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Abstract

Translating a set of disease regions into insight about pathogenic mechanisms requires not only the ability to identify the
key disease genes within them, but also the biological relationships among those key genes. Here we describe a statistical
method, Gene Relationships Among Implicated Loci (GRAIL), that takes a list of disease regions and automatically assesses
the degree of relatedness of implicated genes using 250,000 PubMed abstracts. We first evaluated GRAIL by assessing its
ability to identify subsets of highly related genes in common pathways from validated lipid and height SNP associations
from recent genome-wide studies. We then tested GRAIL, by assessing its ability to separate true disease regions from many
false positive disease regions in two separate practical applications in human genetics. First, we took 74 nominally
associated Crohn’s disease SNPs and applied GRAIL to identify a subset of 13 SNPs with highly related genes. Of these, ten
convincingly validated in follow-up genotyping; genotyping results for the remaining three were inconclusive. Next, we
applied GRAIL to 165 rare deletion events seen in schizophrenia cases (less than one-third of which are contributing to
disease risk). We demonstrate that GRAIL is able to identify a subset of 16 deletions containing highly related genes; many
of these genes are expressed in the central nervous system and play a role in neuronal synapses. GRAIL offers a statistically
robust approach to identifying functionally related genes from across multiple disease regions—that likely represent key
disease pathways. An online version of this method is available for public use (http://www.broad.mit.edu/mpg/grail/).
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Introduction

An emerging challenge in genomics is the ability to examine

multiple disease regions within the human genome, and to

recognize a subset of key genes that are involved in a common

cellular process or pathway. This is a key task to translate

experimentally ascertained disease regions into meaningful

understanding about pathogenesis. The importance of this

challenge has been highlighted by advances in human genetics

that are facilitating the rapid discovery of disease regions in the

form of genomic regions around associated SNPs (single nucleotide

polymorphisms) [1–6] or CNVs (copy number variants) [7–10].

These disease regions often overlap multiple genes – though only

one is typically relevant to pathogenesis and the remaining are

spuriously implicated by proximity. The difficulty of this task is

heightened by the limited state of cataloged interactions,

pathways, and functions for the vast majority of genes. However,

undefined gene relationships might often be conjectured from the

literature, even if they are not explicitly described yet.

The general strategy of using function to prioritize genes in

disease regions has been substantially explored [11–18]. However,

predicted disease genes have not, in general, been easily validated.

Thus far, published approaches have utilized a range of codified

gene information including protein-interaction maps, gene
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expression data, carefully constructed gene networks based on

multiple information sources, predefined gene sets and pathways,

and disease-related keywords. We propose, instead, to use a

flexible metric of gene relatedness that not only captures clearly

established close gene relationships, but also has the ability to

capture potential undocumented or distant ones. Such a metric

may be a more powerful tool to approach this problem rather then

relying on incomplete databases of gene functions, interactions, or

relationships.

To this end, we use established statistical text mining

approaches to quantify relatedness between two genes – specifically,

gene relatedness is the degree of similarity in the text describing

them within article abstracts. The published literature represented

in online PubMed abstracts encapsulates years of research on

biological mechanisms. We and others have shown the great utility

of statistical text mining to rapidly obtain functional information

about genes, including protein-protein interactions, gene function

annotation, and measuring gene-gene similarity [19–22]. Text is

an abundant and underutilized resource in human genetics, and

currently a total of 140,000 abstracts from articles that reference

human genes are available through PubMed [23]. Additional

valuable information can be seamlessly gained by including more

than 100,000 references from orthologous genes; many important

pathways have been more thoroughly explored in model systems

than in humans.

We have developed a novel statistical method to evaluate the

degree of relatedness among genes within disease regions: Gene

Relationships Among Implicated Loci (GRAIL). Given only a collection

of disease regions, GRAIL uses our text-based definition of

relatedness (or alternative metrics of relatedness) to identify a

subset of genes, more highly related than by chance; it also assigns

a select set of keywords that suggest putative biological pathways.

It uses no information about the phenotype, such as known

pathways or genes, and is therefore not tethered to potentially

biased pre-existing concepts about the disease.

In addition to a flexible text-based metric of relatedness,

GRAIL’s ability to successfully connect genes also leverages a

statistical framework that carefully accounts for differential gene

content across regions. We assume that each region contains a

single pathogenic gene; therefore narrow regions with one or just a

few genes are more informative than expansive regions with many

genes, since they are likely to have many irrelevant genes. To take

advantage of this, we have designed GRAIL to set a lower

threshold in considering relatedness for those genes in narrow

regions, allowing for more distant relationships to be considered;

on the other hand it sets a more stringent threshold for genes

located in expansive mutligenic regions and considers only the

very closest of relationships. This strategy prevents large regions

with many genes from dominating the analysis.

In this paper we apply GRAIL to four phenotypes. In each case

GRAIL is able to identify a subsets of genes enriched for

relatedness – more than expected by random chance. We

demonstrate enrichment for relatedness among true disease

regions rigorously based on both GRAIL’s theoretically derived

p-value and also based on parallel analysis of either (1) carefully

selected random regions matched for gene content and size or (2)

experimentally derived false positive disease regions.

GRAIL is able to identify subsets of highly related genes among

validated SNP associations. First we use GRAIL to identify related

genes from SNPs associated with serum lipid levels; GRAIL

correctly identifies genes already known to influence lipid levels

within the cholesterol biosynthesis pathway. In comparison to

randomly selected matched SNP sets, the set of lipid SNPs

demonstrate significantly more relatedness. Second, we use

GRAIL to identify significantly related genes near height-

associated SNPs; these genes highlight plausible pathways involved

in height. In comparison to randomly selected matched SNP sets,

the set of height SNPs also demonstrate significantly more

relatedness.

Encouraged by GRAIL’s ability to recognize biologically

meaningful connections, we tested its ability to distinguish true

disease regions from false positive regions in two practical

applications in human genetics. First, in Crohn’s disease, we start

with a long list of putative SNP associations from a recent GWA

(genome-wide association) meta-analysis [24]. We demonstrate

that a substantial fraction of these SNPs contain highly related

genes—far beyond what can be expected by chance. We

demonstrate that many of these SNPs subsequently validate in

an independent replication genotyping experiment. Second, in

schizophrenia, we previously identified an over-representation of

rare deletions in schizophrenia cases compared to controls [8].

Despite the statistical excess, it is challenging to identify exactly

which case deletions are causal, given the relatively high

background rate of rare deletions in controls. Using GRAIL

however, we are able to demonstrate that a subset of case deletions

contain related genes. We further demonstrate that these genes are

highly and significantly enriched for central nervous system (CNS)

expressed genes. In stark contrast, GRAIL finds no excess

relatedness among genes implicated by case deletions.

Results

Summary of statistical approach
GRAIL relies on two key methods: (1) a novel statistical

framework that assesses the significance of relatedness between

genes in disease regions (2) a text-based similarity measure that

scores two genes for relatedness to each other based on text in

PubMed abstracts. Details for both are presented in the Methods.

