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Abstract

Objective

Hill-type muscle models are widely employed in simulations of human movement. Yet, the

parameters underlying these models are difficult or impossible to measure in vivo. Prior

studies demonstrate that Hill-type muscle parameters are encoded within dynamometric

data. But, a generalizable approach for estimating these parameters from dynamometric

data has not been realized. We aimed to leverage musculoskeletal models and artificial neu-

ral networks to classify one Hill-type muscle parameter (maximum isometric force) from eas-

ily measurable dynamometric data (simulated lateral pinch force). We tested two neural

networks (feedforward and long short-term memory) to identify if accounting for dynamic

behavior improved accuracy.

Methods

We generated four datasets via forward dynamics, each with increasing complexity from

adjustments to more muscles. Simulations were grouped and evaluated to show how vary-

ing the maximum isometric force of thumb muscles affects lateral pinch force. Both neural

networks classified these groups from lateral pinch force alone.

Results

Both neural networks achieved accuracies above 80% for datasets which varied only the

flexor pollicis longus and/or the abductor pollicis longus. The inclusion of muscles with

redundant functions dropped model accuracies to below 30%. While both neural networks

were consistently more accurate than random guess, the long short-term memory model

was not consistently more accurate than the feedforward model.

Conclusion

Our investigations demonstrate that artificial neural networks provide an inexpensive,

data-driven approach for approximating Hill-type muscle-tendon parameters from easily

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0255103 September 2, 2021 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kearney KM, Harley JB, Nichols JA

(2021) Classifying muscle parameters with artificial

neural networks and simulated lateral pinch data.

PLoS ONE 16(9): e0255103. https://doi.org/

10.1371/journal.pone.0255103

Editor: Katherine Saul, North Carolina State

University, UNITED STATES

Received: November 9, 2020

Accepted: July 11, 2021

Published: September 2, 2021

Copyright: © 2021 Kearney et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We performed this

study using OpenSim, a freely available, user

extensible software system available via SimTK

(https://simtk.org/projects/opensim). The data

required for reproducing the results (Kearney 2021

Lateral Pinch Data – doi: 10.18735/2y6b-5e15) are

freely available on SimTK through the “Data Share”

feature on “Thumb-Tip Force During Lateral Pinch”

Project Page (https://simtk.org/projects/thumb-

force).

Funding: KMK received funding from the National

Science Foundation Graduate Research Fellowship

https://orcid.org/0000-0001-7899-1287
https://orcid.org/0000-0001-5167-9197
https://doi.org/10.1371/journal.pone.0255103
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255103&domain=pdf&date_stamp=2021-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255103&domain=pdf&date_stamp=2021-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255103&domain=pdf&date_stamp=2021-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255103&domain=pdf&date_stamp=2021-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255103&domain=pdf&date_stamp=2021-09-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255103&domain=pdf&date_stamp=2021-09-02
https://doi.org/10.1371/journal.pone.0255103
https://doi.org/10.1371/journal.pone.0255103
http://creativecommons.org/licenses/by/4.0/
https://simtk.org/projects/opensim
https://doi.org/10.18735/2y6b-5e15
https://simtk.org/projects/thumb-force
https://simtk.org/projects/thumb-force


measurable data. However, muscles of redundant function or of little impact to force produc-

tion make parameter classification more challenging.

Introduction

Accurately simulating human movement requires the appropriate selection of muscle-tendon

parameters. These parameters define the modeled muscle-tendon actuators that mathemati-

cally transform neural excitations into muscle forces, thereby enabling joint movement. Hill-

type muscle models [1, 2] are the most widely used muscle-tendon actuator and consist of a

contractile element, series elastic element, and parallel elastic element to represent the force-

length and force-velocity properties of muscle. Five parameters define Hill-type models: maxi-

mum isometric force, optimal fiber length, tendon slack length, pennation angle, and maxi-

mum contraction velocity of the muscle-tendon unit [3].

The five Hill-type muscle-tendon parameters are difficult or impossible to measure in vivo,

and the need to estimate these parameters compromises musculoskeletal model accuracy. For

example, generic parameter values are typically estimated from cadaveric specimens [4–7] or

animals [8, 9]. To improve accuracy, most studies leverage anthropometric scaling factors,

meaning muscle-tendon parameters are adjusted based on a subject’s height and/or weight

