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Abstract

Movement, positioning and coordination of player formations is a key aspect for the perfor-

mance of teams within field-based sports. The increased availability of player tracking data

has given rise to numerous studies that focus on the relationship between simple descriptive

statistics surrounding team formation and performance. While these existing approaches

have provided a high-level a view of team-based spatial formations, there is limited research

on the nature of collective movement across players within teams and the establishment of

stable collective states within game play. This study draws inspiration from the analysis of

collective movement in nature, such as that observed within schools of fish and flocking

birds, to explore the existence of collective states within the phases of play in soccer. Order

parameters and metrics describing group motion and shape are derived from player move-

ment tracks to uncover the nature of the team’s collective states and transitions. This repre-

sents a unique addition to the current body of work around the analysis of player movement

in team sports. The results from this study demonstrate that sequences of ordered collective

behaviours exist with relatively rapid transitions between highly aligned polar and un-

ordered swarm behaviours (and vice-versa). Defensive phases of play have a higher pro-

portion of ordered team movement than attacking phases, indicating that movements linked

with attacking tactics, such as player dispersion to generate passing and shooting opportu-

nities leads to lower overall collective order. Exploration within this study suggests that

defensive tactics, such as reducing the depth or width to close passing opportunities, allows

for higher team movement speeds and increased levels of collective order. This study pro-

vides a novel view of player movement by visualising the collective states present across

the phases of play in football.

Introduction

Collective movement is a common phenomenon that can be seen across a variety of biological

systems that range in scale from cells moving within living organisms, crowds of people inter-

acting within thoroughfares, through to herds of large mammals. This phenomena, usually

referred to as “flocking” in birds, “schooling” or”shoaling” in fish, “swarming” in insects or
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“herd” behaviour in mammals has evolved to serve a range of functions across different species

[1]. Theoretical studies have shown that relatively simple interactions between individuals,

and between individuals and their environment, can give rise to complex, spectacular, self-

organising, visual displays of collective movement that emerge in the absence of centralised

control [2–4]. The broad hypothesis is that collective motion of animal groups arise due to

application of simple rules of interaction between individuals, similar to those used in theoreti-

cal models [5]. Collective motion has proved to be a rich field of study [1], with the develop-

ment of many models that incorporate individual-level interactions to simulate the group-

level patterns produced by a wide range of biological systems [2–4, 6–8] and, more recently,

methods for inferring the presence and form of such interactions directly from observations of

animals [1, 9–18].

The collective patterns that emerge in nature commonly consist of periods with relatively

ordered group movement, where individuals are well aligned and moving with consistent

speeds, and disordered periods of group movement, where individuals position themselves to

remain part of the group, but without alignment of movement and matching of speeds

between individual. Variations of these group-level behaviours can lead to toroidal (milling)

formations with high local alignment but global rotation and dynamic formations with varying

densities of individuals and levels of individual alignment [4, 18]. Modelling work that simu-

lates the interactions between individuals within a group through discrete behavioural zones

has demonstrated that the group formations observed in nature represent a finite number of

collective states. These states can achieve stability under the right conditions, with multiple dif-

ferent stable states appearing for the same individual-level behaviour. Transitions between the

collective states occur when there is a perturbation that provides sufficient disruption to the

alignment, position and speeds of the individuals within the group. This causes the formation

to collapse into an unstable transitional scheme. Transitional periods between the identifiable

collective states are relatively short and either result in the group moving from one stable state

to another, or a movement back to the starting state depending on the nature and scale of the

disturbance to the group [19].

The collective behaviours that have been observed within groups of individuals in nature

(such as coordinated aligned movement, and expansion and contraction of the group) can also

be observed amongst groups of players in team-based invasion-type field sports (for example,

soccer or rugby). Several studies have demonstrated that teams participating in field sports can

be viewed as dynamical systems composed of individual agents that form collective patterns,

within the sets of constraints placed on the system, but without central control. It should be

noted, however, that unlike shoals of fish or flocks of birds, competitive teams train and plan

to maintain particular formations and apply specific group and individual level tactics depen-

dent on context. System constraints can take the form of the rules of the games and transitions

between sub-phases within play in response to competitive demands (e.g. chasing, blocking or

re-forming). The dynamical systems approach to understanding team movements is based on

observations from other semi-constrained systems of human movement such as crowd and

pedestrian behaviour [20–22] and spacing/movement in vehicular traffic [23, 24], where self-

organisation driven by local interactions can be observed within the constraints of the system.

In sports, Kijima, Yokoyama et al. [25] demonstrated a power-law relationship between the

movement of the team front and position of the ball in soccer. Similarly, Passos and Araujo

[26] identified evidence of self-organisation within field-invasion type sports by demonstrating

that the distributions of statistics for individual attacker-defender interactions display a

power-law relationship in soccer, rugby and basketball. The data presented by Passos and Ara-

újo [26] also demonstrates that the systems exhibit degeneracy, whereby components can inter-

act in different ways to produce similar outcomes. The study provides strong evidence that
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these processes are likely to be governed by local interactions that are constrained by a range

of factors such as leadership, game rules, field boundaries and player roles. Passos, Araújo et al.