The GRAIL statistical framework consists of four steps (see

Figure 1). First, given a set of disease regions we identify the genes

overlapping them (Figure 1A); for SNPs we use LD (linkage

disequilibrium) characteristics to define the region. Second, for

Author Summary

Modern genetic studies, including genome-wide surveys
for disease-associated loci and copy number variation,
provide a list of critical genomic regions that play an
important role in predisposition to disease. Using these
regions to understand disease pathogenesis requires the
ability to first distinguish causal genes from other nearby
genes spuriously contained within these regions. To do
this we must identify the key pathways suggested by
those causal genes. In this manuscript we describe a
statistical approach, Gene Relationships Across Implicated
Loci (GRAIL), to achieve this task. It starts with genomic
regions and identifies related subsets of genes involved in
similar biological processes—these genes highlight the
likely causal genes and the key pathways. GRAIL uses
abstracts from the entirety of the published scientific
literature about the genes to look for potential relation-
ships between genes. We apply GRAIL to four very
different phenotypes. In each case we identify a subset
of highly related genes; in cases where false positive
regions are present, GRAIL is able to separate out likely
true positives. GRAIL therefore offers the potential to
translate disease genomic regions from unbiased genomic
surveys into the key processes that may be critical to the
disease.

Identifying Common Function Across Disease Regions
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each overlapping gene we score all other human genes by their

relatedness to it (Figure 1B). In this paper we use a text-based

similarity measure; alternative measures of relatedness, for

example similarity in gene annotations or expression data, could

be easily applied instead [25,26]. Third, for each gene we count

the number of independent regions with at least one highly related

gene (Figure 1C); here the threshold for relatedness varies between

regions depending on the number of genes within them. We assign

a p-value to that count. Fourth, for each disease region we select

the single most connected gene as the key gene. We assign the

disease region that key gene’s p-value after adjusting for multiple

hypothesis testing (if there are multiple genes within the region)

(Figure 1D). This final score is listed in this paper as pmetric where

the metric is text, expression, or annotation based. Very low ptext scores

for one region indicate that a gene within it is more related to

genes in other disease regions through PubMed abstracts than

Figure 1. Gene Relationships Among Implicated Loci (GRAIL) method consists of four steps. (A) Identifying genes in disease regions. For
each independent associated SNP or CNV from a GWA study, GRAIL defines a disease region; then GRAIL identifies genes overlapping the region. In
this region there are three genes. We use gene 1 (pink arrow) as an example. (B) Assess relatedness to other human genes. GRAIL scores each gene
contained in a disease region for relatedness to all other human genes. GRAIL determines gene relatedness by looking at words in gene references;
related genes are defined as those whose abstract references use similar words. Here gene 1 has word counts that are highly similar to gene A but not
to gene B. All human genes are ranked according to text-based similarity (green bar), and the most similar genes are considered related. (C) Counting
regions with similar genes. For each gene in a disease region, GRAIL assesses whether other independent disease regions contain highly significant
genes. GRAIL assigns a significance score to the count. In this illustration gene 1 is similar to genes in three of the regions (green arrows), including
gene A. (D) Assigning a significance score to a disease region. After all of the genes within a region are scored, GRAIL identifies the most significant
gene as the likely candidate. GRAIL corrects its significance score for multiple hypothesis testing (by adjusting for the number of genes in the region),
to assign a significance score to the region.
doi:10.1371/journal.pgen.1000534.g001
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expected by chance. Simulations on random groups of SNPs

demonstrate that the ptext values approximately estimate Type I

error rates, being approximately uniformly distributed under the

null hypothesis (see Figure S1). However, we recommend the use

of careful simulations or controls rather than actual theoretical p-

values to reinforce the significance of GRAIL’s findings – as we do

in the examples below.

The text-based similarity metric is based on standard approach-

es used in statistical text mining. To avoid publications that report

on or are influenced by disease regions discovered in the recent

scans, we use only those PubMed abstracts published prior to

December 2006, before the recent onslaught of GWA papers

identifying novel associations. This approach effectively avoids the

evaluation of gene relationships being confounded by papers

listing genes in regions discovered as associated to these

phenotypes. In addition to including primary abstract references

about genes listed in Entrez Gene, we augment our text

compendium with references to orthologous genes listed in

Homologene [23]; this increases the number of articles available

per gene from 6 to 12 (see Table 1). We note that the distribution

of articles per gene is skewed toward a small number of genes with

many references; 0.4% of genes are referenced by .500 articles,

while 26% of genes are referenced by ,5. In fact 2,034 genes

could not be connected to any abstracts at all. For each abstract we

convert free text into vectors of word counts [19]. For each gene

we define a word vector that consists of averaged word counts

from document references to it. Pairwise gene relatedness is then

the correlation between the vectors of word counts between two

genes. Two genes that are referenced by abstracts using the same

sorts of words will receive a high similarity score, whereas two

genes that have abstract references that largely use a different

vocabulary will receive a low score (Figure 1B). Importantly, genes

do not need to be co-cited in the same document to be identified as

highly similar.

After regions are scored with GRAIL, PubMed text can be used

to identify keywords that may provide insight into the underlying

biological pathways. We define these keywords as those words that

most strongly link the significant genes in each region, that is the

words with overall greatest weight across all of the text vectors

from those genes.

Since the GRAIL framework can be easily used with any gene

relatedness metric, we also devised and tested two alternative

metrics derived from Gene Ontology (GO) annotations [27] and

an mRNA expression atlas consisting of expression measurements

across multiple human tissues (The Novartis Gene Expression

Atlas) [28]. These metrics are described in greater detail in

Methods.

Evaluating relationships between known associated
SNPs: lipid levels and height

We first applied GRAIL to a set of 19 validated SNPs associated

with triglyceride, LDL, and/or HDL levels [5,6]. Since 14 SNPs (out

of 19) are near genes that are known members of lipid metabolism

pathways, we hypothesized that GRAIL should be able to identify

these genes accurately. A total of 87 genes were implicated by the 19

associated SNPs. Of the 14 SNPs near compelling candidate genes,

13 obtained ptext scores,0.01 (Figure 2A, Table S1). GRAIL correctly

identified those genes implicated in lipid metabolism from each of

these 14 regions. To asses the significance of these findings, we

applied GRAIL to 1000 random matched SNP sets; each set

consisted of 19 SNPs randomly selected from a commercial

genotyping array which implicated a similar total of 87610 genes.

In contrast to lipid associated SNPs, not a single matched random set

contained 13 SNPs that obtained ptext scores#0.01; on average

matched sets had 0.26 (maximum 6) SNPs with ptext#0.01 (Figure 2A).

Thus, there is substantial enrichment for highly connected genes

captured by true lipid associated SNPs.

Despite relatively comprehensive lipid biology annotation, GO

does not identify relationships between regions as effectively as

published text (Figure 2A). A total of 12 out of the 19 associated

SNPs obtained pannotation,0.01. Relationships between highest

scoring candidate genes are explained by several shared GO

codes including: GO:0008203 (‘cholesterol metabolic process’),

GO:0016125 (‘sterol metabolic process’), GO:0006629 (‘lipid

metabolic process’), GO:0008202 (‘steroid metabolism’), and

GO:0005319 (‘lipid transporter activity’). Gene expression does

not identify relationships between regions as effectively as text,

either (Figure 2A). A subset of 4 associated SNPs obtain

pexpression,0.01. The regions with the most significantly connected

genes have similar tissue-specific expression profiles. The highest

expression is in four samples taken from adult and fetal liver

tissues, known to play a major role in cholesterol metabolism.