[10, 11]. However, anthropometric scaling does not capture known parameter variation due to

age [12, 13], sex [14], physical training [15], or muscle function [16]. To overcome this limita-

tion, others have employed medical imaging technologies, such as magnetic resonance imag-

ing and ultrasound, to estimate Hill-type parameters [17]. These approaches can inform

selection of subject-specific parameters; however, they can be costly in terms of both time and

money. Additionally, only pennation angle can be directly measured, meaning the other Hill-

type parameters must be estimated from measurable anatomical corollaries (e.g., optimal fiber

length estimated from measured fascicle length). A natural extension of this work is to estimate

muscle-tendon parameters from easily measured data. For example, Garner and Pandy [18]

proposed an optimization method for estimating three of the muscle parameters (tendon slack

length, maximum isometric force, and optimal fiber length) from joint torque profiles. How-

ever, De Groote et al. [19] demonstrated that to what extent muscle parameter information is

encoded within torque data varies based on the joint(s) studied and the limb position during

torque testing. Thus, a generalizable approach for estimating muscle parameters from dyna-

mometric data has not yet been realized.

Here, we examine to what extent artificial neural networks can be used to predict underly-

ing muscle parameters from easily measurable datasets. Artificial neural networks are a

machine learning method and have multiple advantages making them attractive for complex

biomechanical analyses. First, artificial neural networks can approximate complex nonlinear

mappings, which are common to the musculoskeletal system. One example of this nonlinearity

is displayed by the work of Pearlman et al. [20], which identified thumb-tip force to be a non-

linear function of muscle force in cadaveric specimens. Second, artificial neural networks can

infer unseen relationships, such as the mapping between Hill-type muscle parameters and the

joint movements they influence. Lastly, after training, artificial neural networks are computa-

tionally efficient and rapidly perform time-series classification [21], which can enhance analy-

sis of dynamic data (e.g., joint angle trajectories, joint torques, and/or external forces versus

time).
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To examine the utility of artificial neural networks in the context of muscle parameter esti-

mation, we introduce a simulation and machine learning framework to predictively model the

relation between lateral pinch force and one key Hill-type muscle parameter: maximum iso-

metric force. We selected lateral pinch data as our testbed, as it is an important activity of daily

living [22] that is regulary characterized through easily measureable dynamometric data [23–

25]. We specifically investigated whether neural networks could perform binary classification

of the maximum isometric force of thumb muscles, which is analogous to identifying whether

a muscle is stronger or weaker than average. Binary classification is a critical first step toward

more complex machine learning models to identify continuous variables. For this work, we

first generated and analyzed forward dynamic simulations of lateral pinch with varying maxi-

mum isometric force values for four thumb muscle actuators. This analysis confirmed that

changes in maximum isometric force substantially impact thumb-tip force. We then evaluated

the performance of two artificial neural network models (feedforward and long short-term
memory) in classifying the maximum isometric force of thumb muscles. Feedforward neural

networks are relatively simple, lacking “memory” as signals only travel from input to output

[26]. Long short-term memory (LSTM) neural network models account for the dynamic

behavior of the input data [27]. Each neural network model was evaluated via its test losses

and accuracies in the analysis of increasingly complex datasets. Specifically, dataset complexity

was varied by incorporating changes to varying numbers of thumb muscle actuators. We

hypothesized that the LSTM model would classify maximum isometric force with greater accu-

racy than the feedforward model, but both models would decrease in accuracy as dataset com-

plexity increased. Although we evaluate the proposed framework for predicting maximum

isometric force of muscles during of lateral pinch, the described methods provide a framework

for developing predictive models of any of the five Hill-type muscle-tendon parameters in vari-

ous biomechanical systems.

Methods

To examine the impact of varying the maximum isometric force of thumb muscles, we gener-

ated four datasets of lateral pinch. Dynamic lateral pinch simulations were produced via for-

ward dynamics in OpenSim v. 4.1 [28]. Feedforward and LSTM neural network models were

tested to predict the maximum isometric force of the muscle actuators varied using only

dynamic thumb-tip force. The performance of each neural network model was quantified as

test losses and accuracies using a 5-fold cross-validation process. We evaluated overall perfor-

mance in predicting maximum isometric force as well as relative performance between the

two neural network models.

Lateral pinch datasets

Each simulation was processed using a previously developed musculoskeletal model of the

wrist and thumb (Fig 1a) [29]. This musculoskeletal model includes fourteen muscle-tendon

actuators (five wrist muscles, four extrinsic, and five intrinsic thumb muscles) and six degrees

of freedom (two at the wrist, four across the thumb joints). Thumb-tip force was calculated at

a point constraint located at the distal phalanx of the thumb, in a manner similar to Nichols

et al. [29].