[27] described these factors as first and second order constraints and proposed that within

such constraints, a system of self-organisation emerges through the need to co-adapt to other

individuals and continuously adjust behaviours to perform within the competitive environ-

ment created by the opposing players. This concept of self-organisation within constraints has

been applied within models for team-sport simulation. Lauren, Quarrie et al. [28] proposed a

collective motion-based simulation for rugby union, where players are represented by agents

that begin their movement on fixed tracks (representing a plan or formation forming a first

order constraint) for a period of time and are then governed by local interactions. Chacoma,

Almeira et al. [29] developed an agent-based model for soccer that simulates a subset of the

game, with three players (two attackers and a single defender). In this scenario, the defender

attempts to intercept the attacking player in possession of the ball, while attackers advance and

move the ball. The movement and positioning of the individual players is governed by simple

interaction rules that are able to model empirical values for ball possession time and, length/

number of passes.

While previous studies have demonstrated the existence of self-organisation and collective

behaviour in team-based sport, there has been little attention given to the nature of the collec-

tive states exhibited by the groups of individuals or an understanding of the transitions

between these within the different phases of play. Existing studies have investigated the collec-

tive behaviour (and its link to team tactics) in soccer through the analysis of simple group-level

metrics [30–34]. Examples of these have included the centroid, stretch [30],mean speed, and
surface area [31–33] of the group, calculated across positions of individual team members.

These metrics capture the distribution of players, the motion of the team and level of expan-

sion/contraction of players as the teams move [34]. Analysis of these metrics across different

game phases (e.g. attacking and defending game phases, characterised by ball possession) has

revealed several consistent patterns associated with the phase. For example, Clemente, Cou-

ceiro et al. [30] demonstrated that the surface area of a team increases when they transition to

the attacking phase and contracts when returning to the defending phase. Other studies have

demonstrated the application of spatial pattern analysis to understand the formations that are

evident within the phases of play. In Perl [35], machine learning is applied to group spatial pat-

terns of soccer team formations into clusters for analysis across matches. This study shows the

spatial patterns within a game soccer can be organised into a finite number of formation clas-

ses present. The analysis of temporal patterns, usually referred to as T-patterns, has been

applied to aspects of the football such as positioning within field zones and ball possession.

These studies demonstrate stable sequences of play that are punctuated by attempts to disrupt

the opposing teams equilibrium with the aim of producing goal scoring opportunities [36].

Extensions of this work have linked the existence of specific temporal patterns with perfor-

mance, illustrating their effect on match outcomes [37].

The work by Narizuka and Yamazaki [38] investigated the statistics that govern the align-

ment of players during chase behaviour in soccer. In this research, group order parameters,

including the polarisation and circular variance [39], are calculated across the angles between

the movement vectors from players on opposing teams. The distributions of these parameters

are analysed across the player interactions in the game and uncover periods of order and disor-

der within movement of players involved with chase behaviour. One of the key findings is the

existence of a change-over point in the order measures that is linked to the existence of chase

behaviour and longer passes of the ball.

Aside from the work of Narizuka and Yamazaki [38] focusing on chase events, there has

been no comprehensive study in soccer (based on the analysis of order parameters) that
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investigates the existence of collective states within player movement or the transitions between

these states during gameplay. The aim of this research is to build on the existing body of work

by analysing the movement of players across the different phases of play to understand the pat-

terns of ordered/disordered behaviour that exist and the nature of the transitions between them.

Materials and methods

Datasets and processing

This investigation was based on video and position data made available by Pettersen, Johansen

et al. [40]. This dataset has seen wide use for a range of studies that cover topics including both

performance analytics, image processing, computer vision and machine learning [41–43]. The

data available contains video recordings and player positioning data for two professional soc-

cer games hosted at Alfheim Stadium in Tromsø, Norway in 2013. The videos are generated

from a fixed array of three cameras and includes individual camera recordings along with pre-

processed stitched-panoramas that are constructed from the camera array [44]. These video

sets provide a complete view of the full pitch, making event annotation convenient. The player

positioning data is available for the home team (Tromsø IL) and is obtained from an XZY

Sports Tracking system [45]. This system uses time-of-flight radio triangulation to provide

highly accurate positioning at a rate of 20Hz using on-athlete transponders and fixed base sta-

tions within the stadium environment. The resulting dataset contains the position of each

player (excluding the goal keeper), a heading, speed, total distance travelled, along with the

time stamp and individual player identifier. The player position provided is relative to the field

with the origin (0, 0) in the bottom left corner of the field. The combined data set provides

player information for approx. 190 minutes (228,204 time steps) of gameplay data, with ten

players on the field at any given time (the movement of the goal-keeper is not included in the

analysis).

