35 May contribute to immu-
2. Potential involvement in Breg-mediated IL-10/TGF-3 secre- nosuppression (mecha- (571-
tion (requires validation). nistically unclear). [58]

receptor, a critical immune checkpoint protein for NK
cell anti-tumor activity. Furthermore, TGF-f1 also inhib-
its the release of anti-tumor cytokines, such as inter-
feron gamma (IFN-y), through the canonical Smad2/3
pathway-dependent inhibition of the “master regula-
tor” transcription factor T-bet. Additionally, to a lesser
extent, the expression levels of NKp30, NKp44, NKp46,
and NKp80 are downregulated [26, 27]. The secretion of
the enzyme ADAM10/17 triggers the downregulation of
NKG2D and the shedding of its ligands, including MICA
and MICB. Platelets directly reduce the expression of
CD226 and CD96 on the surface of NK cells and transfer
inhibitory ligands such as glucocorticoid-induced TNF
receptor ligand (GITRL), receptor activator of nuclear
factor kappa-B(NF-kB) ligand (RANKL), programmed
death-ligand 1 (PD-L1), PCLP1, and CD96 to the surface
of CTCs [28, 29]. The microparticles (MPs) released by
TEPs constitute approximately 90% of circulating MPs,
and the encapsulated miR-183 may suppress the cytolytic
activity of NK cells by silencing their activation receptor
DAP12 [30].

Neutrophils

Inflammation is a complex physiological process that
plays a pivotal role in various pathological conditions,
including chronic inflammation within the TME, which
is a hallmark of malignant tumors. Tumor-associated
neutrophils (TANs) are regulated by TEPs to modulate

the inflammatory microenvironment of tumors. This
regulation is achieved through enhanced phagocyto-
sis, degranulation, release of cell-free DNA fragments,
and improved antigen presentation [31]. Platelets play
a crucial role in modulating the differentiation of TANs
into distinct phenotypes. Specifically, the N1 phenotype
enhances anti-tumor responses through direct cytotoxic
effects on tumor cells and by stimulating T cell-medi-
ated immunity. Conversely, the N2 phenotype facili-
tates tumor progression by suppressing T cell activity
and upregulating angiogenic factors such as VEGF and
MMP-9 [32].

Platelets engage in complex interactions with neu-
trophils via multiple intermediates, such as platelet
P-selectin and neutrophil PSGL-1. TGF-B1 facilitates
the recruitment of additional neutrophils to the tumor
site, leading to the formation of platelet-neutrophil
aggregates (PNAs) that shield CTCs from cyclic shear
stress [33]. Moreover, TEPs can directly induce neu-
trophil extracellular trap (NET) formation through the
TLR4-ERKS5 signaling pathway. The interaction between
platelet GPIb and neutrophil CD18, along with tumor-
derived granulocyte colony-stimulating factor (G-CSF),
vWE, and CXCL4(a CXC chemokine ligand), also plays a
crucial role in this process. NETs promote angiogenesis
and facilitate CTC capture and adhesion to the vascu-
lar endothelium, thereby contributing to inflammation,
tissue damage, thrombosis, and tumor metastasis [34].
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Platelet-activating factor (PAF) can additionally recruit
neutrophils to the tumor site and direct their differen-
tiation into the N2 phenotype via PAF-PAF receptor
(PAFR) signaling. This pathway facilitates the upregula-
tion of immunosuppressive factors such as arginase 1
(Argl) and death receptor 5 (DR5, also known as TRAIL-
R1), and inhibits apoptosis induced by tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) [35].
Moreover, platelets independently regulate neutrophil
expansion by circulating pre-cancerous serum amyloid A
(SAA) protein [36].

Macrophages

In the TME, platelets interact with CTCs and facilitate
the accumulation of macrophages, including tumor-
associated macrophages (TAMs), through chemokines
such as macrophage migration inhibitory factor (MIF),
CCL2, and CXCL12. TAMs can be broadly categorized
into two phenotypes: M1-type macrophages, which are
classically activated and facilitate anti-tumor immune
responses, and M2-type macrophages, which are alterna-
tively activated. Unlike M1-type macrophages, M2-type
macrophages exhibit diminished antigen-presenting
capacity and secrete chemokines and MMPs. Conse-
quently, M2-type macrophages primarily exert immu-
nosuppressive effects and contribute to cancer cell
metastasis [37].