Each simulation varied the maximum isometric force input for thumb muscle actuators

[the flexor pollicis longus (FPL), abductor pollicis longus (APL), transverse head of the adductor
pollicis (ADPt), and the oblique head of the adductor pollicis (ADPo)]. We selected these mus-

cle actuators as they contribute substantially to lateral pinch thumb-tip force [20]. To produce

a wide range of physiologically relevant simulations, we calculated a range of maximum
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isometric force values (Table 1) using previously published measurements from in vivo and in
vitro studies [30–32]. We estimated bounds by scaling the peak force range, calculated using a

specific tension of 50.8 N/cm2 [30] and the physiological cross-sectional area [32, 33].

To enable isolated variation of the maximum isometric force of thumb muscles, we used

forward dynamics to simulate lateral pinch (Fig 2a). Muscle activations calculated via com-

puted muscle control served as inputs to the forward dynamic simulations. These activations

were calculated to produce increasing thumb-tip force from 0 to 36.4 N magnitude (35 N in

the palmar direction and 10 N in the ulnar direction) across 1.5 seconds while maintaining a

target thumb posture (-15˚ carpometacarpal flexion, -20˚ carpometacarpal abduction, 20˚

metacarpophalangeal flexion, 40˚ interphalangeal flexion). The described target forces are

both sufficient for many activities of daily living [22] and activated the muscles of interest.

These activations were held constant across all simulations; thus, observed changes in output

represent isolated changes in maximum isometric muscle force. The output of each forward

dynamic simulation was a time-varying, three-component vector describing dynamic changes

in thumb-tip force.

We generated four datasets (Fig 1b) to examine the impact of varying the maximum iso-

metric force input of thumb muscles. Each dataset increased in complexity by including

changes to the maximum isometric force for an increasing number of muscles. We first altered

Fig 1. Musculoskeletal model and datasets. (a) Lateral pinch model used to generate dynamic thumb-tip force datasets [29]. (b)

Values 1 through 4 correspond to Datasets 1 through 4, which varied the thumb muscle actuators shown. Datasets 1 through 4

contained 120, 1024, 2197, and 4096 simulations, respectively, representing different combinations of maximum isometric force

values. For example, Dataset 1 included 120 variations to the FPL, while Dataset 4 included 8 variations to each the FPL, APL, ADPt,

and ADPo.

https://doi.org/10.1371/journal.pone.0255103.g001

Table 1. Range of maximum isometric force values input into the lateral pinch model for each thumb muscle

varied.

Muscle Lower Bound a Mean Upper Bound a

FPL 63.52 201.00 338.48

APL 34.31 116.70 199.09

ADPt 3.11 59.90 116.69

ADPo 0.00b 102.1 220.54

aBounds (representing 2 standard deviations from the mean) were estimated by scaling from the peak force range

using previously published specific tension [30] and physiological cross-sectional area [32, 33] values.
bTwo standard deviations below the mean maximum isometric force of the ADPo is exactly -16.34 N. This muscle’s

lower bound was adjusted to meet physical constraints.

https://doi.org/10.1371/journal.pone.0255103.t001
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the maximum isometric force of the FPL (Dataset 1) and then added variations in APL (Data-

set 2), ADPt (Dataset 3), and ADPo (Dataset 4) in order. This means that Dataset 1 varied only

one muscle, whereas Dataset 4 included variations across all four. The FPL and APL were var-

ied first as these muscles contribute the most to lateral pinch thumb-tip force [20] and impor-

tantly contribute to different directional components of thumb-tip force (the FPL flexes, the

APL abducts). Within each dataset, the maximum isometric force values used for each muscle

were uniformly sampled within the approximated range (Table 1). Dataset 1 included 120 sim-

ulations corresponding to uniform sampling across the full range of maximum isometric force

values of the FPL. Datasets 2, 3, and 4 included 1024, 2197, and 4096 simulations, respectively.

Importantly, these datasets scale substantially in size as needed to adequately train both neural

network models for use in increasingly complex classifications. With the exception of Dataset

1, where the size was selected to not over-sample the isometric force space, dataset sizes were

selected to be approximately double for each sequential dataset, while still uniformly sampling

the maximum isometric forces for each muscle. For example, Dataset 4 incorporated 4096

simulations corresponding to all combinations of 8 maximum isometric force values for each

of the four muscles (i.e., all combinations of maximum isometric force values = 84 or 4096

simulations).

All four simulation datasets were prepared to train and test both neural network models.

To prevent neural network model bias favoring simulations of longer length, each simulation

was interpolated to contain exactly 1000 time instances (i.e. 667 Hz). All simulations within a

dataset were then grouped and labeled by whether the varied muscles were above (“high”) or

below (“low”) the mean maximum isometric force values. This labeling reflects each neural

network model’s task of predicting the maximum isomtric force of each muscle during lat-

eral pinch. The modification of more muscles resulted in more labeled groups, and therefore

2, 4, 8, or 16 groupings of maximum isometric force value combinations in Datasets 1

through 4, respectively. To prevent neural network model bias, simulations were randomly

assigned to training and testing sets; these sets defined the folds used during 5-fold cross

validation.

