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Abstract: The biogenic synthesis of silver nanoparticles (AgNPs) has a wide range of applications
in the pharmaceutical industry. Here, we synthesized AgNPs using the aqueous flower extract of
Bauhinia tomentosa Linn. Formation of AgNPs was observed using ultraviolet-visible light spec-
trophotometry at different time intervals. Maximum absorption was observed after 4 h at 420 nm
due to the reduction of Ag+ to Ag0. The stabilizing activity of functional groups was identified by
Fourier-transform infrared spectroscopy. Size and surface morphology were also analyzed using
scanning electron microscopy. The present study revealed the AgNPs were spherical in form with a
diameter of 32 nm. The face-centered cubic structure of AgNPs was indexed using X-ray powder
diffraction with peaks at 2θ = 37◦, 49◦, 63◦, and 76◦ (corresponding to the planes of silver 111, 200,
220, 311), respectively. Energy-dispersive X-ray spectroscopy revealed that pure reduced silver
(Ag0) was the major constituent (59.08%). Antimicrobial analyses showed that the biosynthesized
AgNPs possess increased antibacterial activity (against Staphylococcus aureus (Gram-positive) and
Escherichia coli (Gram-negative), with larger zone formation against S. aureus (9.25 mm) compared
with that of E. coli (6.75 mm)) and antifungal activity (against Aspergillus flavus and Candida albican
(with superior inhibition against A. flavus (zone of inhibition: 7 mm) compared with C. albicans (zone
of inhibition: 5.75 mm)). Inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging
activity was found to be dose-dependent with half-maximal inhibitory concentration (IC50) values of
56.77 µg/mL and 43.03 µg/mL for AgNPs and ascorbic acid (control), respectively, thus confirming
that silver nanoparticles have greater antioxidant activity than ascorbic acid. Molecular docking
was used to determine the mode of antimicrobial interaction of our biosynthesized B. tomentosa
Linn flower-powder extract-derived AgNPs. The biogenic AgNPs preferred hydrophobic contacts
to inhibit bacterial and fungal sustainability with reducing antioxidant properties, suggesting that
biogenic AgNPs can serve as effective medicinal agents.

Keywords: antioxidant; bauhinia tomentosa; free radicals; microbial; nanoparticle; reactive oxygen
species (ROS); silver

1. Introduction

Resistance to antibiotics and a wide variety of microorganisms in the public health
system has become a major obstacle, and almost every single variant of microorganisms has
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developed antibiotic resistance [1,2]. According to contemporary ideas, nanoparticles, such
as silver nanoparticles (AgNPs), can inhibit the growth of microbes [3–5]. Nanoparticles
are structures with dimensions ranging from approximately 1 to 100 nm that exhibit
significantly different physical (mechanical, optical, electrical) and chemical properties
when compared with their larger counterparts [6,7]. Over the past 10 to 20 years, metal
nanoparticles, and AgNPs in particular, have attracted attention due to their versatility
and broad range of industrial and biomedical applications [8–11]. Potential uses include
antimicrobial (antibacterial, antifungal, and antiviral) agents [12–17], biomedical device
coatings, drug-delivery carriers, and imaging probes for diagnostic and optoelectronic
applications [18–22]. AgNPs could mediate the antimicrobial activity by producing reactive
oxygen species and free radicals causing cell wall damage, lipid peroxidation, protein
denaturation, and nucleic acid and proton pump damage [4,23]. The use of biological
methods and natural resources to synthesize AgNPs has increased considerably due to
improved feasibility and high biocompatibility [22,24–26]. Biological synthetic pathways
based on microorganisms or plant extracts have been widely explored for the production of
AgNPs in several applications as they are environmentally friendly and often inexpensive.
Moreover, plant-based extract-mediated AgNPs synthesis is more advantageous than
other biological processes because it does not require stringent aseptic environments and
strict monitoring of cell culture conditions [27–34]. The genus Bauhinia is a member of
the Leguminosae family (subfamily Caesalpiniaceae) and consists of about 300 species.
Bauhinia tomentosa is a South Indian shrub that has been applied in ayurvedic medicine for
centuries based on its multiple beneficial effects, including antioxidant, anti-inflammatory,
antitumor, antimicrobial, antiamoebic, antidiabetic, and antirheumatic properties as well
as functioning as an analgesic and hypocholesterolemic agent [35–39]. Additionally, its
extracts contain a diverse set of metabolites that could be possibly used in the reduction of
silver ions, as a capping and stabilizing agent in the synthesis of nanoparticles [35,40–42].
Biological synthetic methods can produce AgNPs that are frequently more stable and
less toxic than nanoparticles obtained using conventional methods [7,34,41,43–47]. The
surface of green synthesized AgNPs has strong bioactive antioxidant and antimicrobial
activity [34].