The video data was used to create an annotated record of the possession of the ball to infer

either the attacking or defending game phase. This was achieved using the open source Visual

Object Tag Tagging Tool (VoTT) [46] provided as open source software by Microsoft. The

time point of each change in possession was recorded using VoTT according to the definition

that is outlined by Pollard and Reep [47], where a player must have sufficient control of the

ball to adjust its direction. Possession of the ball ends when the ball goes out of play, the oppos-

ing team takes possession through interception or a tackle or play is stopped for an infringe-

ment such as a foul or a player off-side. Momentary touches of the ball by players on the

opposing team are not regarded as a change in possession of the ball. The video annotation

data was synchronised with the player positioning data to create a complete annotated player

position time-series for the home team across both games. The nature of the phase-of-play

time series are summarized in Figs 1 and 2. Fig 1 provides an overview of the transitions that

occur between the phases of play (along with the total time spent within each game phase).

This graph consist of nodes, which represent the phases of play, and directed edges, which rep-

resent the transitions between the phases during gameplay. The weights on each edge denote

the proportion of each transition as a fraction of the total number of transitions that occur

across both games. Fig 2 provides an overview of the distribution of the durations of game play

segments that the team spent within each game phase. These distributions were estimated

using a kernel density estimator with a normally distributed kernel function.

Order parameters and collective states

Order parameters were calculated across the player position data to describe the structure of

the collective movement of the soccer team. Order parameters provide an overall measure of
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Fig 1. Transitions between the phases of play within games 1 and 2. The nodes represent the phase of play for the

home team (blue for attack, green for defence and grey for out-of-play), the edges (in red) indicate the transition and

the arrows indicate the direction of the transition. The weights on the edges represent the proportion of each transition

out of all transitions that take place across the two matches analysed. The total cumulative time spent within each

phase of play (in minutes) is listed with each phase.

https://doi.org/10.1371/journal.pone.0251970.g001

Fig 2. The distribution of the duration individual segments of play (i.e. ‘plays’) in each phase (Attacking,

defending and out-of-play) across both games.

https://doi.org/10.1371/journal.pone.0251970.g002
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the order within a system and can used to describe the nature of phase changes in a physical

system. Typically, they are used to describe changes between the liquid, solid, gas and plasma

states of matter that take place when there is a change exerted on a physical system. Physical

state changes result from interactions at the molecular level and produce the emergent transi-

tions that are observed and characterised by order parameters calculated across the whole sys-

tem. This concept has been applied to the study of self-driven individuals in biological

systems, where the movement of the individuals (whether they be fish, insects etc.) is governed

by decision making, environmental constraints and self-propulsion. Following on from studies

that focus on collective structure in natural groups [4, 9, 18], two order parameters were calcu-

lated across the positions of all players at each time step–polarisation and angular momentum.

Polarisation (pgroup), Eq (1), describes how well aligned the individuals in the group are at each

time point.

pgroup tð Þ ¼
1

N
j
XN

i¼1
viðtÞj; ð1Þ

where vi(t) is the unit vector in the direction of motion of player i at time t and N is the total

number of players on the field. Values of pgroup close to 1 indicate a high degree of alignment

in the motion of players at a given time, whereas values of pgroup closer to zero indicate a

greater degree of scatter in the directions of motion.

Angular momentum (mgroup) measures the degree to which there is a consistent sense of

rotation by group members about the group centre (Eq (2)).

mgroup tð Þ ¼
1

N
j
XN

i¼1

r̂ icðtÞ�viðtÞj; ð2Þ

where

ricðtÞ ¼ ciðtÞ � cgroupðtÞ ð3Þ

is the vector pointing from the group centre, cgroup(t) at time t, to the position of player i, ci(t)
at the same time,

r̂ icðtÞ ¼ ricðtÞ=jricðtÞj ð4Þ

is the corresponding unit vector, the group centre is estimated via

cgroup tð Þ ¼
1

N

XN

i¼1

ciðtÞ; ð5Þ

and N is the total number of players on the field at time t. Values ofmgroup close to 1 indicate

that team members are largely consistent in moving clockwise, or anticlockwise, about the

group centre at a given time.

The time series of the two order parameters defined above allows for broad classification of

patterns of team movement, with the goal of identifying and understanding the group states

and transitions between them as game play proceeds. The scheme for classifying the collective

states using the combination of pgroup andmgroup parameters is adopted from [18] and is moti-

vated by the densities observed (in pgroup andmgroup space) for clearly identifiable formations

emerging in schools of fish. Under this scheme (pgroup> 0.65)
V

(mgroup< 0.35) designates the

polar state, (pgroup< 0.35)
V

(mgroup< 0.35) designates the swarm state and (pgroup< 0.35)
V

(mgroup> 0.65) designates themilling state. The corresponding regions are marked on the cor-

responding density plots using red broken lines. Where the paired values of pgroup andmgroup
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lie outside the regions defining polar, swarming or milling states, the emergent behaviour of

the group is classified as transitional, where the group is between states. Under this arrange-

ment, the group can transition between any combinations of the collective states (this includes

transitioning from a collective state into the transitional scheme, and back to the original

state). When the team is within a transitional phase, it has features of both ordered and unor-

dered group structures, with combinations of polar, oscillating, wandering, or swarming for-

mations [19]. In order to understand the relationship between the motion of the team and its

collective states, the mean speed of the team’s movement is calculated across all players on the

field at each time step. The mean group speed (�ugroup) is calculated according Eq (6).