Fig 2. Simulation and machine learning workflow. (a) Workflow for producing simulated lateral pinch data. Muscle activations

were attained via computed muscle control. (b) Workflow for training and testing artificial neural networks on simulated thumb-tip

forces and time.

https://doi.org/10.1371/journal.pone.0255103.g002
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Neural network architecture

To inform how to predict maximum isometric force from minimal data, we employed feedfor-

ward and LSTM neural network models (Fig 2b). For each dataset, each neural network model

classified the maximum isometric force of the altered thumb muscle(s) using only the dynamic

thumb-tip force. Comparing the performance of the feedforward and LSTM models informed

how muscle contraction dynamics may be leveraged to predict muscle parameters. Where the

feedforward model treats each simulation time as independent, the LSTM model treats each

simulation time sequentially. The LSTM model effectively uses the behavior of force data

across time to inform its predictions.

Both neural network models were similar in structure, containing 4 input nodes (the three-

dimensional force vector and time), 4 hidden nodes, and 2, 4, 8, or 16 output nodes (one

“high” or one “low” node for each muscle) for Datasets 1 through 4, respectively. Three-com-

ponent thumb-tip force vectors were selected as they are easily measurable in vivo and directly

impacted by the modifications to the maximum isometric force of muscles of the thumb. Each

neural network employs a sigmoid activation function, an Adam learning rate optimizer [34],

and contains the hidden nodes in a single hidden layer. The output nodes correspond to the

labeled groups of each dataset, and therefore increased in number to encompass the groupings

required to classify the maximum isometric force of additional muscles.

The learning rate has a substantial impact on neural network model performance; thus, we

adjusted this value for the analysis of each dataset for both neural network models. During

learning rate tuning, training terminated when either the losses did not decrease for 25 conse-

cutive epochs or the network trained for 100 epochs. These termination criteria were selected

to provide enough epochs for convergence of weights while halting neural network model

training for those that were not converging. We tested learning rates between 10−7 to 1 and

selected the final learning rate via the criteria of minimizing losses [35]. The final learning

rates selected for the analysis of each dataset are provided in Table 2. Training and testing for

each learning rate were conducted in conjunction with 5-fold cross-validation. This approach

reduced overfitting of the neural network to the training data.

Analysis

Predicting maximum isometric force from thumb-tip force is only feasible if this parameter

considerably influences thumb-tip force. We therefore first examined how varying maxi-

mum isometric force of thumb muscle actuators affects thumb-tip force. For this analysis, we

calculated the means and standard deviations of peak thumb-tip forces across all simulations

within each labeled group. This provided mean distributions of force vectors in 3D space for

each unique simulation scenario. Within each dataset, we then calculated the percent volume

overlap between these distributions. No volume overlap indicates that the simulated values

Table 2. Muscles varied, training simulations, and final learning rates for each neural network model across datasets.

Dataset Muscle(s) Varied Training Simulations a Learning Rate Feedforward Learning Rate LSTM
1 FPL 96 7.67 × 10−5 9.12 × 10−5

2 FPL, APL 819 2.53 × 10−6 9.86 × 10−6

3 FPL, APL, ADPt 1758 3.61 × 10−6 8.38 × 10−6

4 FPL, APL, ADPt, ADPo 3277 5.00 × 10−7 8.00 × 10−7

aEach simulation was a 1000 (simulated instances) by 4 (time and 3-component force vector) matrix.

https://doi.org/10.1371/journal.pone.0255103.t002
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of maximum isometric force uniquely map to the produced thumb-tip forces, while high

overlap indicates that this mapping is not unique. Thus, the thumb-tip force distributions

and percent overlap reveal to what extent thumb-tip force is sensitive to alterations in the

maximum isometric forces of thumb muscles. Furthermore, the overlap in thumb-tip force

across labeled groups reveals possible sources of classification error for each neural network

model.

We also analyzed the distribution of test accuracies and losses associated with the final neu-

ral network models as evaluated via 5-fold cross-validation. For a well-performing model,

accuracies should generally increase and losses should decrease across epochs until stabilizing

at their final values. Training was terminated after 100 epochs, as the losses and accuracies

were stable, indicating solution convergence. We calculated 95% confidence intervals for the

test accuracies and losses for each neural network model across epochs. To test whether

accounting for the dynamic behavior of the simulation increases neural network accuracy, we

performed two-sample t-tests (p< 0.05) for each dataset to evaluate whether the average peak

accuracies achieved by the feedforward and LSTM models were significantly different. The

achieved accuracies and losses display the overall performance of each neural network model,

whereas the relative performance of the neural network models is revealed via comparisons of

their peak accuracies.