For the study of the potential mechanism of AgNPs-mediated antimicrobial effects, we
selected DNA gyrase, cytochrome P450, and dihydrofolate reductase as potential candidate
target proteins. DNA gyrase is categorized as topoisomerase II, an ATP-dependent enzyme
involved in DNA transcription, replication, and chromosome segregation in Gram-negative
and Gram-positive bacteria. In eukaryotes, cytochrome P450 catalyzes a variety of reactions
and is an important enzyme in fungal primary and secondary metabolism. The cytochrome
P450 enzyme is required for sterol biosynthesis in eukaryotic cells and is also the primary
target of clinical drugs used to treat fungal pathogens. In addition, dihydrofolate reductase
is a member of the reductase enzyme family, which is found in all living organisms and is
required for fungal cell growth and proliferation. Thus, DNA gyrase, cytochrome P450,
and dihydrofolate reductase are considered major therapeutic targets in drug delivery and
design [48–51].

Accordingly, in the current study we biosynthesized AgNPs using B. tomentosa Linn
flower powder extract as a natural source. We validated their antimicrobial activity and
evaluated possible mechanisms of action via molecular docking analysis using DNA gyrase,
cytochrome P450, and dihydrofolate reductase, respectively.

2. Materials and Methods
2.1. Materials

All chemicals used in this research, including antibiotics such as chloramphenicol,
fluconazole, and silver nitrate (AgNO3), were of analytical grade and were purchased from
Sigma-Aldrich (St. Louis, MO, USA).
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2.2. Origin of B. tomentosa Linn flowers

B. tomentosa Linn flowers were collected from Sirkazhi (Nagapattinam District, Tamil
Nadu, India; 11.2420◦ N, 79.7287◦ E), in December 2019. (An authenticated voucher speci-
men, No. 374, was deposited in the herbarium of the Department of Botany, Annamalai
University, Chidambaram, Tamil Nadu, India). Plant material was washed with normal
and distilled water, dried in the dark at room temperature, and ground to a fine powder, as
described previously [52–54]. Ground B. tomentosa Linn flower powder (20 g) was soaked
in distilled water for 24 h with mild shaking at room temperature, boiled for 10 min, filtered
using Whatman grade 1 filter paper (Sigma-Aldrich), and concentrated by a rotary vacuum
evaporator at 20 ◦C (EQUITRON, rotatory vacuum evaporator, Medica Instrument MFG.
Co, Chennai, Tamil Nadu, India) to 1 mg/mL. Concentrated B. tomentosa Linn flower
powder extract was stored at 4 ◦C until further use [54].

2.3. Preliminary Phytochemical Analysis

Qualitative phytochemical characterization of B. tomentosa Linn flower powder ex-
tracts (using 70% to 100% alcohol (methanol, ethanol), distilled water, or petroleum ether)
followed established protocols described by Harborne [55] to identify and characterize the
phytochemical constituents (including anthraquinones, coumarins, polyphenol, terpenoids,
saponins, tannins, steroids, alkaloids, flavonoids, glycosides, triterpenoids, and terpenoids),
as described previously [54,55].

2.4. Bacterial and Fungal Cultures

All bacterial and fungal cells were obtained from the Microbial Type Culture Collection
and Gene Bank (MTCC) at the Institute of Microbial Technology, Chandigarh 160036, India.
Species used included Escherichia coli (MTCC 732), Staphylococcus aureus (MTCC 3160),
Candida albicans (MTCC 183), and Aspergillus flavus (MTCC 10180). The bacterial cultures
were grown routinely in Luria Bertani broth and incubated at 37 ◦C (Technico Incubator,
Model TLPPL 104, Technico Laboratory Products Pvt. Ltd., Chennai, Tamil Nadu, India).
Fungal cultures were grown similarly on potato dextrose agar (PDA) and incubated at
27 ◦C for 7 days.