�ugroup tð Þ ¼
jcgroupðtÞ � cgroupðt � DtÞj

Dt
ð6Þ

where Δt is the constant duration between discrete data time steps. This calculation gives the

speed of the centroid (cgroup) over time. A Gaussian-weighted moving average filter with a win-

dow of two seconds (40 samples) was applied to the time series data for the pgroup,mgroup and

�ugroup parameters to remove the effects of noise introduced into the movement data from jitters

in the underlying player positioning data.

To provide an indication of the predictability and diversity within the motion of the indi-

vidual players we calculate the Shannon Entropy,Hgroup, associated with the sequences of two-

dimensional changes in position of each player within 2 second windows. For each sequence

of position changes, the tail of each vector associated with a change in position is placed at the

origin, (0, 0). The square domain where -8� x� 8, -8� y� 8 (metres) is then divided into a

set of square bins of side lengths 0.5 metres, indexed via row j, column i, and resulting in a

two-dimensional grid with 1024 bins. This configuration provides both sufficient resolution

and range to account for the maximum individual stride lengths and sprint speeds identified

by [48] over the 2 second window. For a given time window, we tally the number of times that

position change vectors point into each of the bins, denoting this tally fij, and aggregating data

from all players into the same set of bins (a total of 400 values are used for each time window).

From fij, we then estimate the probability of a change in position pointing to the bin in row j,
column i, via Pij ¼ fij=

X

i

X

j

fij. This scheme is summarised in Fig 3. The entropy,Hgroup, is

then given by Eq (7).

HgroupðtÞ ¼ �
X32

i¼1

X32

j¼i

Pijlog2
Pij ð7Þ

Under this scheme, there is a maximum of 8.64 bits of information at each time step, with

the 40 time step window, corresponding to two seconds of data (and the resulting 400 vectors),

dictating this maximum. The aim of this overall approach is to provide an indication of the

predictability of the direction and magnitude of the motion of individuals within the team at

each time window. The fixed grid arrangement used for the entropy measure provides addi-

tional information on top of polarisation and angular momentum but taking to account the

speed of individuals, not just angular differences between players. This provides a holistic indi-

cation of movement predictability across each time window.

Following on from previous research that examines spatial formations and collective behav-

iour in soccer [30, 34], the surface area Agroup(t) occupied by the team is calculated at each

time step t by determining the convex hull across all player positions at time t and calculating
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the area of the resulting polygon. This was achieved by using built-in functionality within

Matlab 2019a [49].

Plots and visualisation

In order to analyse and understand the collective states, their transitions and relationship with

the phases of play, the order parameters were visualised through the use of probability density

plots. This approach has been widely employed in previous research, both on coordinate-space

data to describe relative position and motion of group-mates under different conditions [14,

17] and on order parameter-space data to describe the nature of collective states and their tran-

sitions [18]. The approach chosen for this analysis mirrors that used by Tunstrøm, Katz et al.

[18], with order parameter space divided up into 50 × 50 equally spaced bins and plotting the

number of order parameter-space points that fall into each using a heat map. For Figs 4B, 5

and 6, which plot �ugroup,Hgroup and Agroup as a function of pgroup, 60 bins are used for the

�ugroup=Agroup dimensions and 140 for theHgroup dimension to reflect the resolution of the under-

lying variables. The value that is actually plotted for each bin is calculated by taking the mean

across a moving window made up of the count in the target bin, along with the counts in all

adjacent neighbouring bins. This has the effect of smoothing the plots. Fig 11 plots the data for

time series segments that encompass the transition from one collective state (e.g. polar or

Fig 3. Demonstration of the steps for binning the player movement vectors for the calculation of the collective

entropy Hgroup. Starting with the series of movement vectors for each player for each time step within the window (in

this example 3), depicted in (A), the movement vectors are transformed so that each vector starts at the origin (0,0),

depicted in (B). These transformed vectors are designated to a 2-dimensional bin, depicted in (C), allowing for the

calculation of P(xij) for all bins.

https://doi.org/10.1371/journal.pone.0251970.g003

Fig 4. Density plots for polarisation, angular momentum and mean group speed. (A) Density plot for paired

angular momentum (mgroup) and polarisation (pgroup) values, with the divisions of the order parameter space overlayed

in red, indicating the polar (p), swarm (s), milling (m) and transitional states. (B) Density plot for paired mean group

speed (�ugroup) and polarisation (pgroup) values.

https://doi.org/10.1371/journal.pone.0251970.g004
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swarm) to the next. These data segments were extracted by starting at the first time point in

the specified starting state and ending at the last time point present in the ending state. The

result is a set of time series segments for each relevant state transition that encompasses the

collective state-space data in the start and end states, along with the progression through the

transitional state. Quivers are overlayed on top of these density plots to denote the mean direc-

tion of movement of the group in the state space between each bin. This mean direction is cal-

culated based upon the next value in the time series of the pgroup—mgroup space for data each

point that falls within each bin. The final component of the analysis provides a series of plots

that include the player’s individual positional traces along with corresponding order parameter

time-series for an exemplar transition from the polar to swarm state.