Results

The simulation datasets successfully characterized the relative contributions of each muscle to

the production of thumb-tip force (Fig 3). Unique muscle contributions within each dataset

are illustrated by smaller percent overlap between labeled groups (Table 3). Across all datasets,

two distinguishable groups consistently emerged: high FPL maximum isometric force and low

FPL maximum isometric force. Despite variations in every other muscle tested, there is no

overlap between any group with a high maximum isometric force of the FPL and any group

with a low one (c.f., Fig 3a–3d, clear division between groups defined by distal and dorsal force

direction). The percent volume overlap between thumb-tip forces generated with high versus

low maximum isometric force of each other muscle analyzed was substantially higher, exceed-

ing 35% for the APL, 41% for the ADPt, but only reaching 18.2% for the ADPo (c.f., Fig 3, divi-

sion between groups defined by radial force direction).

Feedforward neural network accuracy was substantially lower and less stable in datasets

with variations to more muscles. The analyses of Dataset 1 and Dataset 2 showed losses to

decrease across epochs (Fig 4a) before converging at their final values. The final losses for the

feedforward model were notably more consistent for simpler datasets, as shown by narrower

confidence intervals across the 5-fold cross-validation process. Additionally, the peak accura-

cies were relatively high for Datasets 1 and 2 (Fig 5). In contrast, the peak accuracy for Dataset

1 was 97.8%, as compared to 20.5% for Dataset 4.

Similar to the feedforward model, the LSTM model performance decreased substantially

for datasets that adjusted more muscles. Analyses of simpler datasets produced lower losses

than those of datasets which varied additional muscles (Fig 4b). Losses across epochs varied

substantially for Dataset 3 in the LSTM models, but still tended to decrease along with that of

the other datasets. Again, peak accuracies substantially decreased for more complex datasets

(Fig 5). The peak accuracy for Dataset 1 was 96.6%, as compared to 27.9% for Dataset 4.

Both neural network models achieved comparably high accuracies relative to random guess

(Fig 5). The LSTM model trained from Dataset 4 achieved the lowest accuracies, but still

reached 27.9% accuracy as compared to 6.25% for a random guess. Comparing the models via

two-sample t-tests revealed the analysis of Dataset 2 and Dataset 3 to produce significantly
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Fig 3. Peak thumb-tip forces across all datasets. (a)-(d) represent peak thumb-tip forces achieved in simulations

from Datasets 1–4, respectively. Numbers above graphs correspond to each labeled group, which are described in

Table 4. Ellipsoid centers represent mean force achieved for each labeled group. Ellipsoid radii represent 1 standard

deviation from the mean. As datasets incorporate changes to more thumb muscles, the final thumb-tip forces achieved

overlap more frequently across labeled groups. This increased overlap results in a more challenging classification task

for each neural network model.

https://doi.org/10.1371/journal.pone.0255103.g003
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Table 3. Percent volume overlap associated with groups of high or low maximum isometric force for a given

thumb muscle.

Dataset FPL APL ADPt ADPo

1 0.0%

2 0.0% 42.3%

3 0.0% 35.8% 63.9%

4 0.0% 59.4% 41.9% 18.2%

Each percent displayed was calculated as the volume of ellipsoid overlap (see Fig 3) for any groups of high or low

maximum isometric force for a given muscle, divided by the total volume occupied by all ellipsoids in a dataset.

https://doi.org/10.1371/journal.pone.0255103.t003

Table 4. Maximum isometric force (above or below the mean) associated with labeled groups of each dataset.

Dataset Group Number a FPL APL ADPt ADPo

1 1 High

2 Low

2 1 High High

2 High Low

3 Low High

4 Low Low

3 1 High High Low

2 High High High

3 High Low High

4 High Low Low

5 Low High High

6 Low High Low

7 Low Low High

8 Low Low Low

4 1 High Low Low Low

2 High High Low Low

3 High High High High

4 High High High Low

5 High Low Low High

6 High High Low High

7 High Low High High

8 High Low High Low

9 Low High High Low

10 Low Low Low High

11 Low High Low Low

12 Low High High High

13 Low High Low High

14 Low Low High Low

15 Low Low High High

16 Low Low Low Low

"Low" refers to a maximum isometric force below the mean (as reported in Table 1) and "High" refers to that above the mean.

https://doi.org/10.1371/journal.pone.0255103.t004
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higher peak accuracies (p<0.01 and p<0.05, respectively) using the feedforward model as

compared to the LSTM model. However, the two-sample t-test also revealed the analysis of

Dataset 4 to produce significantly higher peak accuracies (p<0.01) using the LSTM model as

compared to the feedforward model.