2.5. Synthesis of Silver Nanoparticles

A crude extract (5 mL) of B. tomentosa Linn flower powder was transferred into 45 mL
of a 1 mM aqueous AgNO3 solution in an Erlenmeyer flask. The flask was incubated in the
dark at room temperature for 5 h to minimize photoactivation of silver nitrate. The AgNP
solution was purified by repeated centrifugation at 10,000 rpm for 15 min (REMI-C-30BL,
Centrifuge, REMI Electrotecnik Limited, Chennai, Tamil Nadu, India) followed by washing
of the pellets with deionized water and finally drying to collect the AgNPs [56–58].

2.6. Characterization of Silver Nanoparticles

The confirmation of biosynthesized B. tomentosa Linn flower powder-extract-derived
AgNPs was accomplished using ultraviolet-visible light (UV-vis) spectrophotometry
(Lambda 265, Perkin Elmer Health Sciences Pvt. Ltd., Chennai, Tamil Nadu, India; range:
300–800 nm) [58]. Characterization of AgNPs through Fourier-transform infrared spec-
troscopy (FTIR, Perkin Elmer FTIR-Spectrometer 1725 X, Perkin Elmer Health Sciences
Pvt. Ltd., Chennai, Tamil Nadu, India) was used to detect the characteristic peaks of
the functional groups attached to the surface of AgNPs in a spectral range of 400 to
4000 cm−1 [59,60]. Scanning electron microscopy (SEM) was used to study morpholog-
ical information on the sample at the submicron scale and elemental information at the
micron scale [61,62]. The dried samples were coated with gold (Polaron Emitech SC7640
sputter coater, Quorum Technologies Ltd., Newhaven, East Sussex, UK), and microscopic
images were taken at 250× and a voltage of 10 kV by a Jeol JSM-6480LV SEM machine
(JEOL Ltd., Tokyo, Japan) to characterize the particle size and morphology of the AgNPs.
Energy-dispersive X-ray (EDX) analysis helped determine the elemental composition of
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the AgNPs [63]. X-ray powder diffraction (XRD) was applied for phase identification of
the Cu Kα radiation (1.5405 Å) of the AgNPs (Philips PANanalytical X’Pert XRD System
(model # 3040), Amsterdam, The Netherlands) [57,64].

2.7. Antimicrobial Activities of Biosynthesized AgNPs
2.7.1. Antibacterial Activity

The antibacterial activity of biosynthesized B. tomentosa Linn flower-powder extract-
derived AgNPs was investigated against Gram-negative (E. coli) and Gram-positive (S. au-
reus) bacterial pathogens using agar disk diffusion [28,56,61,65,66]. Briefly, a nutrient agar
medium was prepared in a Petri dish and the bacterial cultures were swabbed on test
media with a sterile cotton swab. The discs were dipped with the following four compo-
nents (30 µL): (i) biosynthesized AgNPs, (ii) B. tomentosa Linn flower powder extract, (iii)
AgNO3 solution, and (iv) standard antibiotic solutions (chloramphenicol, 30 µg/mL). The
dried discs were pressed gently over the surface of the culture-swabbed medium at equal
distances to avoid overlapping of the inhibition zones. The plates were then incubated at
37 ◦C for 24 h. After incubation, the antibacterial activity of the biosynthesized AgNPs was
evaluated according to the diameters of the clear inhibition zones [67].

2.7.2. Antifungal Activity

Antifungal activity of biosynthesized B. tomentosa Linn flower-powder extract-derived
AgNPs was analyzed against A. flavus and C. albicans by disk diffusion. The following four
different components (30 µL) were applied on separate Whatman No. 1 filter paper discs
6 mm in diameter: (i) biosynthesized AgNPs, (ii) B. tomentosa Linn. flower powder extract,
(iii) AgNO3 solution, and (iv) standard antifungal solution (fluconazole, 30 µg/mL). Each
was allowed to dry before being placed on a PDA medium carrying the fungal strains and
then incubated for 48 h. The diameter of the zones was measured in centimeters with the
help of a scale, and the results were tabulated [28,58,68,69].