Statistical analysis

We determined the durations spent in each observed form of collective state (swarm, polar, or

transitional) during each phase of play (attacking, defending, or out-of-play). We constructed

Kaplan-Meier estimates for the survival functions describing the durations spent in each col-

lective state (Fig 8). Survival curves within each game phase were analysed for significant dif-

ferences via log-rank tests [50].

Results and discussion

Global analysis

The summary presented in Figs 1 and 2 provides an overview of the distribution of game

phases across the two games played by the monitored team. In Fig 1, we can see that the total

Fig 5. (A) Density plot for paired group entropy (Hgroup) and mean group speed (�ugroup) values and (B) paired

surface area (Agroup) and mean group speed (�ugroup) values.

https://doi.org/10.1371/journal.pone.0251970.g005

Fig 6. (A) Density plot for paired values of group entropy (Hgroup) and polarisation (pgroup), and (B) surface area

(Agroup) and mean group speed (�ugroup) as.

https://doi.org/10.1371/journal.pone.0251970.g006

PLOS ONE Collective states and their transitions in football

PLOS ONE | https://doi.org/10.1371/journal.pone.0251970 May 24, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0251970.g005
https://doi.org/10.1371/journal.pone.0251970.g006
https://doi.org/10.1371/journal.pone.0251970


time spent within each phase of play is skewed, with the team spending more time in the

defending and out-of-play game phases. The team under study was attacking (in possession)

approximately 39% of the in-play-time. This value lies within the ranges observed in other

studies and is reflective of a team that is facing a higher performing opponent [51, 52]. The

proportion of the game phase transitions (denoted by the red arcs) is relatively uniform, with a

slight bias such that transitions into the attacking phase are less frequent, agreeing with the

observation that a lower overall amount of time is spent in the attacking game phase. The dis-

tribution of durations for the individual segments of play (outlined in Fig 2) in each game

phase agree with this overall trend, with a higher proportion of shorter duration segments evi-

dent in the attacking game phase, when compared to the distributions for the defending and

out-of-play phases. The peaks of all three distributions lie at approximately 5–10 seconds,

agreeing with distributions observed in other studies that focus on performance related to ball

possession [53].

Fig 4A provides a global view of the collective states that are exhibited across the whole data

set. It is immediately evident from this plot that the team spends most of its time within the

polar, transitional and swarm states. The group never adopts a milling structure akin to the

milling seen in fish shoals [18] (the dark-blue areas indicate areas of the state-space that are

never reached). The largest proportion of time is spent in the polar state, indicating a relatively

high level of alignment within the group movement across the games. The lack of time spent

in the milling state is not unexpected as there are few situations within gameplay that should

result in a formation that rotates about its centroid, and the linear nature of the game (e.g.

moving the ball between ends of the pitch) will contribute to the polar movement pattern.

Fig 4B provides further insight, demonstrating that the polar, ordered, collective state is

present primarily at higher average group speeds. This pattern could indicate that higher

group speeds can only be achieved when the team’s movement is relatively ordered. This can

be seen in the lack of mean team speed above 3m/s with a polarisation of less than 0.7. The

apparent correlation between group speed and polarisation is consistent with coordination

among individuals within the team to maintain formations when moving at higher speed, and

has also been observed in animal groups, such as shoaling fish [54]. The polarised movement

state likely arises from the need to coordinate spacing and trajectories so that team movement

at higher speeds is made possible to meet competitive demands within the game (e.g. reposi-

tioning to reduce goal scoring opportunities while defending, creating passing opportunities

while breaking through). The phenomena has been demonstrated in a human context within

studies that focus on pedestrian dynamics, where microscopic movement rules tend to result

in ‘lane-forming’ collective behaviour [6]. Modelling this phenomena demonstrated that the

number of lanes formed within a pedestrian group scales linearly with the width of the walk-

way. This behaviour allows pedestrians to maximise their desired speed by avoiding costly col-

lision. Teknomo [55] demonstrated that the average speed of the individuals decreases linearly

as the density of pedestrians increases where they are moving the same direction and decreases

exponentially when two-way pedestrian traffic is introduced. This two-way scenario is analo-

gous to a formation with low polarisation and, while the environment is different and move-

ment speeds of the individuals are on average slower (ranging between 1-2m/sec) [55], the

results provide a human precedent for the effect of collective order on the movement speed of

individuals.