As significant contributors to the release of miRNAs
in blood, TEPs upregulate the expression levels of A2M,
MYLK, and TGFB3 in M2 macrophages, thereby promot-
ing their polarization and supporting tumor progression.
PAF binds to PAFR on macrophages, inducing M2-like
characteristics and activating the IL-6/STAT3 axis to
facilitate EMT in tumor cells [38, 39]. The M2 phenotype
may also be associated with TEPs binding to PSGL-1 on
TAM:s via P-selectin, which upregulates the transcription
of complement C5 through activation of the JNK/STAT1
pathway. This subsequently leads to the release of C5a
and STAT4, inhibiting CD8 + T cell activity and promot-
ing tumor immune escape. The lactic acid level is asso-
ciated with this process [40]. Additionally, CD47 blocks
phagocytosis by binding to signal regulatory protein
alpha (SIRPa) on macrophages, while the recruitment of
regulatory T cells (Tregs) further inhibits the activation
of CD47-targeted therapies aimed at enhancing tumor-
specific T cell immunity [41].

Dendritic cells

Dendritic cells (DCs), as the primary antigen-presenting
cells (APCs), play a crucial role in regulating the activa-
tion of antigen-specific T lymphocytes and serve as a
bridge between the innate and adaptive immune systems.
However, the functionality of DCs varies depending on
the stage of tumor development. In advanced stages,
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infiltrating DCs can acquire an immunosuppressive phe-
notype, contributing to tumor immune tolerance and
progression. For example, the differentiation of immature
DCs into tolerogenic phenotypes promotes immune eva-
sion. Additionally, specific subsets of DCs, such as plas-
macytoid dendritic cells (pDCs) that secrete IFNy, can
induce immunosuppression by activating regulatory T
cells (Tregs) through the expression of inducible costim-
ulator (ICOS) ligands [42, 43].

In this context, the mechanism by which platelets
inhibit the function of DCs merits further exploration.
TEPs release a variety of factors, such as VEGF, which
diminishes the antigen-presenting capacity of DCs and
thereby impairs their immune surveillance function.
TGEF-B1 directly inhibits the activation and maturation
of NK cells and DCs. Both 5-hydroxytryptamine (5-HT)
and TGF-B1 can suppress the upregulation of key T-cell
co-stimulatory molecules on the surface of DCs, increase
interleukin-10 (IL-10) levels, and consequently reduce
the ability of DCs to stimulate T cells, thus inhibiting
cellular immunity. Platelet factor 4 (PF4) enhances the
reactivity of DCs to TLR ligands [44]. Moreover, soluble
mediators released by TEPs decrease the T cell activa-
tion capability of DCs. Platelet concentrates also inhibit
the production of IL-6, IL-8, IL-12, tumor necrosis fac-
tor (TNF), TGE-pB, and prostaglandin E2 (PGE2) in DCs,
while enhancing the expression of PD-L1 on DCs [45].

Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) constitute a
heterogeneous population of immature bone marrow-
derived cells that are induced by soluble factors derived
from tumors, such as granulocyte-macrophage colony-
stimulating factor (GM-CSF) and macrophage colony-
stimulating factor (M-CSF), during cancer progression.
These cells are characterized by their diverse composi-
tion of granulocytes and/or monocytes, originating from
a mixture of DCs, macrophages, and granulocyte precur-
sors. As key immunosuppressive cells within the TME,
MDSCs induce significant systemic and local immuno-
suppression, maintain the quiescence of cancer stem
cells, and promote cancer invasion and metastasis [46].
MDSCs exhibit a close relationship with platelets. Firstly,
PSGL-1 on the surface of MDSCs binds to P-selectin on
platelets, activating platelet recruitment via the PSGL-
1/P-selectin pathway. Secondly, platelets can enhance
the formation and recruitment of MDSCs, augment their
immunosuppressive activity, and facilitate the immune
escape of CTCs [47].