2.8. In Vitro Determination of Antioxidant Activity

For antioxidant activity testing, every 1 mL of different concentrations (20, 40, 60, and
80 µg/mL) of biosynthesized B. tomentosa Linn flower-powder extract-derived AgNPs was
mixed with 2 mL of freshly prepared 2,2-diphenyl-1-picrylhydrazyl solution (DPPH, 1 mM
in methanol) and mixed meticulously. After the solution was incubated at room temperature,
the absorbance of the solution was recorded at 517 nm using a UV-vis spectrophotome-
ter (Lambda 265, Perkin Elmer). The free-radical scavenging activity was calculated as:
[(absorbance at blank) − (absorbance at test)/(absorbance at blank)] × 100 [66].

2.9. Molecular Docking of Silver Nanoparticles

The structures of target proteins and small molecules (AgNPs, chloramphenicol,
and fluconazole) were retrieved from the Protein Data Bank (PDB) and the PubChem
database, respectively (PDB IDs: 3G7B [DNA gyrase, S. aureus], 4WUB [DNA gyrase,
E. coli], 5TZI [cytochrome P450, C. albicans], and 6DRS [dihydrofolate reductase, A. flavus]).
Molecular docking of AgNPs with receptors was accomplished through a Patch dock server
(http://bioinfo3d.cs.tau.ac.il/PatchDock, accessed on 25 October 2021). The root-mean-
square deviation was set at 4 Å, and receptor-ligand molecules were used for docking.
Based on the scoring and interaction information, the top-ranked complexes were chosen
for interaction studies and finding residues [54,70–74].

2.10. Statistical Analysis

Experiments were performed in at least three biological replicates (antibacterial, an-
tifungal, and antioxidant assays) and data are presented as mean ± standard deviation.
A Student’s t test was applied using SPSS software (IBM SPSS Statistics; Armonk, NY,
USA) [75].

http://bioinfo3d.cs.tau.ac.il/PatchDock
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3. Results
3.1. Phytochemical Analysis

Qualitative phytochemical screening analysis of B. tomentosa Linn flower-powder
extracts identified the phytochemical constituents in the alcohol and aqueous extracts.
Aqueous extracts contained alkaloids, anthraquinone, coumarins, flavonoids, glycosides,
polyphenol saponins, steroids, tannin, terpenoids, and triterpenoids. Alcoholic extracts
did not obtain tannin (Table 1).

Table 1. Phytochemicals present in aqueous and alcoholic extracts of B. tomentosa Linn.

S. No. Test Aqueous Extract Alcohol Extract

1 Alkaloids + +

2 Antroquinone ++ +

3 Coumarins ++ +

4 Flavonoids ++ +

5 Glycoside + +

6 Polyphenol ++ +

7 Saponin ++ +

8 Steroids ++ +

9 Tannin + −
10 Terpenoids + +

11 Triterpenoids + +
Note: “+” = present, “++” = strongly present, “−” = absent.

3.2. Biosynthesis of AgNPs

Biosynthesis of B. tomentosa Linn flower-powder extract–derived AgNPs was moni-
tored via the redox reaction (reduction of silver ions to metal and the formation of AgNPs)
as recorded by UV-vis spectrophotometry (Figure 1). Over a period of 4 h the absorption
peak shifted from approximately 400 nm to 420 nm due to the reduction of Ag+ to Ag0

(color shift from brown to yellowish), indicating that AgNPs were obtained.
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3.3. Fourier-Transform Infrared Analysis of Biosynthesized AgNPs