Fig 4. Test losses of each artificial neural network. Test losses across epochs through 5-fold cross-validation for

feedforward (a) and LSTM (b) neural network models. Shaded regions represent 95% confidence intervals. Losses for

datasets tended to decrease across epochs as model weights converged. Datasets which altered more muscles tended to

have larger confidence intervals.

https://doi.org/10.1371/journal.pone.0255103.g004
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Discussion

Leveraging artificial neural networks and musculoskeletal models, we predicted changes in

difficult-to-measure muscle parameters from minimal, measurable data. We specifically quan-

tified feedforward and LSTM neural network performance in predicting the maximum iso-

metric force of thumb muscles from simulated lateral pinch data. We report two key findings:

1. Under relatively simple conditions, neural network models can predict high and low maxi-

mum isometric force from lateral pinch data and 2. Accounting for long-term temporal depen-

dencies in simulated lateral pinch data did not significantly improve neural network model

performance. Although we did not predict explicit values of maximum isometric force in this

study, accurately predicting changes in this parameter is a critical step that demonstrates the

feasibility of using artificial neural networks to perform this task. With considerations for task

complexity, dataset size, and Hill-type parameter of interest, the foundational work developed

here could be expanded to define specific values of Hill-type parameters through categoriza-

tion or regression.

The observed decrement in model performance for datasets which varied more muscle

actuators may be attributable to redundancies in actuator function. The ADPt and ADPo both

adduct the thumb and represent two heads of the same muscle: the adductor pollicis. The

ADPt and ADPo have been shown to contribute to similar directional components of lateral

Fig 5. Accuracy of each artificial neural network. Average peak test accuracies achieved by both neural network models through

5-fold cross-validation. Error bars represent 95% confidence intervals and horizontal dashed lines represent the model’s accuracy for

a random guess. Two-sample t-tests showed significant differences between accuracies across FF and LSTM models (� corresponds

to significance p<0.05, �� corresponds to significance p<0.01).

https://doi.org/10.1371/journal.pone.0255103.g005
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pinch thumb-tip force in cadaveric specimens [20]. We observed this behavior in our forward

dynamic simulations (Fig 3), as varying the maximum isometric force of the ADPt and ADPo

produced similar changes in thumb-tip force. Thus, the similar force contributions of actua-

tors varied in Dataset 3 and Dataset 4 made the classification task of the neural network inher-

ently more challenging. The increased challenge to the neural network for more complex

datasets is also supported by the increased overlap observed for the APL, ADPt, and ADPo in

Dataset 3 and Dataset 4 (Table 3). Further investigations may leverage our simulation frame-

work to identify the role of individual muscles in performing complex, coordinated tasks.

Understanding the physical behavior of the system will be crucial to neural network model

development and interpretation.

Classifying the maximum isometric force of multiple, interrelated muscles from thumb-tip

force alone is challenging. The substantially higher accuracies and lower losses observed for

Dataset 1 and Dataset 2 as compared to Dataset 3 and Dataset 4 may reflect a need for more

diverse input variables. Datasets scaled substantially in complexity through the inclusion of

changes to additional muscles. Neural network models used to classify parameters of redun-

dant muscles may require additional types of biomechanical inputs. Artificial neural networks

have been widely employed to map measured electromyographic, kinematic, and kinetic

parameters [36]. These quantities may prove relevant for predicting Hill-type parameters.

However, the selection of additional input variables should be completed with caution. The

need for caution is illustrated by Frize et al. [37], who compared the performance of two mod-

els for making clinical decisions in intensive care units, one with 6 variables input and the

other with 51 [37]. The model trained on 6 variables had a higher classification rate, lower

average squared error, and converged after substantially fewer epochs. Thus, in some scenar-

ios, inputting irrelevant parameters can impede classification performance. In this context, a

key contribution of our study is that simple classifications can be performed from minimal

data, such as thumb-tip force alone.

Rather than use measured thumb-tip force, we simulated dynamic thumb-tip force to input

into our machine learning framework. This approach had two advantages: it enabled the effi-

cient generation of large datasets and enabled the isolated adjustment of the maximum isomet-

ric force of the muscles we investigated. Large datasets are necessary, as a common pitfall

when applying machine learning to biomechanical datasets is the curse of dimensionality,

whereby high-dimensional models learn inadequately from too few observations in a large fea-

ture space [38]. Forward dynamic simulations can produce large numbers of observations effi-

ciently, providing an effective means of training machine learning algorithms in the prediction

of complex biomechanical movements. In the present work, this enabled the development of

datasets that represented a wide physiological range of muscle parameters. This range roughly

reflects an adult (approximately 29.2 y/o) male population [39] within ±2 SDs of the mean

maximum isometric force for the thumb muscles analyzed. However, as the maximum isomet-

ric force remains unmeasurable in vivo, this is an approximation. It is also important to note

that the datasets we employed did not vary in posture, likely limiting the generalizability of the

reported neural network models to new postures. In the present work, this constant posture

across simulations enabled the isolated variation of the maximum isometric force. Under-

standing to what extent changes in behavior of dynamic thumb-tip force production is attrib-

utable to the maximum isometric force enhances our fundamental understanding of thumb

biomechanics, and future work could focus on expanding these methods to evaluate the effects

of other variables.