Figs 5 and 6 provide further insight into the relationship between the mean group speed

and the collective states. In Fig 5A, the density plot for mean group speed as a function of

group entropy is presented. This provides a measure of the predictability of the movement of

individuals within the team at each time step, with a lower group entropy (Hgroup) indicating

more predictable player movement within the group. Recall from the previous section that the
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entropy calculation is carried out across the velocity vector, so both the direction of movement

and the magnitude of the movement contribute to the predictability of the player’s position as

a result of their motion. Fig 5A demonstrates a positive, but non-linear, relationship between

the mean group speed and entropy, with higher group speed associated with higher entropy.

This indicates that when the team is moving at a higher speed, the movement of individual

players is less predictable. When we compare this to Fig 6A (which provides a density plot for

polarisation as a function of entropy), we can see that low entropy (< 3.5 bits) is only observed

with low polarisation (< 0.5). This demonstrates that the mean speed of the player formation

(i.e. the distance that the players travel) is the key driver for higher entropy. When the move-

ment of the team is well aligned, it achieves higher mean speed (Fig 4B) and while at higher

mean speeds, there is a tendency for the team to have a higher entropy (Fig 5A). The polarisa-

tion (i.e. direction of individual player movements) is a smaller contributing factor to the over-

all predictability of the individual movements. This demonstrates the effect on positional

predictability that small angular differences have on groups of players moving at higher speeds

(i.e. small differences in player alignment result in a larger dispersion of players at higher

speeds, giving a higher entropy).

The team surface area as a function of mean group speed in Fig 5B and polarisation in Fig

6B, appears to be representative of multiple movement patterns. The highest group surface

area is achieved at lower mean group speeds, between 1–2 m/s, with highest mean group

speeds between 4–5 m/s being characteristic of mid-range surface areas (500-1000m2). The

relationship between polarisation and surface area is relatively uniform, indicating that (at a

global level) the alignment and order within the team movement is not strongly linked with its

surface area.

Collective movement analysis by game phase

This section further breaks the analysis down using the annotations for the game phases

(attack, defence and out-of-play) to classify the order parameter data points for each time step.

Fig 7 provides density plots for paired values of angular momentum and polarisation for the

attacking (A), defending (B) and out-of-play (C) phases. This break-down demonstrates that

the defending game phase (Fig 7B) has the highest degree of collective order, with the highest

density area distributed mainly within the polarised state (pgroup > 0.65). The density is rela-

tively low across the transitional and swarm states. The attacking game phase (Fig 7A) demon-

strates a wider distribution across the polar and transitional states (more characteristic of the

global density pattern presented in Fig 4A), with the highest density still lying within the polar

state. The out-of-play game phase presents the most uniform distribution across the entire

range of the collective state space present in the data, with the highest density achieved in the

swarm collective state. These observations agree with conventional tactics that are demon-

strated within the attacking and defending phases. In a typical attacking phase, players move

to create passing opportunities and counter defending players [56, 57]. This is referred to as

offensive coverage [56] or simply width/depth [58] and the aim of this approach is to generate

gaps within the defensive formation or isolate defenders to create 1v1 scenarios that facilitate

break-throughs. The state-space distribution presented in 7A indicates that this player move-

ment from this action results in a lower level of collective order (e.g. higher proportion of tran-

sitional and swarm state points) when compared to the defensive distribution. In a typical

defending phase, players will attempt to close around the attacking players and gain numeric

superiority at the point of attack (concepts of balance, concentration and delay [56, 58]). The

state-space distribution presented in 7B indicates that this results in more ordered group

movement.
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The survival analysis presented in Fig 8 provides insight into the durations spent within

each of the collective states (polarised, swarm and transitional) across each of the game phases.

Pairwise Log-rank tests across the survival functions within each game phase show that the dif-

ferences in the survival curves within the attacking (8A) and out-of-play (8C) games phases

were not statistically significant. In the defending phase (8B), all survival curves were statisti-

cally different: polar vs swarm (P� 0, DF = 1, χ2 = 2.86), polar vs transitional (P� 0, DF = 1,

χ2 = 7.57) and swarm vs transitional (P� 0, DF = 1, χ2 = 7.53). Visual inspection of the sur-

vival curves shows that in both the attacking and defending phases, instances in the transi-

tional state tend to last longer than those spent swarming or polarised (but such differences are

not statistically significant to durations of swarming and polarised motion during the attacking

phase). In the defending game phase, instances in the polar state tended to be of longer dura-

tion than those in the swarm state. Within the out-of-play phase, there are no clearly observ-

able differences between the survival curves. This analysis demonstrates that while the polar

collective state is dominant (in terms of the total amount of time) in the attacking and defend-

ing phases, there are relatively long, contiguous periods where the team exhibits elements of

ordered and un-ordered collective behaviour within team movement. It is evident that transi-

tional state durations in the defensive game phase tend to be longer than in the attacking game

phase (compared to the respective durations spent within the other collective states). This is

likely a result of the higher proportion of time spent in the polar state during defensive phase

Fig 7. Density plots for paired angular momentum and polarisation across the attacking (A), defending (B) and

out-of-play (C) game phases from both games. The divisions of the order parameter space overlayed in red, indicate

the polar (p), swarm (s), milling (m) and transitional states.

https://doi.org/10.1371/journal.pone.0251970.g007

Fig 8. Survival curves for the durations spent in the polar, swarm and transitional collective states in the (A) attacking, (B) defending and (C) out-of-

play game phases. These plots provide insight into the collective state structure within each game phase.

https://doi.org/10.1371/journal.pone.0251970.g008
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and indicates that the polar formations are linked to longer transitions, taking more time to

form and collapse in response to game play.