FTIR spectroscopy (in a range from 400 to 4000 cm−1) was used to detect functional
groups in biosynthesized B. tomentosa Linn flower-powder extract-derived AgNPs. Charac-
teristic absorption peaks corresponding to the functional groups of secondary metabolites,
such as aliphatic primary amine (N-H bonds, peak at 3227.92 cm−1), terminal alkyne
(C=C bonds, peak at 2099.24 cm−1), imine/oxime (C=N bonds, peak at 1263.68 cm−1),
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ether (C-O bond, peak at 1187.09 cm−1) and aliphatic bromo components (C-Br bond,
peak at 1081.58 cm−1), were evident. Formation of reduced silver atoms (Ag0, peaks at
706.63 cm−1 to 408.76 cm−1) and capping of the synthesized AgNPs by the phytochemicals
present in the extract were also observed (Figure 2).
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Figure 2. FTIR spectrum of biosynthesized Bauhinia tomentosa Linn flower-powder extract-derived AgNPs. Characterisitc
peaks indicated the presence of aliphatic primary amine (N-H bonds, peak at 3227.92 cm−1), terminal alkyne (C=C bonds,
peak at 2099.24 cm−1), imine/oxime (C=N bonds, peak at 1263.68 cm−1), ether (C-O bond, peak at 1187.09 cm−1) and
aliphatic bromo components (C-Br bond, peak at 1081.58 cm−1) and also indicate the formation of reduced silver atoms
(Ag0, peaks at 706.63 cm−1 to 408.76 cm−1).

3.4. Energy-Dispersive Spectroscopy Analysis of Biosynthesized AgNPs

An EDX analysis of biosynthesized B. tomentosa Linn flower-powder extract-derived
AgNPs revealed signal energy peaks for silver atoms in a range of 2–4 keV, with weaker
signals for chloride; pure silver (59.08%) was the major element compared to chloride
(41.92%) (Figure 3 and Table 2).
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Table 2. EDX elemental composition of biosynthesized B. tomentosa Linn flower-powder extract-
derived AgNPs.

Elements Atomic Number
(Periodic Table of Elements) Shells Weight % Atomic %

Ag 47 L-series 75.86 59.08

Cl 17 K-series 25.14 41.92

Total 100 100

Strong signals of silver (59.08%) are clearly visible in the spectrum. The other signals
can be attributed to the organic capping layer. The significant intensity of the peaks
indicates the presence of a sufficient coating layer on the biosynthesized AgNPs [27,61,76].

The data indicate the successful biosynthesis of AgNPs with some amount of chlorine
impurities [77].

3.5. X-ray Diffraction Analysis of Biosynthesized AgNPs

The XRD method was used to determine the crystalline phase of the biosynthesized B.
tomentosa Linn flower-powder extract-derived AgNPs. The XRD pattern includes diffrac-
tion peaks at 2θ = 37◦, 49◦, 63◦, and 76◦, corresponding to the planes of silver (111, 200, 220,
311), respectively (Figure 4). The XRD data and pattern confirmed the crystalline structure
of the biosynthesized AgNPs. No significant peaks corresponding to other crystalline phase
impurities were detected. All peaks in the XRD pattern can be assumed to correspond with
the structure of silver.
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3.6. Scanning Electron Microscopic Analysis Biosynthesized AgNPs

An SEM analysis revealed uniformly distributed AgNPs on the surfaces of the nanopar-
ticles. An SEM image of silver nanoparticles synthesized using B. tomentosa Linn flower ex-
tract shows spherical and relatively uniform shapes with a diameter near 32 nm (Figure 5).
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3.7. Antibacterial Activity of Biosynthesized AgNPs

The antibacterial activity of the biosynthesized AgNPs was determined using disk dif-
fusion. The antibacterial activity of the biosynthesized AgNPs tested against Gram-negative
(E. coli) and Gram-positive (S. aureus) bacterial pathogens showed a larger zone of formation
against S. aureus (9.25 mm ± 0.956 mm) compared with that of E. coli (6.75 mm ± 0.957 mm)
(Figures 6 and 7).
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(30 µL): (i) biosynthesized AgNPs, (ii) Bauhinia tomentosa Linn flower powder extract, (iii) AgNO3 solution, and (iv) standard
antibiotic solutions (chloramphenicol, 30 µg/mL).
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3.8. Antifungal Activity of Biosynthesized AgNPs

