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Abstract.  Cynomolgus monkeys (Macaca fascicularis) are a valuable model organism for human disease modeling because 
human physiology and pathology are closer to those of cynomolgus monkeys than rodents. It has been widely reported 
that mature oocytes can be recovered from cynomolgus monkeys through ovarian stimulation by human follicle-stimulating 
hormone (hFSH). However, it is unknown whether mature oocytes can be effectively obtained through a second ovarian 
stimulation by hFSH. Here, we report that some ovaries (eight ovaries from 14 female monkeys) were stimulated effectively 
by hFSH even after the first ovum pick up, whereas the others were stimulated poorly by hFSH. Furthermore, we found 
antibodies against hFSH only in the serum of female monkeys with poorly stimulated ovaries. Collectively, these data suggest 
that anti-hFSH antibodies in serum may cause a poor ovarian response to hFSH stimulation. Finally, detection of such 
antibodies as well as observation of the ovary over the course of hFSH administration might be useful to predict favorable 
second ovarian stimulation by hFSH.
Key words: Cynomolgus monkey, Follicular-stimulating hormone (FSH), MII oocyte, Ovarian stimulation

 (J. Reprod. Dev. 65: 267–273, 2019) 

There are several nonhuman primates that are widely used as labora-
tory animals, including New World monkeys such as the common 

marmoset (Callithrix jacchus) [1, 2] and Old World monkeys such as 
the rhesus monkey (Macaca mulatta) [3, 4], Japanese monkey (Macaca 
fuscata) [5, 6], and cynomolgus monkey (Macaca fascicularis) [7, 
8]. Old World monkeys are closer to humans in terms of organ size 
and anatomical structure than New World monkeys. Therefore, 
they have been used for modeling diseases, such as Parkinson’s [9, 
10] and Huntington’s [11, 12] diseases, and transplantation studies 
[13, 14]. In particular, the cynomolgus monkey is superior to other 
macaque monkeys because they breed throughout the year rather 
than seasonally like the rhesus macaque.

Follicle-stimulating hormone (FSH) is a heterodimeric glycoprotein 
that is secreted by the pituitary gland and is important for follicle 
development in females and spermatogenesis in males [15–17]. FSH 
consists of a specific subunit (FSHβ) and common alpha subunit 
(FSHα) shared with luteinizing hormone (LH), thyroid-stimulating 
hormone (TSH), and chorionic gonadotropin (CG) [15, 18]. FSH 

facilitates the development of immature pre-antral follicles to pre-
ovulatory follicles, as characterized by the formation of a fluid-filled 
antrum within a follicle [16]. In the female, FSH binds to G protein-
coupled FSH receptors (FSHRs) belonging to the glycoprotein 
hormone receptor family expressed on ovarian granulosa cells and 
promotes estrogen production [19, 20]. Both physiological and genetic 
studies of rodent models and human patients carrying mutations in the 
hormone-specific β-subunit and FSHR-encoding genes indicate that 
FSH actions are essential for antral-stage follicle development during 
ovarian folliculogenesis and, consequently, female fertility [21–24].

Although many studies have reported that mature oocytes can be 
recovered from cynomolgus monkeys through ovarian stimulation by 
human FSH (hFSH) [25–27], it is unknown whether mature oocytes 
can be effectively obtained repeatedly from cynomolgus monkeys 
through ovarian stimulation by hFSH. Here, we report that ovaries 
were stimulated effectively in a certain group of cynomolgus monkeys 
by hFSH even after the first ovum pick up (OPU), but ovaries in the 
other monkeys were stimulated poorly by hFSH. Furthermore, we 
found antibodies against hFSH only in the serum of female monkeys 
with poorly stimulated ovaries.