While associated SNPs are less connected with these alternative

metrics, they do seem to leverage the appropriate functional

variables and provide valuable phenotypic information.

We next applied GRAIL to 42 validated SNP associations to

adult height in recent GWA studies [2–4]. This application tests

GRAIL’s ability to connect genes in the absence of functional

literature connecting the phenotype to the relevant pathways. In

contrast to lipid metabolism, all associated common SNPs were

identified in 2007 and 2008 and the underlying biological

pathways involved in height are still poorly understood. This

insures independence between association results and the

functional literature from before 2007 that is mined in this study.

In most cases the key genes are not yet known.

Table 1. Text resources.

Refs/gene

Genes Articles References mean median mean median

Standard 18,690 137,395 260,658 13.9 6 1.9 1

Homologs 15,990 138,720 434,690 27.1 13 3.1 1

Combined 18,875 259,638 599,537 31.7 12 2.3 1

We obtained text from abstracts relevant to human genes from PubMed on December 2006. In the first row we list the number of human genes with any references
listed, the total number of abstracts referencing them, and the total number of gene references. We then list the mean and median number of abstract references per
gene, and also the mean and median number of gene references per abstract. We used Homologene to identify human gene orthologs, and obtained text for those
genes; information about those genes and references is listed in the second row. We combined the two pools of gene references to create a large combined database
of 18,875 genes with 599,537 references to 259,638 articles, described in the third row.
doi:10.1371/journal.pgen.1000534.t001
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The 42 height SNPs implicated a total of 185 genes (Table S2).

Of these 42 regions, 13 obtained ptext scores,0.01 (Figure 2B). For

comparison, we used GRAIL to score 1000 matched SNP sets; as

before each set consisted of 42 SNPs randomly selected from a

commercial array and implicated a total of 185610 genes. Not a

single random set contained 13 SNPs that obtained ptext

scores#0.01; on average matched sets had 0.77 (maximum 10)

SNPs with ptext scores,0.01. Thus, we present clear statistical

evidence that GRAIL identifies genes with non-random functional

connections among associated loci.

Strikingly, the top five keywords linking the genes were

‘hedgehog’, ‘histone’, ‘bone’, ‘cartilage’, and ‘growth’ (see Table

S3 for a more complete list). Of note, ‘height’, does not emerge as

a keyword since these genes had not been previously related to

height. For comparison, the top five keywords for lipid metabolism

associated SNPs were ‘lipoprotein’, ‘cholesterol’, ‘lipase’, ‘apoli-

poprotein’, and ‘triglyceride’ (Table S3). These results are

particularly noteworthy as this analysis uses only a simple list of

SNPs implicated by GWA studies—no specific biological pathways

or mechanisms or phenotype details are assumed.

Genetic associations to Crohn’s disease and
schizophrenia—predicting disease regions

After successfully applying GRAIL to validated associations for

two phenotypes, we hypothesized that GRAIL could also be used

to prospectively identify true disease regions, based on the

relatedness of genes within them, from false positive regions. We

tested GRAIL’s ability to distinguish disease regions from a longer

list of results containing a large number of false positive regions as

well in two separate human genetics applications.

A recent GWA meta-analysis in Crohn’s disease identified 74

independent SNPs as nominally significant (p,561025) [24].

While the excess beyond chance suggested many of these regions

were likely true positives, up to half of these regions should by

necessity be unrelated to Crohn’s and simply represent the tail of

the null distribution. Thus we sought to explore whether GRAIL

could identify a subset of these SNPs that implicate an inter-

connected set of genes, and whether those represented true

associations that could be validated.

In a now published replication genotyping of the 74 SNPs, 30

replicated convincingly when tested in independent samples

(defined as having one-tailed association p-values,0.0007 in

replication samples and two tailed association p-values,561028

overall), confirming true positive associations, whereas 22

convincingly failed to replicate (defined as overall association p-

value rising to .1024); the remaining 22 regions had intermediate

levels of significance following replication (and can be considered

as yet unresolved associations) [24].

We applied GRAIL prospectively to these 74 nominally

associated SNPs. GRAIL was initially operated independent of

Figure 2. SNPs associated with lipid metabolism and height contain genes related to each other. (A) 19 SNPs associated with lipid
metabolism. The y-axis plots the ptext values on a log scale, with increasing significance at the top. The histogram on the left side of the graph
illustrates values for matched SNP sets. 88.6% of those SNPs have ptext values that are .0.1. The scatter plot on the right illustrates ptext values for
actual serum cholesterol associated SNPs (blue dots). Black horizontal line marks the median ptext value. We assessed the same SNP with similarity
metrics based on gene annotation (green dots) and gene expression correlation (purple dots). (B) 42 SNPs associated with height. Similar plot for 42
height associated SNPs. The histogram on the left of the graph illustrates ptext values for random SNP sets carefully matched to height-associated SNP
set. 86.5% of those SNPs have ptext values that are .0.1. The scatter plot on the right illustrates ptext values for actual SNPs associated with height
(blue dots). Black horizontal line marks the median ptext value. We assessed the same SNP with similarity metrics based on gene annotation (green
dots) and gene expression correlation (purple dots). On the right we list for each ptext threshold the number of expected SNPs less than the threshold
based on matched sets, and the number of observed SNPs less than the threshold among height associated SNPs.
doi:10.1371/journal.pgen.1000534.g002

Identifying Common Function Across Disease Regions
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any knowledge of the contemporaneous replication genotyping

experiment. Each region contained between 1 and 34 genes,

except for two regions that contained no genes and were not

scored. GRAIL identified 13 regions as significant (achieving ptext

scores,0.01), as with the previous examples far in excess of

chance.

Of those 13 regions, 10 were among the set that convincingly

validated in subsequent replication (Table 2)—the remaining three

had indeterminate levels of significance. By contrast, only 20 of 63

SNPs remaining SNPs validated (Table S4). Disease regions that

replicate have more significant GRAIL scores than those that

failed (p = 0.00064, one-tailed rank-sum test, Figure 3A). As with

randomly selected SNP lists, the distribution of scores for the 21

failed regions was indistinguishable from a random (uniform)

distribution of p-values (Figure 3B).

Using these Crohn’s results, we have compared GRAIL’s

performance to four other competing algorithms that also use

functional information to prioritize genes, and GRAIL’s perfor-

mance is superior at predicting true positive associations (see Text

S1, Figure S2, Table S5, Table S6).