TEPs directly induce the production of MDSCs via
CXCL4, which in turn negatively regulates the function
of CD8+T cells. Additionally, TEPs recruit pre-tumori-
genic immune cells, including neutrophils and MDSCs,
to the premetastatic niche by releasing inflammatory
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chemokines such as CXCL5 and CXCL7. MDSCs pro-
mote tumor cell proliferation by delivering energy-rich
lipid vesicles, inhibite the activation and proliferation
of T cells and NK cells through upregulation of Arg-1,
inducible nitric oxide synthase (iNOS), and reactive oxy-
gen species (ROS), interfere with the antigen-presenting
capacity of B cells, and stimulate the expansion of Treg
cells, thereby driving sustained immunosuppression
[48, 49]. Studies based on ITP have shown that TGF-1
derived from TEPS induces the amplification and func-
tional reprogramming of MDSCs via the TGF-B/Smad
signaling pathway. Moreover, PDGF stimulation mark-
edly enhances the proliferation of cancer-associated
fibroblasts (CAFs) and upregulates CXCL expression,
contributing to the recruitment of polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSCs) and
leads to significant tumor fibrosis. This results in reduced
lymphocyte infiltration and resistance to PD-1 antibody
therapy [50].

T lymphocyte

In platelet-T lymphocyte aggregation, platelets modulate
T cell immune responses through direct cell-cell interac-
tions or soluble mediators, exhibiting complex and often
opposing regulatory effects across various disease states.
Notably, the mechanism of platelet-mediated immune
evasion has emerged as a focal point in the development
of novel immunotherapies [51]. For instance, activated
platelets markedly diminish the antitumor efficacy of T
cell-based immunotherapies, such as bispecific antibod-
ies (bsAbs)-mediated T cell recruitment, via a TGF-p-
dependent pathway. This to impaired reactivity of both
CD4 +and CD8 + T cells [52].

Glycoprotein A repeat dominance (GARP) protein is
prominently expressed on the surface of platelets and
plays a crucial role in the secretion, maturation, and
activation of TGF-B. This leads to the formation of the
GARP/TGE-f axis, which is essential for sustaining pri-
mary tumor growth and facilitating distant metastasis.
TGF-B1 directly inhibits the activation, proliferation,
effector differentiation, and cytotoxicity of cytotoxic
T lymphocytes (CTLs), while simultaneously promot-
ing the production of Tregs, thereby reducing tumor
immune sensitivity. Additionally, TGF-B1 can indirectly
weaken CTLs by inducing the expression of the key tran-
scription factor forkhead box P3 (FoxP3), conferring a
regulatory and immunosuppressive phenotype on Tregs.
Furthermore, thrombin is involved in the cleavage of
GARP from platelets and the subsequent release of active
TGE-B, further supporting cancer immune escape [53,
54]. Simultaneously, this intricate process releases par-
ticles containing a variety of signaling molecules, includ-
ing PF4 (CXCL4), serotonin, and proteases, which induce
NK cells and T cells to become non-reactive. Notably,
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PF4 inhibits the release of IL-2, with its levels inversely
correlated with the proliferation and cytotoxic capacity of
CD4 +and CD8+ T lymphocytes. This phenomenon may
be attributed to PF4 inducing the expression of immuno-
modulatory molecules on lymphocytes or directly inter-
acting with T lymphocytes and their receptors via CXC
chemokine receptor 3 (CXCR3) [55].

The heat shock protein Gp96 plays a crucial role in
mediating DCs antigen presentation and proinflamma-
tory cytokine secretion. However, when platelet-specific
binding to Gp96 occurs, this process is inhibited, thereby
affecting antigen presentation and subsequent T lympho-
cyte activation. Furthermore, platelets can directly bind
to CD3e on CTLs via the platelet protein TLT-1, leading
to the inhibition of T cell proliferation and cytotoxicity
[56, 57]. Additionally, CTCs facilitate a certain degree of
downregulation of MHC-I, which reduces the presenta-
tion of tumor antigens to T cells through MHC molecules
without adequately inducing an NK cell response [17].

B lymphocyte

Platelet regulation of B cell-mediated humoral immunity,
particularly in the context of immune escape, remains
underexplored. PMPs, which are a rich source of CD40
ligand (CD40L), modulate B cell humoral immunity via
CD40-CD40L axis signaling. This interaction synergizes
with CD4+T cells to stimulate the production of anti-
gen-specific IgG and influences the formation of germi-
nal centers [58]. Conversely, immunoglobulin deposition
triggers Fc receptor and complement-mediated chronic
inflammation, fostering an environment conducive to
cancer development. Regulatory B cells (Bregs) inhibit
the anti-tumor response of T cells by producing cyto-
kines such as IL-10, IL-35, and TGEp. The role of plate-
lets in these processes warrants further investigation [59].