Materials and Methods

Animals
All experimental procedures were approved by the Animal Care 

and Use Committee of Shiga University of Medical Science, and 
the procedures were carried out in accordance with the approved 
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guidelines (Approval number: 2018-9-8). Oocytes were collected from 
14 sexually mature female cynomolgus monkeys aged 4–10 years 
and weighing 2.1–3.9 kg. Semen was collected from three sexually 
mature male monkeys aged 8–17 years and weighing 5.2–6.6 kg. 
Temperature and humidity in the animal rooms were maintained at 
25 ± 2°C and 50 ± 5%, respectively. The light cycle was 12 h of 
artificial light from 0800 to 2000 h. In the morning, each animal 
was fed 20 g/kg of body weight of commercial pellet monkey chow 
(CMK-1; CLEA Japan, Tokyo, Japan) supplemented with 20–50 g 
sweet potato in the afternoon. Water was available ad libitum.

Oocyte collection
Ovarian stimulation and oocyte collection were carried out as 

previously described by Yamasaki et al. [28] with some modifications. 
Briefly, beginning at menses, the level of sex steroid hormones was 
reduced by subcutaneous injection of 0.9 mg gonadotropin-releasing 
hormone antagonist (Leuplin; Takeda Chemical Industries, Osaka, 
Japan). Two weeks later, a micro-infusion pump (iPRECIO SMP-
200, Primetech Corp, Tokyo, Japan) with 15 IU/kg hFSH (Asuka 
Pharmaceutical, Tokyo, Japan) was embedded subcutaneously in 
the back under anesthesia (ketamine and xylazine) and operated at 7 
μl/h for 10 days. On the day after the last hFSH injection, 400 IU/kg 
human chorionic gonadotropin (hCG; Asuka Pharmaceutical) was 
injected intramuscularly. Oocytes were collected by follicular aspira-
tion at 40 h after hCG treatment using a laparoscope (LA-6500, 
Machida Endoscope, Chiba, Japan). Cumulus-oocyte complexes were 
recovered in α-modification of Eagle’s medium (MP Biomedicals 
LLC, Solon, OH, USA) containing 10% Serum Substitute Supplement 
(Irvine Scientific, Santa Ana, CA, USA) at 38°C in a humidified 
atmosphere with5% CO2 for 1–2 h. Cumulus cells were removed 
from oocytes by mechanical pipetting after brief exposure (< 1 min) 
to 0.5 mg/ml hyaluronidase (Sigma Chemical, St. Louis, MO, USA) 
adjusted with m-TALP (pH 7.4), a modified Tyrode solution containing 
lactate, pyruvate, 0.3% bovine serum albumin (Sigma Chemical), 
and HEPES. Then, oocytes were transferred to m-TALP without 
hyaluronidase at 38°C with 5% CO2 until further use. Oocytes were 
classified into the four stages: germinal vesicle (GV), metaphase I 
(MI), metaphase II (MII), or degenerate (DG).

Detection of antibodies specific for hFSH or hCG by ELISA
The antibody titers of plasma samples against hFSH or hCG were 

determined using an ELISA [29]. A 0.5 ml blood sample was collected 
from the femoral vein using a 27 G needle and centrifuged at 1,730 
× g for 15 min to separate the plasma. Then, 96-well plates were 
coated with 50 μl human FSH (20 IU/ml; Asuka Pharmaceutical) or 
hCG (20 IU/ml; Asuka Pharmaceutical) diluted with saline at 4°C 
overnight. After washing five times with PBS containing 0.05% 
Tween-20 (PBS-T), 50 μl of 1/10 diluted samples were incubated 
overnight in the coated plates. After washing five times with PBS-T, 
50 μl horseradish peroxidase (HRP)-conjugated anti monkey IgG 
(1:1,000; MP Biomedicals, Santa Ana, CA, USA) was added, followed 
by incubation for 1 h at room temperature. HRP activity was assessed 
using 3, 3′, 5, 5′-tetramethyl benzidine substrate. The reaction was 
stopped by addition of 1 M hydrogen chloride. Optical density was 
measured using an iMark microplate reader (Bio-Rad, Hercules, 
CA, USA) at 450 nm.