As a further test of GRAIL, we then evaluated the next most

significant 74 associated SNPs that emerged from the Crohn’s

disease GWA meta-analysis (association p-values ranging from

561025 to 261024). Out of the 75 regions, 8 are not near any

gene, and we did not score them. The remaining 67 regions were

tested with GRAIL for relationships to the 52 replicated and

indeterminate regions that emerged following replication. Two

emerge with highly significant GRAIL scores: rs8178556 on

chromosome 21 (IFNAR1, ptext = 1.761024) and rs12928822 on

chromosome 16 (SOCS1, ptext = 8.261024) suggesting these inde-

pendent regions may lead to novel associated SNPs for Crohn’s

disease (see Table S7).

We next applied GRAIL to recently published sets of rare

deletions seen in schizophrenia cases and matched controls.

Multiple groups have recently demonstrated that extremely rare

deletions, many of which are likely de novo, are notably enriched

in schizophrenia [8–10,29]. However, since rare deletions occur

frequently in healthy individuals as well, many of these case

deletions will also be non-pathogenic. In fact, we previously found

that large (.100 kb), gene overlapping, singleton, deletions were

present in 4.9% of cases but also in 3.8% of controls, suggesting

that over two-thirds of these deletions are not relevant to disease

[8]. We identified 165 published de-novo or case-only deletions of

.100 kb overlapping at least one gene; a total of 511 genes are

deleted or disrupted by these deletions [8,9,10]. Additionally, we

identified 122 regions similar control-only deletions; a total of 252

genes are deleted or disrupted by these deletions.

We applied GRAIL separately to both the case and control sets

of deletions. In the case deletions, we identified a subset containing

highly connected genes (Figure 4A). Specifically, 12 of the 165

regions obtain ptext scores,0.001 with text-similarity (Table 3). The

top keywords suggest some common biological underlying

functions: ‘phosphatase’, ‘glutamate’, ‘receptor’, ‘cadherin’, and

‘neurons’. In contast, we did not identify any regions with

significantly related genes in the corresponding list of deletions; out

of a total 124 regions, none obtained ptext scores,0.001 (see Table

S8). This represents a significant enrichment within the cases

(p = 0.01, one Fisher’s exact text).

We then sought independent assessment of the biological

relationship of the genes highlighted by GRAIL by examining the

extent to which these genes demonstrate preferential expression in

CNS tissues using a publicly available tissue atlas [30]. Here we

define preferential expression as median CNS tissue expression

significantly greater than in other tissues (p,0.01 by one-tailed

Table 2. High scoring regions from a Crohn’s disease GWA meta-analysis.

SNP Chr Position (HG17) passociation Replication Study Result N (genes) Implicated Gene ptext

rs2066845 16 49314041 1.5E-24 VALIDATED 3 NOD2 0.00010

rs10863202 16 84545499 1.4E-05 INDETERMINATE 4 IRF8 0.00058

rs10045431 5 158747111 1.9E-13 VALIDATED-NOVEL 1 IL12B 0.00066

rs11465804 1 67414547 3.3E-63 VALIDATED 1 IL23R 0.00094

rs2476601 1 114089610 7.3E-09 VALIDATED-NOVEL 8 PTPN22 0.0014

rs762421 21 44439989 7.0E-10 VALIDATED-NOVEL 1 ICOSLG 0.0023

rs2188962 5 131798704 1.2E-18 VALIDATED 9 IRF1 0.0026

rs917997 2 102529086 1.1E-05 INDETERMINATE 5 IL18RAP 0.0027

rs11747270 5 150239060 1.7E-16 VALIDATED 3 IRGM 0.0032

rs2738758 20 61820069 2.7E-06 INDETERMINATE 10 TNFRSF6B 0.0038

rs9286879 1 169593891 7.7E-10 VALIDATED-NOVEL 4 TNFSF18 0.0042

rs2301436 6 167408399 5.2E-13 VALIDATED-NOVEL 3 CCR6 0.0052

rs4263839 9 114645994 1.3E-10 VALIDATED 2 TNFSF8 0.008

rs3828309 2 233962410 1.2E-32 VALIDATED 4 USP40 0.019

rs744166 17 37767727 3.4E-12 VALIDATED-NOVEL 2 STAT3 0.023

rs7758080 6 149618772 4.4E-06 INDETERMINATE 4 SUMO4 0.033

rs7161377 14 75071147 2.3E-05 INDETERMINATE 1 BATF 0.09

Here we list a subset of the 74 regions that emerged from a Crohn’s disease GWA meta-analysis that GRAIL assigned the most compelling ptext scores to. The first three
columns list information about the associated SNP. The fourth column lists the combined p-value of association from a GWA meta-analysis and subsequent replication.
The fifth column indicates whether the region was validated, indeterminate, or failed in replication. Those regions that represent novel findings, not previously
published are also indicated. The sixth column lists the number of genes in the disease region, and the seventh column lists the candidate gene identified by GRAIL. The
eighth column lists the regions ptext score.
doi:10.1371/journal.pgen.1000534.t002
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rank-sum test). Considering the entire set, case-deletions are not

enriched for genes preferentially expressed in the CNS (22% are

preferentially expressed in the CNS, compared to 25% of control-

deletion genes). However, considering the subset of genes

indentified by GRAIL (ptext,0.01), 60% (9 of 15 genes) are

preferentially CNS expressed. Furthermore, the fraction of genes

with preferential CNS expression correlates inversely with the

significance of the GRAIL score (Figure 4B). Regions that GRAIL

assigns non-significant scores to, do not demonstrate any

compelling enrichment for CNS expressed genes.

Discussion

We have presented an automated text-based strategy to take a

list of disease regions and identify those regions with significantly

inter-related genes. In the process it recognizes the likely candidate

gene in each disease region. It makes no assumptions about the

phenotype being studied or underlying pathways that might be

presumed to be relevant to a disease state. While in principle a

diligent investigator could potentially examine the literature

related to all potentially associated genes and arrive at the same

conclusions, they are unlikely in practice be able to work with the

same efficiency and objectivity as the approach outlined here. In

the schizophrenia application, for example, we objectively

interpret and analyze the relationship between over 500 genes.

We present data that GRAIL can identify common SNPs that

subsequently validate in replication genotyping. We have demon-

strated superior performance in this application to other methods.

This approach could have widespread application to follow-up

GWA study results and offers a mechanism to prioritize the

hundreds of SNPs that are expected to achieve an intermediately

significant level of association (1025,p,1023). As far as we are

aware – this is the first successful prediction of the outcome of a

GWA validation study.

GRAIL offers the greatest value in situations where disease

regions are being considered that are difficult to validate, for

example rare deletions. The ability to genetically validate any

individual rare deletion is challenged given the limited power

afforded by the size of available patient collections. In schizo-

phrenia the excess of rare deletions has now been well documented

– but it had been difficult to connect these rare deletions to a

specific pathway. We identified a subset of related genes that have

functions that are plausibly related to schizophrenia. As other

diseases emerge where rare variants play a role in the genetic

architecture, our approach may provide a crucial first step to put

context to genetic findings.