Immune-associated signaling pathways

Platelets are recognized as a significant source of bioac-
tive molecules that modulate multiple signaling pathways
in various cell types. The equilibrium between immune
defense and self-tolerance is delicately regulated by
pairs of immune checkpoint molecules. For instance,
platelet endothelial cell adhesion molecule 1 (PECAM-
1), functioning as an immune checkpoint molecule,
negatively regulates the cytotoxicity of monocytes and
macrophages. Additionally, PECAM-1 promotes atypi-
cal TGF-P signaling in T cells, which is independent of
Smad, thereby inhibiting T cell immune function [60].
PECAM-1 interacts with Pyk2, serving as a crucial medi-
ator for anchor-independent growth and anoikis resis-
tance in tumor cells [61]. CTCs acquire platelet-derived
regulator of G protein signaling 18 (RGS18), which
upregulates human leukocyte antigen E (HLA-E) expres-
sion through the AKT-GSK3pB-CREB signaling pathway
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Fig. 3 A.Tumor cells facilitate immune evasion through interactions with CD94-NKG2A on NK cells. Upon upregulation of RGS18, AKT phosphorylation is
attenuated, leading to the stabilization of GSK3 by inhibiting serine residue 9 phosphorylation. Subsequently, GSK3(3 enhances CREB1 activity via phos-
phorylation at serine residue 133. Activated CREB1 exhibits predominantly nuclear subcellular localization and forms a transcriptional positive regulatory
complex with RFX and NFY within the nucleus. This complex binds to the HLA-E promoter, which contains intact SXY modules and partial enhancer A
and ISRE sites. Consequently, overexpression of RGS18 results in increased HLA-E levels in three PDAC cell lines. B. Platelets mediate tumor cell resistance

to apoptosis through various mechanisms

(Fig. 3A). Elevated HLA-E interacts with CD94-NKG2A
on NK cells, forming an immune checkpoint pair that
activates intracellular phosphatase SHP-1 to inhibit NK
cells cytotoxicity and CTC-mediated immune surveil-
lance [62].

Different degrees of platelet activation may underlie
the varying levels of PD-L1 expression on platelet sur-
faces. As a ligand for programmed cell death protein-1
(PD-1), PD-L1 plays a crucial role in negatively regulating
immune cell function within the TME, directly contribut-
ing to host immunosuppression or immune evasion, and
potentially influencing the efficacy of immune checkpoint
therapies [63]. Research on non-small cell lung cancer
(NSCLC) has demonstrated that platelet-derived PD-L1
not only reflects overall PD-L1 expression in tumors
but also predicts the therapeutic response to immune
checkpoint inhibitors (ICIs). Furthermore, it enhances
the therapeutic effect of ICIs by modulating the growth
of PD-L1-negative tumors. Platelet-derived PD-L1 can
directly interact with T cells, inhibiting their activa-
tion and proliferation, thereby suppressing the cytotox-
icity of CD4+and CD8+T cells, making it a valuable
prognostic and predictive biomarker for cancer patients

[64, 65]. Additionally, platelet activation promotes the
proliferation of Tregs and is positively correlated with
PD-1/PD-L1 signaling. Moreover, platelet-derived EGF
can induce PD-L1 expression in tumor cells via the
p-ERK1/2/p-c-Jun pathway in an EGF/EGFR-dependent
manner [66].

TEPs secrete adenosine triphosphate (ATP), which
directly interacts with the endothelial purinergic recep-
tor P2Y2 (P2RY?2). This interaction promotes endothelial
barrier opening, thereby altering vascular permeabil-
ity and facilitating CTC extravasation, thus establishing
a foundation for CTCs to interact with platelets. In this
dynamic process, the RhoA-myosin phosphatase tar-
geting subunit 1 (MYPT1)-protein phosphatase 1 (PP1)
pathway mediates the dephosphorylation of Yes-associ-
ated protein 1 (YAP1), thereby stimulating cell prolifera-
tion and migration and promoting nuclear translocation
(Fig. 3B). Consequently, platelets decrease the suscepti-
bility of tumor cells to anoikis, aiding in immune evasion,
while upregulating the expression of pro-survival genes,
which facilitates invasion and metastasis [67, 68]. Fur-
thermore, TEPs secrete autotaxin, an enzyme with lyso-
phospholipase D catalytic activity. This enzyme binds to
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the integrin avp3 on CTCs and catalyzes the conversion
of lysophosphatidylcholine (LPC) to lysophosphatidic
acid (LPA). Subsequently, LPA binds to the LPA recep-
tor 1 (LPAR-1) on tumor cells in an autocrine manner,
thereby activating anoikis resistance in CTCs through the
RhoA-Gal12/13-YAP1 pathway [69, 70].