The simple artificial neural network structures employed may have limited the performance

achieved by each neural network model. Across each of the datasets analyzed, the feedforward

and LSTM models maintained the same depth (1 layer) and width (4 hidden nodes).
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Maintaining the same architecture across feedforward and LSTM models enabled the fair

comparison of their performance, regardless of model complexity. These models performed

relatively well for Datasets 1 and 2, achieving accuracies above 96% and 80%, respectively.

However, accuracies were below 30% for Dataset 4. Deeper structures may be more appropri-

ate for complex datasets, as this would enable the model to discover more abstract features

[40]. Especially in more challenging classification tasks, additional layers may enable the

model to yield higher accuracies. Neural network width should also be tuned, as the inclusion

of additional hidden nodes may enable quicker convergence [41]. However, use of too many

hidden nodes can yield poor generalizability, which was avoided by the simple neural network

structures presented. Lastly, further hyper-parameter tuning may have a substantial effect on

neural network performance [42]. Despite these limitations, the neural network structure

implemented in this study enabled us to test the feasibility of using artificial neural networks

to predict Hill-type parameters, and to test whether feedforward or LSTM models are better

suited to predict Hill-type parameters during lateral pinch. Even with relatively simple neural

network models, we demonstrated that Hill-type parameters could be predicted from minimal

data. We also successfully compared the performance of feedforward and LSTM neural net-

work models. However, future works that use the described simulation and neural network

frameworks to study more complex biomechanical systems may require more robust hyper-

parameter tuning.

In general, the LSTM model did not perform consistently better or worse than the feedfor-

ward model (Fig 5). Notably, we observed significantly higher peak accuracies using the feed-

forward model as opposed to the LSTM model for Dataset 2 and Dataset 3. Yet, this result is

contradicted in Dataset 4, for which the LSTM model outperformed the feedforward model.

The inability of the LSTM model to consistently outperform the feedforward model may be

the result of the data itself. Throughout each simulation, thumb-tip force increases at an almost

constant rate before achieving its peak value. As a result, the relation between thumb-tip forces

early and late in a simulation may provide little insight into underlying muscle parameters.

This suggests the use of LSTM neural networks is not needed when analyzing gradually

increasing lateral pinch thumb-tip force data. Rather, LSTM models are likely better suited for

more dynamic tasks, such as gait analysis. For example, Kidziński et al. [43] used LSTM mod-

els in the prediction of gait events in children with healthy and pathological gait. This model

achieved relatively low error (10 ms and 13 ms for foot-contact and foot-off, respectively), out-

performing heuristic-based approaches. In the upper extremity, LSTM models could be suit-

able for studying tasks that vary substantially with time, such as predicting hand postures from

electromyography [44]. In the present work, the LSTM model may have outperformed the

feedforward model if the lateral pinch force varied more, such as through repetitions within

each simulation.

Conclusions

Our investigations identified artificial neural networks as a tool for approximating underlying

Hill-type muscle parameters from limited lateral pinch data. Furthermore, we proposed the

employment of a simulation framework to assist in the production of large datasets from

which the neural network model may learn. Although accuracies calculated for all datasets

were well above random guess, datasets which included muscles with similar function compro-

mised neural network performance. Future work should test whether including other easily

measurable quantities assists the classification or regression of properties for muscles of redun-

dant function. Additionally, these investigations revealed that feedforward models, as opposed

to LSTM models, may be sufficient for classifying parameters for datasets that vary only
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slightly over time. These investigations inform a data-driven approach to classifying Hill-type

muscle parameters.

Author Contributions

Conceptualization: Kalyn M. Kearney, Joel B. Harley, Jennifer A. Nichols.

Data curation: Kalyn M. Kearney, Joel B. Harley, Jennifer A. Nichols.

Formal analysis: Kalyn M. Kearney, Joel B. Harley, Jennifer A. Nichols.

Funding acquisition: Jennifer A. Nichols.

Investigation: Kalyn M. Kearney, Joel B. Harley, Jennifer A. Nichols.

Methodology: Kalyn M. Kearney, Joel B. Harley, Jennifer A. Nichols.