Statistical analysis
Statistical analyses of all data comparisons were carried out by 

t-test using GraphPad Prism 8 software (https://www.graphpad.com/
scientific-software/prism/). P < 0.05 was considered statistically 
significant.

Results

Poor second ovarian stimulations by hFSH in a group of 
cynomolgus monkeys

It has been widely reported, including by the current authors, 
that mature oocytes can be recovered effectively from cynomol-

Fig. 1. Poor second ovarian stimulation by hFSH in some female 
monkeys. A: Schematic overview of ovarian stimulation 
in a cynomolgus monkey. Day 0 is the start date of hFSH 
administration. Shown below is the timing of blood sampling. 
The second ovarian stimulation was performed after at least 6 
months in consideration of animal welfare. OPU; ovum pick up. 
B and C: Laparoscopic observation of ovaries during the first (B) 
and second (C) treatment by hFSH. Arrows indicate translucent 
growing follicles. CE2137F, and CE2000F are identification 
codes for each cynomolgus monkey. N.D., Not determined.
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gus monkeys through ovarian stimulation by hFSH [25, 27, 30]. 
However, it is unknown whether mature oocytes can be effectively 
obtained repeatedly by hFSH stimulation. Therefore, in this study, we 
investigated whether ovaries are stimulated by hFSH administration 
after the first ovum pick up (OPU). Fourteen female cynomolgus 
monkeys were subjected to first ovarian stimulation by successive 
hFSH administration for 10 days, followed by OPU at day 12 as 
described in Fig. 1A. Laparoscopic observation indicated that their 
ovaries responded well to hFSH and follicles developed normally (Fig. 
1B). At least 6 months later, these female monkeys were subjected to 
second ovarian stimulations according to the same protocol used for 
the first stimulation (Fig. 1A). Blood was collected at various time 
points of the first and second hFSH administrations (Fig. 1A). While 
some monkeys showed normal follicle development during the hFSH 
administration (i.e. translucent follicles enlarged and maturated over 
the course of hFSH administration) (Fig. 1C, upper panel), we found 
that some monkeys showed severely impaired follicle development 
(Fig. 1C, middle panel), and other monkeys showed normal follicle 
development until day 7, but failed to develop normally (Fig. 1C, 
lower panel). Four types of oocytes (GV, MI, MII and DG) were 
obtained by OPU after the second ovarian stimulation (Fig. 2A). 
As a result, a reduced number of total oocytes was obtained at the 
second ovarian stimulation compared with the first (Fig. 2B, Table 
1), and the percentage of MII oocytes was selectively reduced at the 
second ovarian stimulation (Fig. 2C, Table 1). However, the quality 
of the MII oocytes obtained from the second OPU appeared to be 
maintained normally, because fertilization and developmental rates 

of oocytes obtained from the first and second oocyte collections 
were similar [1st OPU vs. 2nd OPU fertilization rate: 76.3% (90/118: 
2-cell embryo /MII oocytes) vs. 88.9% (8/9: 2-cell embryo /MII 
oocytes); blastocyst rate: 64.4% (58/90: blastocyst/2-cell embryo) 
vs. 50% (4/8: blastocyst/2-cell embryo)], although the number was 
small and needs to be increased for significance.

Generation of antibodies against hFSH in a group of female 
monkeys during the second hFSH administration

Because some monkeys showed poor second ovarian stimulation 
by hFSH (Fig. 1B), we considered that the antibodies against hFSH 
had been generated in the serum and hampered the actions of hFSH 
in these monkeys. To test this hypothesis, we measured antibodies 
against hFSH by an ELISA and found such antibodies in six out of 
14 female monkeys, which increased over the course of the second 
hFSH administration (Fig. 3A). When the female monkeys were 
divided into two groups, hFSH antibody-minus [Ab (–)] and -plus 
[Ab (+)], monkeys without the antibodies showed a similar number 
of total oocytes with slight decrease, whereas monkeys with the 
antibodies showed a markedly reduced number of total oocytes 
(Fig. 3B). The percentage of MII oocytes was severely reduced in 
monkeys with the antibodies (Fig. 3C), although MI and GV were 
not changed significantly (Fig. 3D).