The differences between the collective states within the defensive and attacking movement

patterns are further evident within the data presented in Figs 9 and 10. Fig 9 presents the den-

sity plot for paired values of surface area and polarisation, and Fig 10 presents the density plot

for paired values of mean group speed and polarisation for the attacking (9/10A), defending

(9/10B) and out-of-play (9/10C) game phases respectively. The distribution of polarisation-

surface area space (Fig 7) shows a large difference between the attacking and defensive phases

of play. While in the attacking phase (9A), the team surface area is relatively evenly distributed

across the range of 300-2000m2 for the polarisation range of 0.2–1. While in the defensive

phase (9B), the surface area is concentrated in the range of 300-1000m2, for a polarisation

range of 0.5–1.0. The relationship between the phase of play and the surface area of the team

has been studied in a range of contexts and it has been consistently shown that defensive for-

mations occupy a smaller surface area than attacking formations [30, 31, 59, 60]. Just as with

the collective phase observations in Fig 7, this pattern of surface areas reflects conventional tac-

tics, where attacking play leads to the team spreading out to create attacking opportunities and

defensive play leads to contraction in an effort to gain numeric superiority at the point of

attack.

Fig 10 presents the phase-of-play breakdown for paired values of mean group speed and

polarisation in the attacking phase (10A), defending phase (10B) and out-of-play (10C). Fig

10A–10C all demonstrate the same range of mean group speeds presented in Fig 4B, however

the distribution of varies greatly across each phase of play. The distribution of polarisation-

mean group speed within the attacking phase is reflective of that presented in Fig 4B, with a

relatively even distribution with mean group speed increasing as polarisation increases. In the

defensive phase (10B), the distribution is more concentrated in the polarised state with a

higher mean group speed (the area of highest concentration lies between 3-4m/s). In the out-

of-play phase, the distribution is concentrated at lower mean group speeds (< 2m/s), with

polarisation ranging across 0.1–0.9.

Through the game-phase breakdown in Figs 7, 9 and 10, it is evident that the defence phase

consists of formations that are primarily polar, with a high level of collective order and concen-

trated within a relatively low surface area. The concentrated, ordered formations move with

higher mean group speed. This behaviour is reflective of conventional defensive tactics, with

the higher mean group speed representing more rapid movement of the concentrated forma-

tion to counter offensive play. This is in contrast to the attacking phase of the game, where

there is a lower proportion of ordered collective movement, and a larger proportion of time of

higher surface area formations moving with a wider distribution of mean group speeds. This is

reflective of attacking manoeuvres as individual players move to occupy a larger area to create

passing opportunities and gaps when facing a concentrated defence. The result of this is a col-

lective movement pattern that has a higher proportion of transitional collective-state behav-

iour (with ordered and unordered components) and unordered swarm behaviour. The

observation agrees with previous studies that have identified temporal patterns where attack

players attempt to create space [37] and disrupt the equilibrium of the defence [36].

Movement patterns from the out-of-play phase reflect largely swarming and transitional

collective-state behaviour, all with a lower mean group speed. This is reflective of a collapse in

playing formations (whether they be attacking or defending) as the pressure of competitive

play is removed from the game.

An interesting parallel to these patterns of collective behaviour can be seen in nature

through the analysis of collective order in instances where a predator attacks individuals in a

coherent moving group. There are numerous studies that use both data and simulation to
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investigate these relationships and evidence suggests that the risk of predation is lower when

prey form ordered compact formations [15]. While specific mechanisms are not fully under-

stood, this has been attributed to factors such as increased information transfer within

ordered formations [12] and confusion of predators [61]. In this study, it can be observed

that more ordered, compact and higher-speed collective movement of the defensive

formation reflect patterns associated with reduced risk of predation on prey in predator-prey

studies. If we draw an analogy between the defensive formations observed here in the context

of football, and those associated with reduced risk of predation, then in a sense the attacking

team can be thought of as ‘preying’ on the gaps that are generated by fragmenting the opposing

defence.

It could then be hypothesised that the competitive demands of play lead to the evolution of

the defensive tactics that employ this pattern of collective movement to reduce the attacking

teams ability to successfully break through. Studies of skill development across different age

groups have demonstrated that field tactics related to coordination and field usage are built up

though experience and response to this competitive pressure [59, 60]. While specific situations

and underpinning mechanisms for perception and decision making likely differ, it is possible

that the basic drivers cited in the predator-prey examples related to cognition, confusion and

information transfer may apply to the field sport scenario. This is a key point for further inves-

tigation that my provide insight into the performance of specific combinations of offensive

and defensive tactics related to collective order.