The antifungal activity of biosynthesized B. tomentosa Linn flower-powder extract-
derived AgNPs was determined by disk diffusion against the fungal strains A. flavus and
C. albicans. Fluconazole was used as a standard antifungal agent. The AgNPs achieved
superior inhibition against A. flavus (zone of inhibition: 7 ± 0.812 mm) compared with C.
albicans (zone of inhibition 5.75 ± 0.447 mm) (Figures 8 and 9).
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Figure 8. Qualitative antifungal activity of of biosynthesized Bauhinia tomentosa Linn flower-powder extract-derived AgNPs
against fungal strains Aspergillus flavus (left) and Candida albicans (right). The following four different components (30 µL)
were applied on separate Whatman No. 1 filter paper discs 6 mm in diameter: (i) biosynthesized AgNPs, (ii) Bauhinia
tomentosa Linn flower powder extract, (iii) AgNO3 solution, and (iv) standard antifungal solution (fluconazole, 30 µg/mL),
which were allowed to dry before being placed on a potato dextrose agar medium carrying the fungal strains and incubated
for 48 h. The diameters of the zones were measured in centimeters.
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Figure 9. Quantitative antifungal strains (Aspergillus flavus (red) and Candida albicans (blue)) activity (measurements of zone
inhibition activity) of biosynthesized Bauhinia tomentosa Linn flower-powder extract-derived AgNPs (as shown in Figure 8).
Data are presented as mean ± standard devation of four independent experiments (* p < 0.01 [A. flavus compared with C.
albicans], # p < 0.1 [compared with AgNO3 and plant extract, respectively]).

3.9. Antioxidant Activity of Biosynthesized AgNPs

The radical scavenging activity of biosynthesized B. tomentosa Linn flower-powder
extract-derived AgNPs was quantified spectrophotometrically by changing the DPPH color
from brown to yellow. Inhibition of DPPH radical scavenging activity was found to be
dose-dependent with half-maximal inhibitory concentration (IC50) values of 56.77 µg/mL
and 43.03 µg/mL for AgNPs and ascorbic acid (control), respectively (Figure 10).
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Figure 10. Dose-dependent antioxidant activity of biosynthesized Bauhinia tomentosa Linn flower-powder extract-derived
AgNPs. Ascorbic acid served as a positive control. The indicated mean values are from two independent experiments
performed in triplicate (maximum mean deviation ± 5%).

3.10. Molecular Docking of Biosynthesized AgNPs

The antimicrobial mechanisms of AgNPs against bacterial or fungal pathogens remain
unclear. AgNPs can directly attack and disrupt or penetrate cell walls to induce intracel-
lular redox reactions mediating cytotoxicity. Moreover, AgNPs can interact with pivotal
microbial proteins to inhibit their activities and cause cell death [78–81]. Accordingly, we
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selected representative proteins for each species to study the possible three-dimensional
(3D) interaction of AgNPs with bacterial DNA gyrase [82,83], fungal CYP51 (cytochrome
P450 monooxygenase (CYP) superfamily) [51,84] and fungal dihydrofolate reductase [85].
To predict the biological interactions of the biosynthesized B. tomentosa Linn flower-powder
extract-derived AgNPs with these possible microbial target proteins, we performed molec-
ular docking analysis using a Patch dock server for the 3D structures of PDB proteins
3G7B (DNA gyrase, S. aureus), 4WUB (DNA gyrase, E. coli), 5TZI (cytochrome P450, C.
albicans), and 6DRS (dihydrofolate reductase, A. flavus). Silver nanoparticle bound microbe
structures (DNA gyrase, cytochrome P450, and dihydrofolate reductase) were visualized
for interaction by PyMOL (Version 2.3.0, PyMol Molecular Graphics system, Schrödinger,
LLC, New York, NY, USA). By the molecular rendering approach, interaction of AgNPs
with amino acid (AAs) in the target protein structures was identified. The AA residues
interacted with silver through hydrophobic contact (Figure 11).
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Figure 11. Molecular docking of AgNPs determines the binding ability of silver with various bacterial and fungal proteins.
A 3D structure modeling of the interaction of silver (gray ball in the center of each subdisplay (A–D)) with bacterial species:
(A) Staphylococcus aureus, (B) Escherichia coli; and with fungal species: (C) Candida albicans, (D) Aspergillus flavus. AgNP
interactions with microbes were achieved by hydrophobic contact. PDB IDs used included 3G7B (DNA gyrase, Staphylococcus
aureus), 4WUB (DNA gyrase, Escherichia coli), 5TZI (cytochrome P450, Candida albicans), and 6DRS (dihydrofolate reductase,
Aspergillus flavus).