Since the percentage of MII oocytes was reduced in monkeys 
with the antibodies against hFSH (Fig. 3D, Table 1), we considered 
that hCG, a hormone required for the maturation from MI into MII 
oocytes, is also neutralized by antibodies. In fact, when we evaluated 

Fig. 2. Reduced number of total oocytes in some female monkeys in the course of the second hFSH administration. A: Phase contrast images of GV, 
MI, MII, and DG oocytes recovered from female monkeys receiving the second hFSH administration. Arrowheads in white and red indicate the 
germinal vesicle in a GV oocyte and the first polar body in a MII oocyte, respectively. Scale bars = 50 µm. B: Number of total oocytes collected. 
C: Percentages of collected GV, MI, MII and DG oocytes. n.s; not significant.
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the generation of the antibodies against hCG in the serum from nine 
monkeys (five hFSH Ab (–) and four hFSH Ab (+)) (Table 1), we 
found that antibodies against hCG were detected in all of four hFSH 
Ab (+) samples and one out of five hFSH Ab (–) samples (Fig. 4A, 
Table 1), suggesting that antibodies against hFSH and hCG are 
generated simultaneously in the most of the samples. We could not 
measure 4 samples due to the loss of the serum. Collectively, these 
data indicate that the antibodies hamper hCG action.

Discussion

In this study, we found that mature oocytes can be recovered 
effectively from a group of female monkeys even after the first 
OPU, but at a markedly decreased level in the other group of female 

monkeys. We also found that generation of antibodies against hFSH 
was strongly associated with poor second ovarian stimulation by 
hFSH. Furthermore, we found generation of antibodies against 
hCG. We presumed that antibody generation may hamper hFSH 
and hCG actions (Fig. 4B). Currently, it is unknown which factor 
triggers antibody generation in a specific group of female monkeys.

FSH consists of a specific subunit, FSHβ, and common alpha 
subunit, FSHα, shared with LH, TSH, and CG [15, 18]. Although we 
found generation of antibodies against hFSH, it is unclear whether 
these antibodies recognize either FSHα or FSHβ, or both subunits. 
Comparison of amino acid sequences among human and monkey 
orthologs of FSHα and FSHβ revealed high conservation of FSHβ 
(96%) and moderate conservation of FSHα (84%) (Supplementary 
Fig. 1: online only). Considering the lower conservation in FSHα, 

Table 1. Results of 1st and 2nd superovulation in the individual cynomolgus monkey