Connecting seemingly unrelated genes through text
The main strength of GRAIL is its ability to link genes through

text that may not yet have an established common pathway or

process. Consider the IRGM gene association to Crohn’s disease –

for which GRAIL found strong evidence (uncorrected

ptext = 0.0011). GRAIL’s text-based similarity metric recognize

the significant connections between IRGM and four other

validated or intermediate region genes: IRF1, IL12B, IRF8, and

Figure 3. GRAIL predicts Crohn’s disease SNPs. (A) Validated versus Failed SNPs. Prior to replication, GRAIL scored Crohn’s SNPs that emerged
from a meta-analysis study. Results from follow-up testing either validated Crohn’s SNPs, or identified those SNPs that failed. We produce a scatter
plot of the significance of text-based similiarty (ptext) for validated regions (green) versus regions that failed to replicate (red). Black horizontal lines
mark the median ptext values. The distribution of scores for failed SNPs resembles a random distribution of p-values. The distribution of scores for
validated SNPs is significantly different; almost K of these SNPs obtain ptext scores,0.1. (B) Histogram of text-based scores for Crohn’s disease
candidate regions. Here we plot a histogram of ptext scores for 74 Crohn’s disease SNPs. Validated SNPs (green) have ptext values that are enriched for
significant values. Indeterminate SNPs (yellow) have a subset of ptext values that are significant. Failed SNPs (Red) have all of their ptext scores.0.1.
doi:10.1371/journal.pgen.1000534.g003
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SP110. IRGM is not readily connected to these genes in a well-

defined pathway and, in-fact, is not referenced together with them

in any abstracts; furthermore no IRGM interactions are listed in

Entrez at all. Yet they all are involved in the host response to

Mycobacterium and possibly other intracellular infections by

macrophages. The top keywords describing the connections

between IRGM and these genes were ‘macrophages’, ‘tuberculosis’

and ‘mycobacterium’. The IRGM gene has been shown exper-

imentally to eliminate intracellular Mycobacterium tuberculosis via

autophagy [31]. The IRF1 homolog studies in mouse have

demonstrated its role in intra-cellular nitrous oxide production,

necessary to fight Mycobacterium infections [32]. Individuals with

loss of function IL12B mutations have been found with increased

susceptibility to Mycobacterium infections [33] and knock out mice

have demonstrated increased susceptibility to infection [34,35]. A

SP110 mouse homolog has been shown to mediate innate

immunity in fighting intra-cellular Mycobacterium tuberculosis infec-

tion [36]. GRAIL is able to identify this common underlying

similarity between these genes, and assign a significant score to

IRGM, while at the same time revealing what may be an important

pathway in Inflammatory Bowel Disease. Other strategies

depending on interaction networks or functional databases may

struggle to detect these relationships.

Identifying disease genes within a region
GRAIL systematically identifies a single gene within a disease

region as the likely disease gene. We highlight two interesting

examples from the height data of previously unrecognized

potentially causative genes. The first example is the rs42046

SNP on chromosome 7 region implicating five genes. The genetic

studies that identified this region had suggested CDK6 as the likely

causative gene [2–4]. However, GRAIL found greatest evidence in

support of PEX1 (uncorrected ptext = 0.0084). When we compare

the most compelling of these genes, PEX1, to candidates from the

other 41 SNPs with our text-based metric, we found it to be most

related to a gene in a height-associated SNP on chromosome 8,

PEX2 (PXMP3). The protein products of both PEX1 and PEX2 are

involved in peroxisome biogenesis and are implicated in a genetic

disease associated craniofacial and skeletal abnormalities (Zellwe-

ger’s syndrome) [37–39]. While it may be a coincidence that these

two closely related genes are associated by chance, it is certainly

possible that peroxisome biogenesis represents a previously

unrecognized height pathway. The second example is the

rs10935120 SNP on chromosome 3, implicating three genes; the

genetic study that had identified this gene had suggested ANAPC13

as the likely candidate in the region [4]. However, GRAIL

identified the KY gene as the most likely disease gene (ptext = 0.04).

Figure 4. GRAIL identifies a subset of highly connected genes within rare deletions found in Schizophrenia cases. (A) Case deletions
versus control deletions. Here we plot the results of the separate GRAIL analyses conducted on the deletions observed in schizophrenia cases and
controls. Case deletion ptext scores are displayed in red; control deletion ptext scores are displayed in green. The line in each category in the middle of the
box represents the median GRAIL ptext score. The box represents the 25–75% range. The bars represent the 5–95% range. Additional scores outside the
range are individual plotted. (B) Text-based GRAIL significance score tracks with CNS specific expression. We partition case-only deletions by their GRAIL
scores. For each range of GRAIL ptext scores, we assess the candidate genes selected by GRAIL for CNS expression. The upper portion of this plot
illustrates the fraction of those candidate genes that demonstrate preferential CNS expression along with 95% confidence intervals. The blue line
represents the total fraction of genes that are preferentially CNS expressed. For the most compelling GRAIL scores, the candidate genes are significantly
enriched for CNS expression compared to what would be expected from a random group of genes. The lower portion of the plot is a histogram.
doi:10.1371/journal.pgen.1000534.g004
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In fact, a mutation in the KY gene causes spinal scoliosis in a

mouse model [40], and the KY protein product interacts with

sarcomeric cytoskeletal proteins [41]. While these literature-based

hypotheses may be obvious to a few specialized researchers, the

strength of GRAIL is that it is able to suggest these connections in

a systematic and objective manner from the entirety of the

published literature.

Genes deleted in schizophrenia suggest relevant
neuronal processes

We consider closely the subset of related genes identified by

GRAIL from rare deletions in patients with schizophrenia.

Schizophrenia is a disorder characterized by hallucinations,

delusions, cognitive deficits and apathy. The molecular basis of

the symptom complex associated with the disorder is largely

unknown. However accumulating evidence suggest that dysregu-

lation of synaptic activity and abnormalities in neuronal

development and migration may contribute to the pathophysiol-

ogy of schizophrenia [42]. Many of the highest scoring genes

recovered by GRAIL within the deleted regions in cases (Table 3)

are localized to the postsynaptic membrane/signaling complex

that propagate signals resulting in changes synapse function and

downstream gene expression/transcription. The DLG2 gene

product interacts at postsynaptic sites to form a multi-meric

scaffold for the clustering of receptors, ion channels, and

associated signaling proteins. MAGI1 and MAGI2 both encode

post-synaptic scaffolding molecules involved in cell adhesion and

signaling [43,44]. Furthermore, glutamatergic neurotransmission

is implicated through the selection of GRM1, GRM7, and GRM8.

Many of the most significant candidate genes identified by GRAIL

are involved in neuronal development, cell-cell adhesion and axon

guidance. CNTN5 is an immunoglobulin super-family membrane-

anchored neuronal protein that is also an adhesion molecule [45].

It may play a role in the developing nervous system [46]. The

SDK1 gene expresses a synaptic adhesion protein [47] that guides

axonal terminals to specific synapses in developing neurons. The

PTPRM encodes a neuronally expressed protein tyrosine phos-

phatase that mediates cell-cell aggregation and is involved in cell-

cell adhesion [48,49].