As a chemoattractant, PDGF has been demonstrated
to induce anoikis through its binding to the PDGF recep-
tor a (PDGFR-a). The underlying mechanism remains
to be fully elucidated but may involve the activation of
the RhoA/PP1 cascade leading to YAP1 activation or
Src-family kinase-dependent tyrosine phosphorylation,
which regulates YAP transcriptional activity [71]. Nota-
bly, PDGE-BB has been shown to inhibit anoikis and
upregulate the expression of the oncogene MYC via the
Hippo/YAP signaling pathway, thereby promoting tumor
progression [72]. Additionally, PDGF can confer apop-
tosis resistance in CAFs by activating the Ras/PI3K/Akt
pathway, which subsequently inhibits T cell responses.
In glioblastoma, PDGFR-a modulates cytoskeletal reor-
ganization, upregulates extracellular signal-regulated
kinases (ERK1/2), PI3K, and Rho-associated coiled-coil
containing protein kinase (ROCK) pathways, and facili-
tates anchorage-independent growth of CTCs [73]. Over-
expression of multiple EGF-like domain 11 (MEGF11)
has been implicated in conferring anti-anoikis properties.
TSP1 exerts immunosuppressive effects by modulating
innate and adaptive immune cells through CD47-depen-
dent mechanisms, promotes anoikis resistance via
interaction with the calreticulin-LRP1 complex, and
stimulates PI3K-dependent Akt activation while down-
regulating apoptotic signaling pathways [74].

Additional mechanisms of immune evasion

Studies on hepatocellular carcinoma have demonstrated
that PDGF serves as a critical link between TGF-f sig-
naling and nuclear beta-catenin accumulation during
EMT. This process endows a subpopulation of tumor
cells with characteristics of cancer stem cells, thereby
promoting tumor progression [75]. Platelets, acting as
significant sources of TGF-B1, activate the TGF-3/Smad
and NF-xB signaling pathways in CTCs, accelerating
EMT and consequently increasing PD-L1 expression.
PDGEF-D can induce EMT via the mTOR, Notch, NF-kB,
CXCL4, and Bcl-2 signaling pathways [76]. EMT-induced
immune escape is a critical mechanism of immune resis-
tance, mediated through multiple pathways. For instance,
the mesenchymal characteristics of tumor cells lead to
the downregulation of NK cell surface activation recep-
tors or restrict the expression of NKG2D ligands such
as ULBP1/6 on CTCs [77, 78]. The inhibitory check-
point CD155 on the surface of CTCs is transcription-
ally regulated by the FAK/JNK/c-Jun signaling cascade
in a platelet-contact-dependent manner. Specifically, the
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interaction between CD155 and its receptor TIGIT on
NK cells inhibits NK cell cytotoxicity, thereby evading
innate immune surveillance mediated by this pathway
[79].

The overexpression of the tryptophan catabolic enzyme
indoleamine 2,3-dioxygenase (IDO) in tumor cells
results in the suppression of effector T cell and NK cell
responses, while promoting the differentiation of Tregs
and the generation of MDSCs. These processes play a
critical role in facilitating tumor immune escape [80,
81]. Additionally, human leukocyte antigen G (HLA-G),
a non-classical MHC class I molecule with immuno-
suppressive properties, expressed by CTCs, can bind to
various inhibitory receptors on immune cells, such as
immunoglobulin-like transcript 2 (ILT2), thereby mediat-
ing potent inhibition [82]. Similarly, CTCs utilize abnor-
mally expressed mucins and associated glycans, including
sialic acid Tn (sTn) antigens, to interact with inhibitory
receptors on DCs, TAMs, and NK cells, leading to com-
prehensive immunosuppression through receptor mask-
ing or inhibition of cytolytic activity. For instance, MUC1
binds to siglec on DCs, shielding TLRs and inducing an
immature DC phenotype. The remodeling of the glyco-
calyx by mucins in cancer cells is directly linked to the
immunosuppressive TME, potentially triggering MDSC
recruitment and activation, as well as the induction of
NK and T cell inhibition via the TLR2/MyD88/IL-6/
JAK1/2 signaling axis [83, 84].