hFSH Ab (–)
Individual 
number

Origin* 
(Female/Male) OPU Total GV MI MII DG hCG Ab

CE862F V/I 1st 42 1 22 12 (28.6) 7 N.D.
2nd 37 3 22 6 (16) 6

CE960F C/C 1st 30 0 6 24 (80) 0 N.D.
2nd 26 6 9 11 (42.3) 0

CE1108F P/V 1st 49 3 6 40 (81.6) 0 N.D.
2nd 47 0 11 36 (76.6) 0

CE1951F C/C 1st 17 1 4 12 (70.6) 0 +
2nd 12 0 6 6 (50.0) 0

CE1956F C/C 1st 18 1 2 15 (83.3) 0 –
2nd 13 0 1 12 (92.3) 0

CE2024F C/C 1st 49 9 7 29 (59.2) 4 –
2nd 34 7 10 8 (23.5) 0

CE2109F C/C 1st 50 11 9 13 (26.0) 17 –
2nd 32 5 8 13 (40.6) 6

CE2137F C/C 1st 80 0 24 56 (70) 0 –
2nd 72 1 15 56 (78) 0

hFSH Ab (+)
Individual 
number

Origin* 
(Female/Male) OPU Total GV MI MII DG hCG Ab

CE866F V/V 1st 42 8 11 23 (54.8) 0 +
2nd 3 0 1 0 (0) 2

CE1723F P/P 1st 61 4 20 15 (24.6) 21 N.D.
2nd 0 0 0 0 (0) 0

CE1810F P/P 1st 140 11 30 85 (60.7) 14 N.D.
2nd 0 0 0 0 (0) 0

CE1847F C/C 1st 147 0 56 89 (60.5) 2 +
2nd 5 0 1 2 (40) 2

CE1831F V/V 1st 58 0 9 49 (84.5) 0 +
2nd 64 17 22 20 (31) 5

CE2000F C/C 1st 88 1 37 43 (48.9) 7 +
2nd 4 0 2 0 (0) 2

* V: Vietnam, I: Indonesia, C: China, P: Philippines, N.D.: Not determined.
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antibodies against FSHα may be generated more easily. Consistent 
with this idea, our data indicate that antibodies against hCG consisting 
of FSHα are also generated in the serum of female monkeys with 
poor second ovarian stimulation. This may account for the fact that 
the percentage of MII oocytes was selectively reduced at the second 
ovarian stimulation.

hFSH is used worldwide for treating human infertility [31–33]. 
hFSH used in the clinic is purified from human urea. It is reported that 
anti-FSH antibodies are elevated in infertile women and antibodies 
are associated with dysregulation of immune reactions and repeatedly 
performed IVF procedures [34–36]. In marmoset subjects, Marshall 
and coworkers reported the generation of antibodies against hFSH, 
although mature oocytes were recovered effectively from marmosets 

at multiple times [37]. Currently, it is unclear why antibody generation 
does not halt hFSH actions in marmosets. However, because the 
common marmoset and cynomolgus monkey weigh 0.3 and 3 kg, 
respectively, the dose for marmosets (50 IU/day) corresponds to 500 
IU/kg for cynomolgus monkeys, which is 10-fold higher. Thus, it 
would be very interesting to investigate whether a very high dose 
of hFSH administration may overcome antibodies against hFSH. 
In rhesus and cynomolgus monkey subjects, repeatedly treatment 
of hFSH or hCG cause anti-FSH antibodies [38, 39] but it is not 
shown the correlation between anti-hFSH production, follicular 
development and oocyte maturation.

Although the repeated hFSH and hCG administrations are likely to 
be the cause of the reduced number of oocytes in second OPU, there 

Fig. 3. Production of antibodies against hFSH is associated with poor second ovarian response. A: Detection of antibodies against hFSH in serum. 
Because the level of antibodies against hFSH from first to second GnRH administrations was 1 ± 0.46, we considered that the antibody level was 
elevated significantly when the level of antibodies against hFSH exceeded 1.46. Red and black lines indicate Ab (+) and Ab (–), respectively. B: 
Numbers of total oocytes collected from cynomolgus monkeys without or with the antibody production. C: Percentages of MII oocytes collected 
from cynomolgus monkeys without or with the antibody production. D: Percentages of GV, MI, MII, and DG oocytes collected from cynomolgus 
monkeys without or with the antibody production at the second superovulation. n.s; not significant.



SEITA et al.272

are several approaches to address this issue. One is the production 
and purification of FSH and CG from cynomolgus monkey, avoiding 
antibody generation. The other is the use of anti-inhibin serum that 
is widely used in many kinds of animals to increase the number of 
oocytes [40–42].

Taken together, our results clearly indicate that the production of 
anti-hFSH antibodies in a specific group of cynomolgus monkeys 
could cause a poor ovarian response to hFSH stimulation. Further, 
detection of such antibodies as well as observation of the ovary over 
the course of hFSH administration could be useful for predicting 
favorable second ovarian stimulation by hFSH.
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