4. Discussion

We biosynthesized AgNPs using the natural extract of B. tomentosa Linn. We then ap-
plied various biophysical and biochemical methods to characterize the potential biomedical
applications of the AgNPs [8–10,12–16,86] and validated their antimicrobial and antioxi-
dant properties [87,88]. We also evaluated a possible mechanism of action via molecular
docking analysis.

We applied multiple biophysical and biochemical methods to characterize our biosyn-
thesized AgNPs. A UV-vis spectroscopic analysis showed a characteristic absorbance
peak shift from 400 nm to 420 nm during the formation of biosynthesized B. tomentosa
Linn flower-powder extract-derived AgNPs (Figure 1), which can be attributed to the
formation of larger particles [57,89,90]. An EDX analysis helped demonstrate the elemental
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composition of the biosynthesized B. tomentosa Linn flower-powder extract-derived AgNPs
(Figure 3, Table 2). The dense peak corresponding with silver strongly confirmed the reduc-
tion of AgNO3 and the formation of AgNPs. An EDX analysis also proved that the required
phase of silver was present in the biosynthesized AgNPs [27,61,63,76,91]. The crystalline
nature of the biosynthesized AgNPs was confirmed in the form of XRD diffraction peaks
at 2θ = 37◦, 49◦, 63◦, and 76◦ (corresponding to the planes of silver 111, 200, 220, 311), re-
spectively (Figure 4), which are typical XRD values of biosynthesized AgNPs [65,76,92–94].
Additionally, FTIR spectroscopy confirmed the various functional (amine, alkyl, ether, and
aliphatic) groups and chemical bonding of biosynthesized AgNPs, while SEM analysis
revealed the surface morphology and size of the AgNPs, which assumed spherical, uniform
shapes (Figure 5) [11,61,62].

To determine possible biomedical applications of the biosynthesized B. tomentosa
Linn flower-powder extract-derived AgNPs we examined their potential antimicrobial
activity. The biosynthesized AgNPs exhibited efficient anti-Gram-negative and anti-Gram-
positive bacterial activity, with higher efficiency against Gram-positive bacterial pathogens
(Figures 6 and 7). Moreover, the biosynthesized AgNPs exhibited significant antifungal
activity, as determined by the disk diffusion method, against A. flavus and C. albicans,
respectively (Figures 8 and 9). Recent data point to the possible redox-potential of B.
tomentosa Linn-derived AgNPs and their possible uses as antimicrobial agents [67]. The
antimicrobial activity of our biosynthesized AgNPs may be mediated by a redox reaction,
which was confirmed by the reduction and radical scavenging potential of silver in green
biosynthesized AgNPs (against DPPH). The lowest concentration of the biosynthesized B.
tomentosa Linn flower-powder extract-derived AgNPs was 20 µg/mL, with an effectivity
of 15.30 ± 0.40% and an IC50 of 56.77 (Figure 10), which was superior and in the range of
previously described AgNPs using other green sources [63,95,96]. Therefore, our results
presented here indicate that our biogenic AgNPs are superior to other biosynthesized
AgNPs in terms of higher in vitro antioxidant [34,47,95] and higher in vitro antimicrobial
efficacy (Table 3) [34,45,47,56–58,61–63,65,69,70,96].

Table 3. Comparative antimicrobial efficacy of biosynthesized B. tomentosa Linn flower-powder extract-derived$ AgNPs.

Antioxidant
Efficacy, AgNPs $;

IC50
(AgNPs &

Ascorbic Acid
(Control),

Respectively)
[µg/mL]

Antioxidant
Efficacy, Other

AgNPs;
IC50

(AgNPs &
Ascorbic Acid

(Control),
Respectively)

[µg/mL]

Antimicrobial
(Antibacterial)

Efficacy,
AgNPs $;

Zone
Inhibition

[mm]

Antimicrobial
(Antibacterial)
Efficacy, Other

AgNPs;
Zone

Inhibition
[mm]

Antimicrobial
(Antifungal)

Efficacy,
AgNPs $;

Zone
Inhibition

[mm]

Antimicrobial
(Antifungal)