Recent studies have demonstrated that the overex-
pression of podoplanin (PDPN) on platelets is positively
correlated with the expression of immune checkpoint
molecules such as PD-L1, T-cell immunoglobulin and
mucin-domain containing-3 (TIM-3), and lymphocyte
activation gene 3 (LAG-3) in invasive bladder cancer and
NSCLC. This overexpression can inhibit the proliferation
and survival of IL-7-mediated effector T cells and is asso-
ciated with increased tumor infiltration by Foxp3 + Tregs
[85]. Additionally, TXA2, secreted by platelets, exerts
immunosuppressive effects and participates in Thl dif-
ferentiation and Th17 expansion. It may also inhibits
Th2 differentiation while promoting Treg differentiation
both in vivo and in vitro. TXA2 has been shown to acti-
vate p38MAPK in T cells during allergic responses, pro-
mote the binding of transcription factors NFE2 and PBX1
to IL-9 promoters, thereby inhibiting IL-9 transcription
and limiting the differentiation of T cells into Th9 cells
[86]. DC-derived TXA2 and its receptor TP are believed
to modulate adaptive immune responses by regulating
interactions between T cells and DCs, such as restraining
T cell activation [87]. TCIPA is regarded as a key target
for protecting CTCs from immune surveillance, thereby
promoting tumor growth and metastasis primarily
through glycoprotein and lipoxygenase (LOX)-dependent
pathways. For instance, overexpression of 12-LOX has



Gan et al. Cancer Cell International (2025) 25:258

been shown to upregulate MMP9 mRNA, protein levels,
and secretions in cancer cells via activation of the PI3K/
AKT/NE-kB signaling pathway, ultimately facilitating cel-
lular invasion [88].

TEPs-derived thrombin catalyzes the transformation of
fibrinogen and mediates the release of pro-inflammatory
cytokines such as IL-6, TNF, and monocyte chemotactic
protein-1 (MCP-1). This process leads to the accumula-
tion of various tumor-infiltrating immunosuppressive
cell populations, including MDSCs, M2-like TAMs, and
Tregs. Thrombin also activates protease-activated
receptors (PARs), thereby reducing CTL infiltration
via thrombin-PAR1 signaling. This process upregulates
immunosuppressive genes such as colony-stimulating
factor 2 (Csf2) and prostaglandin-endoperoxide syn-
thase 2 (Ptgs2), and promotes tumor invasion through
the PAR1-PDK1-AKT signaling pathway. Consequently,
thrombin couples coagulation with immune escape
mechanisms, fostering an immunosuppressive microen-
vironment [89, 90]. Thromboglobin and CD44 facilitate
the interaction between CTCs, whereas CD44 and inter-
cellular adhesion molecule-1 (ICAM-1), as markers of
tumor stem cells, independently promote the clustering
of CTCs. Specifically, CD44 enhances stem-like prop-
erties through the activation of p21-activated kinase 2
(PAK2)/protein tyrosine kinase 2 (PTK2) or EGFR sig-
naling pathways, while ICAM-1 confers stem-like char-
acteristics by upregulating cell cycle-related pathways
[91]. Notchl signaling is activated in CTCs and CTMs
through direct contact with ROS derived from PMN-
MDSCs and jagged canonical Notch ligand 1 (JAG1)
expressed on PMN-MDSCs. Subsequently, Nodal, which
is induced by Notchl activation, interacts with the recep-
tor Cripto on PMN-MDSC:s to facilitate cellular aggrega-
tion [75]. Platelet-derived stromal cell-derived factor-1la
(SDE-1a, also known as CXCL12) regulates PDGF-BB
expression via the SDF-1a/CXCR4 axis, thereby playing a
crucial role in pericellular recruitment and neovascular-
ization within tumors microenvironments. Conversely,
tumor-derived PDGEF-BB, through phosphorylation of
PDGF receptor B (PDGFR-P), induces SDF-1a expression
by activating hypoxia-inducible factor la (HIF-la) in
endothelial cells, which in turn promotes platelet survival
[92, 93].