Competing methods
The most critical technical difference between GRAIL and

other strategies is that it does not use any strict definitions of gene

functions or interactions, but rather uses a metric of relatedness

that allows for a relatively broad range of freedom with which to

connect genes. While GRAIL will certainly identify relationships

between genes known to be in a common pathway, it goes beyond

that, and can allow less strict evidence. In fact, it is even able to

identify relatedness between genes that have no established

common pathways or article co-citations! In contrast, other

strategies start with static gene relationships—such as (1) pre-

constructed molecular networks [12,16] or sets of gene with

common function [11,15] or (2) a subset of functions identified as

relevant to disease either by the user [17] or by mining the

published text [14]. In a head to head match up against four other

methods that we were able to obtain implemented versions of,

GRAIL demonstrated superior performance in predicting Crohn’s

associated SNPs (see Text S1, Figure S2, Table S5, and Table S6).

Limitations to assessing gene relatedness with text
While we have shown the promise of text-based similarity in

identifying regions and the genes within them that are part of a

larger biological pathway, we note that this strategy’s effectiveness

is wholly contingent on the completeness of the scientific text. It

could be biased towards subsets of genes and pathways that are

particularly well studied, and against poorly studied ones. In many

of the cases that we illustrate, there are regions that could not be

connected – for example, GRAIL fails to connect 5 validated

Crohn’s SNPs that obtain ptext scores.0.5 (Figure 3B). These

regions might have been missed since the relevant gene is either

poorly studied, or even if the gene is well studied, the relevant

function of that gene is not well documented in the text. An

alternative possibility is that the SNP is tagging non-genic

regulatory elements. Additionally, the SNP may be the first

discovered representative association for a critical pathway, not

represented by other SNP associations – and therefore cannot be

connected to them. In this case future discoveries will clarify the

significance of that association.

In cases where there is no apparent published connection

between associated genes, other similarity metrics based on

experimentally derived data, such as gene expression, protein-

Table 3. Rare or de novo schizophrenia case deletions.

CHR Start Stop ptext Candidate Gene

7 77,788,564 78,591,795 0.0000013 MAGI2

11 *83,680,969 83,943,977 0.0000016 DLG2

3 65,781,878 65,975,330 0.0000057 MAGI1

11 99,153,400 99,286,239 0.000013 CNTN5

4 *87,919,851 88,032,640 0.000025 PTPN13

18 8,054,730 8,257,748 0.000035 PTPRM

3 *7,177,597 7,314,117 0.000087 GRM7

3 7,043,889 7,145,741 0.000087 GRM7

6 146,418,079 146,525,433 0.00013 GRM1

7 125,707,286 126,050,230 0.00015 GRM8

9 9,485,226 9,644,834 0.00024 PTPRD

7 3,759,288 4,087,229 0.00033 SDK1

3 *197,224,662 198,573,215 0.0011 DLG1

15 27,015,263 28,173,703 0.0014 TJP1

5 31,250,352 32,213,541 0.0033 PDZD2

19 10,231,490 10,493,592 0.0048 ICAM5

2 112,407,513 112,512,196 0.014 MERTK

5 19,570,562 19,843,415 0.018 CDH18

6 145,876,484 146,009,981 0.019 EPM2A

7 145,321,439 145,461,533 0.019 CNTNAP2

5 63,115,468 63,431,545 0.023 HTR1A

14 66,287,336 66,470,393 0.025 GPHN

18 56,109,430 56,255,536 0.029 MC4R

5 106,805,717 107,026,020 0.03 EFNA5

2 233,029,864 233,134,571 0.031 ALPPL2

20 2,923,491 3,618,945 0.034 PTPRA

1 72,287,807 72,439,333 0.037 NEGR1

7 94,306,868 94,497,412 0.044 PPP1R9A

7 157,378,450 157,569,847 0.046 PTPRN2

1 *144,943,150 146,292,286 0.047 ACP6

Here we list all of the deletions that GRAIL identified as most related to other
deleted genes (ptext,0.05). For each deletion we list the chromosome, the
range of the deletion, the GRAIL p-value for the region, and the best candidate
gene in the region identified by GRAIL. Most genomic coordinates are listed in
HG17. *HG18 coordinates.
doi:10.1371/journal.pgen.1000534.t003
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protein interactions and transcription factor binding sites could

also complement the text-based approaches presented here. In

fact, we demonstrate how annotation-based metrics or gene

expression-based metrics are able to identify a subset of the

associated SNPs in lipid metabolism. As these and other metrics

are optimized, they could be used in conjunction with the novel

GRAIL statistical framework that we present here to help

understand gene relationships.

Methods

Scoring regions for functional relatedness
The Gene Relationships Among Implicated Loci (GRAIL) has

four basic steps that are outlined below. It has two input sets of

disease regions: (1) a collection of NSEED seed regions (SNPs or

CNVs) and (2) a collection of NQUERY query regions. Genes in query

regions are evaluated for relationships to genes in seed regions, and

query regions are then assigned a significance score. In most

applications we are examining a set of regions for relationships

between implicated genes, the query regions and the seed regions are

identical. In other circumstances where we have a set of putative

regions that are being tested against validated ones, the putative

regions are defined as query regions, and the validated ones are

defined as seed regions.

Step 1. Defining disease regions and identifying

overlapping genes. For each query and seed SNP we find the

furthest neighboring SNPs in the 39 and 59 direction in LD

(r2.0.5, CEU HapMap [50]). We then proceed outwards in each

direction to the nearest recombination hotspot [51]. The interval

between those two hotspots, which would include the SNP of

interest and all SNPs in LD, is defined as the disease region. The

associated SNP could feasibly be tagging a stronger SNP signal

from another SNP in that region. All genes that overlap that

interval are considered implicated by the SNP. If there are no

genes in that region, the interval is extended an additional 250 kb

in either direction; we chose 250 kb as that distance since that is a

range in which non-coding variants might express gene regulation

[52]. For each query and seed CNV we define an interval that

represents the deleted or duplicated region—all genes that overlap

that interval are associated with the CNV for testing.

Step 2. Ranking gene relatedness. For each gene near a

query region, we rank all human genes for relatedness. Ranking

may be based on text similarity, or other metrics (see below for

examples). Rank values range from 1 (most related) to NG (least

related), where NG is the number of available human genes, in our

application is 18,875 (see Table 1).

Step 3. Scoring candidate genes against regions. To

avoid double counting nearby regions, we first combine any seed

regions sharing one or more genes. For a given gene g in a query

region, we examine the degree of similarity to any of the ns genes

in a given seed region s. To ensure independence, we only look at a

seed region s, if it does not share a single gene with the query region

that gene g is contained in.

We identify in each region s, the rank of the most similar (or

lowest ranking) gene in it to gene g, Rg,s. We convert the rank to a

proportion:

pg,s,uncorrected~Rg,s

�
NG

To transform this proportion to a uniformly distributed entity

under the null, we recognize that Rg,s was the lowest rank selected

from ns genes – and we correct accordingly for multiple hypothesis

testing:

pg,s~1{ 1{pg,s,uncorrected

� �ns

Now we identify those seed regions where pg,s is less than a pre-

specified threshold pf as regions connected to gene g. For all

applications presented here pf is arbitrarily set to 0.1. The number

of seed regions containing at least one gene exceeding this

threshold, nhit, can be approximated under a random model with

a Poisson distribution.