Efficacy, Other
AgNPs;

Zone
Inhibition

[mm]

References

1 56.77 & 43.03 50.37 & 44.10 [47,63]

2 46.25 & 41.86 [95]

3 6.75
(E. coli) (30 µL)

11.4
(E. coli) (50 µL) [57,67]

4
9.25

(S. aureus)
(30 µL)

12.7
(S. aureus)

(50 µL)
[56,67]

5
5.75

(C. albicans)
(30 µL)

10.7
(C. albicans)

(50 µL)
[39,97,98]

6
7

(A. Flavus)
(30 µL)

20
(A. Flavus)

(50 µL)
[97,98]
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Finally, we used molecular modeling and docking analyses to investigate the an-
tibacterial and antifungal mode of action of the biosynthesized AgNPs. We observed
AgNP-mediated cytotoxicity and identified the AA residues SER-303, ASN-294 (DNA
gyrase from Escherichia coli), ILE-67, THR-212, GLN-210 (DNA gyrase from S. aureus), ALA-
107, PHE-105 (cytochrome P450 from C. albicans), and VAL-214, ALA-216 (dihydrofolate
reductase from A. flavus) as possible participants in hydrophobic interactions with validated
silver in the biosynthesized AgNPs, which are potentially responsible for the antibacterial
and antifungal redox reactions mediating microbial cytotoxicity. We inferred from molecu-
lar modeling and docking studies that the biosynthesized AgNPs can effectively bind to
microbes and act as antimicrobial agents (Figure 11) [66,70,99].

Thus, the use of B. tomentosa Linn extracts for the synthesis of biomedically important Ag-
NPs therefore has several advantages, since the environmentally friendly synthesis provides
stable and highly effective AgNPs with a highly effective redox potential for highly effective
antimicrobial activity and possible biomedical applications (Figure 12) [7,34,41,43–47].
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Figure 12. Overview of the study of B. tomentosa Linn flower extract-derived biogenic AgNPs. Biosynthesized AgNPs
(change in the color (brown to yellow) of the solution over time when aqueous plant extract was added to a AgNO3

solution). Biophysical characterization of biosynthesized AgNPs by UV-vis, FTIR, XRD, and SEM confirmed the nature of
AgNPs. Biochemical and cellular analyses confirmed the antioxidant (dose-dependent DPPH radical scavenging activity)
and antimicrobial (antibacterial (Gram-positive (G+) and Gram-negative (G−)) and antifungal) properties of the biogenic
AgNPs. Molecular modelling and docking studies indicated the possible antimicrobial activity mechanism of the biogenic
AgNPs: inhibition of key enzymes such as DNA gyrase, cytochrome P450, and dihydrofolate reductase.

5. Conclusions

Silver nanoparticles from different natural sources are useful industrial and medicinal
tools. B. tomentosa Linn flower-powder extract-derived AgNPs were characterized through
UV-vis spectrophotometry, FTIR, XRD, and EDX. We observed the reduction of Ag+ to
Ag0 with an accompanied UV-vis spectral peak shift from 400 nm to 420 nm over 4 h. The
FTIR analysis revealed the functional (amine, alkyl, ether, and aliphatic) groups of AgNPs,
while XRD analysis showed that the biosynthesized AgNPs had a crystalline structure.
Results of SEM analysis revealed the AgNPs were spheres approximately 32 nm in diameter.
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The results of EDX examination confirmed the presence of Ag0 in biosynthesized AgNPs
with reducing antioxidant properties validated by DPPH assays. Biologically synthesized
AgNPs exhibited antibacterial activity against E. coli (Gram-negative) and S. aureus (Gram-
positive) as well as antifungal activity against C. albicans and A. flavus. A possible mode of
reducing antibacterial and antifungal activities was studied by molecular docking analysis,
which indicated that the biosynthesized B. tomentosa Linn flower-powder extract-derived
AgNPs may be able to inhibit key enzymes, such as bacterial DNA gyrase and fungal
cytochrome P450 (C. albicans) and dihydrofolate reductase (A. flavus). This study may pave
the way for the development of new and potentially antimicrobial compounds based on
biosynthesized B. tomentosa Linn flower-powder extract-derived AgNPs (Figure 12).
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