Project administration: Joel B. Harley, Jennifer A. Nichols.

Resources: Joel B. Harley, Jennifer A. Nichols.

Supervision: Joel B. Harley, Jennifer A. Nichols.

Validation: Kalyn M. Kearney.

Visualization: Kalyn M. Kearney.

Writing – original draft: Kalyn M. Kearney.

Writing – review & editing: Kalyn M. Kearney, Joel B. Harley, Jennifer A. Nichols.

References
1. Hill A V. The heat of shortening and the dynamic constants of muscle. Proc R Soc London Ser B—Biol

Sci. 1938. https://doi.org/10.1098/rspb.1938.0050

2. Hill A V. The series elastic component of muscle. Proc R Soc Lond B Biol Sci. 1950. https://doi.org/10.

1098/rspb.1950.0035 PMID: 15430325

3. Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor

control. Critical reviews in biomedical engineering. 1989.

4. Murray WM, Buchanan TS, Delp SL. The isometric functional capacity of muscles that cross the elbow.

J Biomech. 2000. https://doi.org/10.1016/S0021-9290(00)00051-8

5. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin

Orthop Relat Res. 1983. https://doi.org/10.1097/00003086-198310000-00042 PMID: 6617027

6. Brand RA, Pedersen DR, Friederich JA. The sensitivity of muscle force predictions to changes in physi-

ologic cross-sectional area. J Biomech. 1986. https://doi.org/10.1016/0021-9290(86)90164-8 PMID:

3771581

7. Friederich JA, Brand RA. Muscle fiber architecture in the human lower limb. J Biomech. 1990. https://

doi.org/10.1016/0021-9290(90)90373-b PMID: 2307696

8. James RS, Altringham JD, Goldspink DF. The mechanical properties of fast and slow skeletal muscles

of the mouse in relation to their locomotory function. J Exp Biol. 1995. PMID: 7699317

9. Krylow AM, Sandercock TG. Dynamic force responses of muscle involving eccentric contraction. J Bio-

mech. 1997. https://doi.org/10.1016/s0021-9290(96)00097-8 PMID: 8970921

10. Winby CR, Lloyd DG, Kirk TB. Evaluation of different analytical methods for subject-specific scaling of

musculotendon parameters. J Biomech. 2008. https://doi.org/10.1016/j.jbiomech.2008.03.008 PMID:

18456272

11. Menegaldo LL, de Oliveira LF. Effect of muscle model parameter scaling for isometric plantar flexion tor-

que prediction. J Biomech. 2009. https://doi.org/10.1016/j.jbiomech.2009.06.043 PMID: 19665714

12. Thelen DG, Wojcik LA, Schultz AB, Ashton-Miller JA, Alexander NB. Age differences in using a rapid

step to regain balance during a forward fall. Journals Gerontol—Ser A Biol Sci Med Sci. 1997. https://

doi.org/10.1093/gerona/52a.1.m8 PMID: 9008663

PLOS ONE Classifying muscle parameters with artificial neural networks and simulated lateral pinch data

PLOS ONE | https://doi.org/10.1371/journal.pone.0255103 September 2, 2021 14 / 16

https://doi.org/10.1098/rspb.1938.0050
https://doi.org/10.1098/rspb.1950.0035
https://doi.org/10.1098/rspb.1950.0035
http://www.ncbi.nlm.nih.gov/pubmed/15430325
https://doi.org/10.1016/S0021-9290%2800%2900051-8
https://doi.org/10.1097/00003086-198310000-00042
http://www.ncbi.nlm.nih.gov/pubmed/6617027
https://doi.org/10.1016/0021-9290%2886%2990164-8
http://www.ncbi.nlm.nih.gov/pubmed/3771581
https://doi.org/10.1016/0021-9290%2890%2990373-b
https://doi.org/10.1016/0021-9290%2890%2990373-b
http://www.ncbi.nlm.nih.gov/pubmed/2307696
http://www.ncbi.nlm.nih.gov/pubmed/7699317
https://doi.org/10.1016/s0021-9290%2896%2900097-8
http://www.ncbi.nlm.nih.gov/pubmed/8970921
https://doi.org/10.1016/j.jbiomech.2008.03.008
http://www.ncbi.nlm.nih.gov/pubmed/18456272
https://doi.org/10.1016/j.jbiomech.2009.06.043
http://www.ncbi.nlm.nih.gov/pubmed/19665714
https://doi.org/10.1093/gerona/52a.1.m8
https://doi.org/10.1093/gerona/52a.1.m8
http://www.ncbi.nlm.nih.gov/pubmed/9008663
https://doi.org/10.1371/journal.pone.0255103
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