We assign a greater weight to those cases where there is greater

similarity; that is in the cases where pg,s is particularly small:

wg,s~
{log

pg,s

pf

� �
pg,sƒpf

0 pg,swpf

( )

Under a random model, if pg,s,pf , pg,s should range approximately

uniformly from 0 to pf. Therefore, under these circumstances wg,s

can be modeled approximately with a gamma distribution.

For each candidate gene, g, we tally the number of seed regions

that contain a highly related gene into a weighted count, cg:

cg~
X

i

wsi ,g~
X

pg,si
vpf

{log
psi ,g

pf

� �

After testing gene g across NSEED seed regions for related genes,

the probability of a score exceeding cg under the null, pg, can be

approximated:

pg~p cwcg

� �
~
XNseed

nhit~0

p cwcg,nhit

� �
~
XNseed

nhit~0

p nhitð Þp cwcg nhitj
� �

Where nhit is the number of seed regions connected to gene g. Since

under the null model the probability of a connected region by

chance is always pf, we can estimate its probability distribution of

nhit with a Poisson distribution:

p nhitð Þ~
NSEEDpf

� �nhit e{NSEEDpf

nhit!

Since, cg, is the sum of the log of nhit independent uniformly

distributed values ranging from 0 to 1, for a fixed value of nhit we

can calculate the distribution of cg with a cumulative gamma

distribution:

p cwcg nhitj
� �

~FGamma ?,nhit,1ð Þ{FGamma cg,nhit,1
� �

Since nhit is always an integer, the FGamma term can be simplified:

FGamma cg,nhit,1
� �

~1{
Xnhit{1

i~0

cg

� �i

i!
e{cg

Therefore, we can be further simplified:

p cwcg nhitj
� �

~FGamma ?,nhit,1ð Þ{FGamma cg,nhit,1
� �

~
Xnhit{1

i~0

cg

� �i

i!
e{cg
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Putting this together:

pg~
XNseed

nhit~0

NSEEDpf

� �nhit e{NSEEDpf

nhit!

Xnhit{1

i~0

cg

� �i

i!
e{cg

 !" #

Step 4. Scoring regions. Finally, for each query region we

identify the best scoring gene within it. A significance score for the

query region, pq, is based on the p-value of that gene, pg, corrected

for multiple hypothesis testing. Assuming the region has nq genes

within it:

pq~1{ 1{pg

� �nq where pg~min pg’ g’ [ qj
� �

Assessing gene relatedness with text-based similarity
We measure relatedness between genes using similarity in

published text from gene references. We first obtain article

abstracts from Pubmed. We downloaded all abstracts on

December 16, 2006. For each gene, we identified and downloaded

abstract references listed in Entrez Gene [23]; additionally, we

downloaded Entrez Gene abstract references for gene orthologs

listed in Homologene [53]. We removed those articles referencing

more than 10,000 genes. Only the title (TI) and abstract (AB) fields

were included for further text processing. We defined a vocabulary

consisting of only those terms appearing in 40 or more abstracts,

and fewer than 130,000; this resulted in a vocabulary of 23,594

terms. For each abstract j we create a vector of term frequencies,

tfij, representing the number of times each term i appears within it.

Term frequencies are transformed into weights, wij, according to a

standard inverse document frequency scheme [54]:

wij~
1zlog tfij

� �� 	
log2

NDOC

dfi

� �
tfijw0

0 tfij~0

( )

where NDOC is the total number of documents, and dfi (or

document frequency) is the number of documents the term i

appears in. This scheme emphasizes rare words, and de-

emphasizes more common words.

For every gene, we define an averaged term-vector, which is an

average of weighted term vectors from gene references and

homologous gene references. Abstracts are weighted according to

the number of genes they reference; articles referencing many

genes are down-weighted to mitigate their influence:

gik~
X

j [ ref kð Þ
wij

1

1zlog2 nref ,j

� �
where gik is a the weighted count of term i for gene k, j is a

document reference for gene k, and document j references nref,j

genes. For a given gene i these gik terms define a gene-text vector.

The gene text vectors are normalized, so that their euclidean

length is 1. Pairwise gene relatedness can be calculated as the dot

product between two normalized term vectors for genes.

Keywords
To assign keywords to a collection of query regions, we first

identify the single candidate genes with the best GRAIL ptext from

each region. We then eliminate those regions where the

uncorrected GRAIL score for the gene is ptext.0.2. We restrict

keywords to those that appear in .500 documents, contain .3

letters, and have no numbers. For each term, i, we calculate a

score which is the difference between averaged term frequencies

among candidate genes and all genes:

s ið Þ~ mean
k [ candidate genes

gikð Þ{ mean
k [ all genes

gikð Þ

The top twenty highest scoring terms are selected as keywords.

Annotation based relatedness
We defined a relatedness metric between genes based on

similarity in Gene Ontology annotation terms [27]. We downloaded

Gene Ontology structure and annotations on December 19, 2006.

In addition to human gene GO annotations, we added orthologous

gene annotations. Since GO is a hierarchically structured

vocabulary, for each gene annotation we also added all of the

more general ancestral terms. This resulted in a total of 843,898

annotations for 18,050 genes with 10,803 unique GO terms; this

corresponds to a median of 40 terms per gene. We weighted

annotations proportionally to the inverse of their frequency, so

common annotations received less emphasis. We used a weighting

scheme analogous to the one we used for word weighting:

gij~
log2

NG

gfi

� �
GOij~1

0 GOij~0

( )

where gij represented the weighted code i for gene j, NG is the total

number of genes, and gfi (or GO frequency) is the number of genes

annotated with the term i. Gene relatedness was the correlation

between these weighted annotation vectors.

Gene expression based relatedness
To calculate gene relatedness based on expression we download-

ed the Novartis Gene Expression Atlas [28]. The data set consists of

measurements for 33,689 probes across 158 conditions. Probes were

averaged into 17,581 gene profiles. Gene relatedness was calculated

as the correlation between expression vectors.

Lipid and height applications
We applied GRAIL to score 19 lipid-associated SNPs and

separately to score 42 height-associated SNPs. Specific SNPs are

listed in Table S1 and Table S2. We used the SNP sets as both the

seed and the query set to look for relatedness between genes across

regions. We scored SNPs separately using text, annotation, and

expression similarity metrics. We compiled the best candidate

genes and scores for the SNP regions.

Crohn’s disease application
Prior to replication, we had access to 74 independent SNP

regions that had emerged from a meta-analysis of Crohn’s Disease.

All 74 SNPs were used as both the query set and as the seed set into

GRAIL. We assessed whether those SNPs that replicated had

different text-based significance values than those that fail to

replicate. To identify additional regions of interest, we identified

the next 75 most significant regions in the Crohn’s disease meta-

analysis – they were used in GRAIL as a query set; for the seed set

included all SNPs that did not fail in replication.

Schizophrenia application
We identified singleton deletions or confirmed de novo deletions

reported by one of three groups. We selected those deletions that
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were in cases only or in controls only, were at least 100 kb large,

and included at least one gene. We obtained singleton deletions

online published by the International Schizophrenia Consortium

(2008) at [8]. We obtained de novo deletions published by Xu et al

(2008) from Table 1 [10]. We obtained singleton deletions

published in Walsh et al (2008) from Table 2 [9]. We identified

a total of 165 case-only deletions and 122 control-only deletions.