Platelet-based antitumor therapeutic strategies

Currently, platelet-based antitumor therapeutic strate-
gies can be categorized into two primary approaches:
one involves directly inhibiting platelet function using
conventional antiplatelet agents; the other employs a tar-
geted delivery system for antitumor drugs utilizing plate-
lets or platelet membrane coatings. Emerging evidence
underscores the dual role of platelet-derived TXA2 in
promoting metastasis through both direct tumor-platelet
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interactions and immune evasion. A seminal study by
Yang et al. revealed that aspirin inhibits platelet COX-1/
TXA2 signaling, thereby restoring T cell immunity by
suppressing the ARHGEF1-RHOA pathway, which oth-
erwise dampens TCR-driven activation and effector
functions. This mechanism explains the reduced meta-
static burden observed with aspirin use in preclinical
models and aligns with clinical data showing decreased
metastasis in cancer patients on low-dose aspirin regi-
mens [94]. Complementing these findings, Lucotti et al.
demonstrated that platelet-derived TXA2 orchestrates
early metastatic niche formation by recruiting CX3CR1*
monocytes/macrophages via endothelial activation
(e.g., CCL2/MCP-1 release). COX-1 inhibition or TXA2
receptor antagonism (e.g., picotamide) abrogated this
process, highlighting a temporal window where targeting
platelet TXA2 disrupts macrophage-dependent dissemi-
nation [95].

Emerging nanotechnologies hold significant promise
in antitumor therapy. By conjugating nanoparticles with
apoptosis-inducing molecules such as TRAIL, TNF, Fas
ligand (FasL), and liposomes encapsulating small inter-
fering RNA (siRNA), these systems can deliver these
agents to CTCs via vWF interactions, thereby facilitat-
ing direct cytotoxicity [96, 97]. Recently developed plate-
let membrane hybrid liposomes (PM-Lipo) have been
engineered to concurrently deliver glycolysis inhibitors,
namely quercetin (Que) and shikonin (SHK), thereby
achieving metabolic reprogramming of platelets. This
approach not only inhibits platelet activation and their
interaction with CTCs but also reshapes the tumor
immune microenvironment. Concurrently, the inhibition
of glycolysis in CTCs diminishes their metastatic and
invasive potential [54]. Nanoparticles coated with plate-
let membranes, when loaded with drugs or agents for
enhancing local immune activation such as the targeted
delivery of the TLR agonist resiquimod (R848) to tumor
sites, can effectively reprogram M2 macrophages into M1
macrophages. This not only delays tumor growth but also
inhibits metastasis and recurrence. This vector system
offers significant advantages including enhanced biocom-
patibility and natural targeting affinity [98].

Several immune escape mechanisms, target molecules,
and interaction pathways discussed above offer promis-
ing directions for drug development aimed at inhibiting
tumor metastasis. For instance, immune agents such as
sorafenib and regorafenib have been shown to decrease
ADAMY expression, thereby preventing the shedding of
MHC-1 from tumor cells and enhancing NK cell activa-
tion [99]. Circulating PMPs and the regulatory microR-
NAs derived from them can metastasize to tumor cells
within solid tumors, modulate gene expression in CTCs,
and influence tumor progression. These mechanisms play
a crucial role at multiple stages of cancer development,
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and elucidating these mechanisms will uncover poten-
tial targets for cancer therapy [100]. For example, in
NSCLC, platelet-derived miR-223 enhances the invasion
of tumor cells by targeting the tumor suppressor protein
Band4.1-like protein-3 (B4GALT3) [101]. TEPs and their
derivatives, including RNA and proteins, hold promise as
biomarkers for cancer diagnosis, real-time monitoring,
and prognostic prediction. Additionally, the platelet-to-
lymphocyte ratio (PLR) can serve as a valuable tool for
developing prognostic and personalized treatment strat-
egies [102, 103]. The intricate interplay between plate-
lets and tumor cells presents both opportunities and
challenges for therapeutic intervention. While targeting
platelet-mediated pathways holds promise for inhibiting
metastasis, emerging evidence reveals a paradoxical dual-
ity: antiplatelet and anticoagulant therapies may exert
context-dependent effects that can inadvertently pro-
mote cancer progression under certain conditions. This
complexity necessitates a nuanced understanding of their
mechanisms and temporal dynamics.

Large-scale clinical trials have uncovered unexpected
pro-tumorigenic effects associated with prolonged anti-
platelet regimens. The DAPT trial demonstrated that
extended (30-month) dual antiplatelet therapy (DAPT)
with P2Y12 inhibitors (clopidogrel or prasugrel) plus
aspirin significantly increased cancer incidence and
cancer-related mortality, particularly after 24 months of
treatment [104]. This temporal pattern suggests a cumu-
lative disruption of platelet-mediated immune surveil-
lance or vascular integrity. Similarly, the PLATO and
PEGASUS trials revealed elevated cancer mortality with
ticagrelor, with independent audits identifying discrep-
ancies in cancer death reporting—highlighting potential
underestimation of risks [105]. The ASPREE trial fur-
ther challenged conventional assumptions by showing
increased cancer mortality in healthy elderly recipients of
long-term low-dose aspirin [10], while the TRACER trial
implicated PAR-1 antagonists like vorapaxar in elevat-
ing solid cancer incidence among cardiovascular patients
[106]. These findings collectively suggest a class effect
wherein sustained platelet or coagulation inhibition may
inadvertently facilitate cancer progression, especially in
patients with occult malignancies.