We applied the GRAIL algorithm separately to case and controls.

We speculated that the case deletions might hit genes from a

common pathway and GRAIL p-values may therefore be enriched

for significant scores. On the other hand, we hypothesized that

control deletions might be located effectively at random, and so no

particular pathway or common function should necessarily be

enriched in this collection.

To examine genes for tissue specific expression in the CNS

system, we obtained a large publicly available human tissue

expression microarray panel (GEO accession: GSE7307) [30]. We

analyzed the data using the robust multi-array (RMA) method for

background correction, normalization and polishing [55]. We

filtered the data excluding probes with either 100% ‘absent’ calls

(MAS5.0 algorithm) across tissues, expression values ,20 in all

samples, or an expression range ,100 across all tissues. To

represent each gene, we selected the corresponding probe with the

greatest intensity across all samples. The data contained expression

profiles for 19,088 genes. We included expression profiles from

some 96 normal tissues and excluded disease tissues and treated

cell lines. We averaged expression values from replicated tissues

averaged into a single value. To assess whether genes had

differential expression for CNS tissues, we compared the 27 tissue

profiles that represented brain or spinal cord to the remaining 69

tissue profiles with a one-tailed Mann-Whitney rank-sum test.

Genes obtaining p,0.01 were identified as preferentially ex-

pressed.

Evaluation against other published methods
We compared GRAIL’s performance in its ability to prospec-

tively predict Crohn’s associations to five other published methods.

The selection of these methods, and the evaluation is detailed in

Text S1.

Software
An online version of this method is available (http://www.

broad.mit.edu/mpg/grail/).

Supporting Information

Figure S1 GRAIL p-value scores for random SNPs. We scored

100 random groups of 50 SNPs with GRAIL. The y-axis is the

fraction of SNPs in the group with values below the threshold, the x-

axis lists the specific threshold. For each threshold, we plot the

distribution of the fraction of the 50 SNPs below that threshold as a

box plot. The bar is the median - the mean value is explicitly listed

below the box-plot. The box at each threshold lists the 25%–75%

range. The error-bars line depicts the 1.5 inter-quartile range. The

black dots illustrate outliers outside the 1.5 inter-quartile range.

Found at: doi:10.1371/journal.pgen.1000534.s001 (0.39 MB PDF)

Figure S2 Sensitivity versus specificity for prioritization algorithms.

We used 5 algorithms to score the 74 most promising putative SNP

associations from the Crohn’s meta-analysis study. We assessed each

algorithm’s ability to predict those SNP associations that ultimately

validated in follow-up genotyping. For each algorithm, we created a

received-operator curve (ROC).

Found at: doi:10.1371/journal.pgen.1000534.s002 (0.40 MB PDF)

Table S1 19 Lipid regions scored with Text based GRAIL

strategy. Here we scored 19 SNPs, associated with lipid metabolism.

In the first three columns we list information about the SNP. In the

fourth column we list the number of genes in the SNP associated

regions. In the fifth column we list the highest scoring gene in the

associated region based on GRAIL using a text-based metric. In the

sixth column we list the ptext values for the associated regions. We

have bolded those candidate genes that are known likely causative

gene. The seventh and eight columns list similar results for GRAIL

with an GO annotation-based metric. The ninth and tenth columns

list similar results for GRAIL with an expression-based metric.

Found at: doi:10.1371/journal.pgen.1000534.s003 (0.15 MB

DOC)

Table S2 42 Height regions scored with Text based GRAIL

strategy. Here we scored 42 SNPs, associated with height. In the first

three columns we list information of the SNP. In the fourth column

we list the number of genes in the SNP associated regions. In the

fifth column we list the highest scoring gene in the associated region

for the SNP based on GRAIL using a text-based metric. In the sixth

column we list the ptext values for the associated regions. The seventh

and eight columns list similar results for GRAIL with an annotation-

based metric. The ninth and tenth columns list similar results for

GRAIL with an expression-based metric.

Found at: doi:10.1371/journal.pgen.1000534.s004 (0.28 MB

DOC)

Table S3 Keywords for Lipid and Height SNPs. We identified

keywords associated with lipid and height associated SNPs; here

we list the top 20.

Found at: doi:10.1371/journal.pgen.1000534.s005 (0.06 MB

DOC)

Table S4 Crohn’s Disease SNPs from a meta-analysis of GWA

studies. Here we list GRAIL results and summarize genotyping

results for Crohn’s disease SNPs. These 74 SNPs emerged from a

meta-analysis and as a result of replication genotyping, they were

either validated (A), indeterminate (B), or failed (C). For each of

the regions we list the SNP ID and the chromosome in the second

and third column. In the fourth column we list the final combined

association significance score of the SNP to the Crohn’s disease. In

the fifth, sixth, and seventh columns we list GRAIL results

including the number of genes in the region, the best candidate

gene, and the text-based significance score for the region.

Found at: doi:10.1371/journal.pgen.1000534.s006 (0.21 MB

DOC)

Table S5 Algorithms to prioritize candidate genes. Our search

of the literature identified nine algorithms that could be used to

prioritize genes for replication. Four methods require no user-

specified disease information (supervised), and five require some

disease information from the user. We list in each row the name of

the disease, the website, the necessary genetic data, the functional

data used to prioritize genes, the disease-specific information that

must be included, and the availability of the method.

Found at: doi:10.1371/journal.pgen.1000534.s007 (0.09 MB

DOC)

Table S6 Performance measures for prioritization algorithms.

We used five algorithms (column 1) to score putatively associated

SNPs from the Crohn’s meta-analysis. After calculating an ROC

curve for each algorithm, we calculated the AUC (column 2). We

also calculated a p-value with a one-tailed rank-sum test

comparing the median rank of the validated SNPs to the median

rank of the failed SNPs (column 2).

Found at: doi:10.1371/journal.pgen.1000534.s008 (0.04 MB

DOC)
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Table S7 Other promising regions in Crohn’s Disease GWA

meta-analysis. Information about the top six regions identified by

GRAIL from the next 75 most significant regions from the

Crohn’s GWA study. All associations are indeterminate, and

association p-values are taken from the GWA meta-analysis - these

regions have not yet been replicated.

Found at: doi:10.1371/journal.pgen.1000534.s009 (0.05 MB

DOC)

Table S8 Rare or de novo schizophrenia control deletions. Here

we list all of the deletions that GRAIL identified as most related to

other deleted genes (ptext,0.05). For each deletion we list the

chromosome, the range of the deletion, the GRAIL p-value for the

region, and the best candidate gene in the region identified by

GRAIL. Most genomic coordinates are listed in HG17. * HG18

coordinates.

Found at: doi:10.1371/journal.pgen.1000534.s010 (0.06 MB

DOC)

Text S1 A. Random SNP groups; B. Comparison of GRAIL to

other related algorithms.

Found at: doi:10.1371/journal.pgen.1000534.s011 (0.09 MB

DOC)
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