Animal studies provide mechanistic clarity for these
clinical observations. In B16F10 melanoma models,
short-term thrombin inhibition effectively blocked
metastasis, whereas prolonged administration of direct
thrombin inhibitors (e.g., hirudin or ximelagatran)
doubled lung metastatic burden [107]. This temporal
dichotomy mirrors clinical findings and implies adap-
tive changes in the tumor microenvironment. The 4T1
breast cancer model revealed a striking context-depen-
dence: DAPT induced vascular mimicry (VM) in pri-
mary tumors, marked by PAS+/CD31- pseudovessel
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formation and worsened survival, yet suppressed metas-
tasis in the absence of primary lesions [108]. This para-
dox underscores how platelet inhibition may destabilize
vascular integrity in established tumors while retaining
antimetastatic effects in early dissemination. Dabigatran,
a direct thrombin inhibitor, promoted lung metasta-
sis not through anticoagulation but by impairing plate-
let-dependent endothelial protection, as evidenced by
elevated vascular permeability biomarkers (e.g., SDC-1
and Ang-2) [109]. Similarly, GPVI inhibition reduced
metastasis in galectin-3-expressing tumors but risked
hemorrhage due to compensatory CLEC-2 activation,
illustrating the delicate balance between antimetastatic
efficacy and vascular homeostasis [110].

The pro-tumorigenic effects of prolonged antiplate-
let/anticoagulant therapy emerge through intersect-
ing pathways: Endothelial Barrier Disruption: Chronic
platelet inhibition interferes with CLEC-2/podoplanin
and GPVI signaling, destabilizing endothelial junctions
and facilitating tumor cell extravasation [10, 109]. DAPT
exacerbates this by shifting platelets toward a pro-angio-
genic phenotype (elevating VEGFA/PDGF while reduc-
ing TSP-1/PF4) and inducing VM via VE-cadherin/Slpi
upregulation [108]; TGF-B/PAI-1 Axis Dysregulation:
Anticoagulants reduce PAI-1 levels, unleashing plasmin-
mediated TGEF-p activation that drives EMT and fosters
a pro-thrombotic, pro-metastatic niche [106]; Immune
Evasion: Ticagrelor and clopidogrel impair NK cell cyto-
toxicity by suppressing platelet-derived MHC-I trans-
fer to tumor cells, while ticagrelor’s prolactin-elevating
effects may stimulate hormone-sensitive cancers [105].

Antiplatelet and anticoagulant therapies play a cru-
cial role in managing thrombosis in cancer patients, yet
their dual effects—both inhibiting platelet-mediated
immune evasion and metastasis while potentially pro-
moting cancer progression—demand a refined thera-
peutic approach. Notably, aspirin’s antimetastatic effects
operate through a bifunctional mechanism: (1) immune
reactivation (via blockade of the TxA,-COX-1 axis to
restore T cell cytotoxicity) and (2) niche suppression
(by attenuating macrophage-driven early metastasis).
To optimize outcomes, a paradigm shift is needed: (1)
personalizing P2Y12 inhibitor duration (e.g., limiting to
<24 months in high-risk patients) and prioritizing safer
agents like non-anticoagulant heparin derivatives (e.g.,
Succ-100-LMWH) that target selectins without bleeding
risks [107]; (2) combining anticoagulants such as COX-1
inhibitors (e.g., aspirin) or P2Y12 antagonists with TGF-§
inhibitors or VM-targeting agents to counteract pro-met-
astatic effects; and (3) adopting biomarker-driven strat-
egies (e.g., galectin-3 or TGF-p monitoring) to identify
at-risk patients. Despite decades of interest in antiplatelet
therapy for cancer, its clinical adoption remains limited
by cost-effectiveness and implementation challenges.
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Future research should focus on spontaneous metastasis
models and therapies innovation that selectively disrupt
procancer platelet functions while preserving vascular
and immune homeostasis, ultimately bridging the gap
between preclinical promise and clinical utility.
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