Fig 9. Density plots for paired group area (Agroup) and polarisation (pgroup) values across the attacking (A), defending (B) and out-of-

play (C) game phases.

https://doi.org/10.1371/journal.pone.0251970.g009

Fig 10. Density plots for paired mean group speed (�ugroup) and polarisation (pgroup) values across the attacking (A), defending (B) and

out-of-play (C) game phases.

https://doi.org/10.1371/journal.pone.0251970.g010
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Collective state transitions

From the results presented in Figs 4A and 7A–7C, it is evident that there are transitions

between the collective states, with Fig 7 demonstrating stability within the polar and swarm

states during the defensive and attacking game phases respectively. Fig 11 contains density

plots and slope fields associated with transitions to and from polar and swarm states (in the

pgroup—mgroup plane). Fig 11A and 11B present the transitions from the swarm state to the

polar state and polar to swarm state respectively. The density patterns for these transitions are

very similar, following a very direct path through the pgroup—mgroup space in both directions.

This indicates that the creation of the ordered formation from the unordered swarm and the

collapse of the ordered formation into a unordered swarm have similar transitional properties

(i.e. in both situations, the group contains similar elements of ordered and unordered move-

ment in pgroup—mgroup space throughout the transitions). This property has been observed in

similar studies on schooling fish [18], where transitions in both directions have similar proper-

ties across different school sizes. Fig 11C and 11D show the pgroup—mgroup space density for the

polar-to-polar and swarm-to-swarm transitions. The density pattern and overlaid quiver plots

for the polar-to-polar transition reflect those observed around the polar state of Fig 11A. This

indicates that the polar-to-polar transitions more closely reflect those observed in the creation

of ordered formations rather than the disintegration into unordered swarms (depicted in

11B). The patterns observed in Fig 11D reflect features seen within the swarm regions in both

Fig 11A and 11B.

In order to understand the transitions between the ordered and unordered states, Fig 12

provides a series of plots for an exemplar sequence where the team transitions from an ordered

polar formation into a swarm. Fig 12A plots the positional traces for all players in the tracked

team across the 18 second sequence as they moved on the field (the sequence starts at the blue

end of the traces). The blue, green and red sections of the traces indicate the polar, transitional

and swarm team collective state segments within the sequence. Fig 12B plots the location of

the centroid across the sequence (again with the blue, green sections denoting the polar, transi-

tional and swarm collective states) demonstrating that the team’s formation moved in a ‘hook’

pattern, while maintaining a polar collective state. At the end of the sequence the formation

breaks down, with players moving unaligned in different directions as pressure of competitive

play is removed. This sequence was selected to demonstrate that ordered, polar, collective

movement can be achieved within relatively complex movement patterns. Fig 12C–12E plot

the polarisation (pgroup), mean group speed (�ugroup) and entropy (Hgroup) as function of time

across the sequence respectively. Fig 12C demonstrates that the transition from the polar to

swarm states occur relatively quickly and follows the pattern demonstrated in Fig 4B, where

the group slows down when entering the swarm state (e.g. low polarisation). The effect on the

collective motion of the group from the curve present within the hook-shaped movement pat-

tern is evident in Fig 12C–12E with a small perturbation in the group polarisation, a significant

dip in the group speed and a spike in the group entropy at approximately 8 seconds. This pro-

vides an example of a situation where a polar formation is maintained through a short period

of low group speed and high entropy. This demonstrates a characteristic ‘sliding’ formation

where the team is maintaining consistent field coverage and individual player spacing while

moving to provide pressure on the centre of play (i.e. focused on the position of the ball) in

response to the movement of the opposing players.

Conclusion

This research has presented an exploratory study into the collective states, their transitions and

the relationship with the phases of play across a typical game of football. This provides an
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understanding of where collective order and disorder resides within a typical game and how

this links to the tactics for different game phases. The study has demonstrated that the team

forms polar and swarm collective states. The team moves between these collective states via

direct and relatively fast transitions, even within complex team movements. Higher average

group speeds are achieved when the team’s motion is well aligned/polar in nature—an obser-

vation that likely arises from the team member’s desire to avoid collisions and maintain a for-

mation. The predictability of the individual player motion is reduced at higher group speeds

due to the effect of angular dispersion between individual movements of the players. The col-

lective movement within the defensive game phase is more ordered, compact (i.e. lower sur-

face area) and faster moving compared to the attacking and out-of-play phases. This

observation is consistent with conventional tactics, where attacking formations tend to be

more spread out to create passing opportunities and breakthroughs. Defensive formations typ-

ically attempt to close around the focal point of play to prevent passing opportunities and

apply pressure on the attacking player in possession of the ball. This evidence suggests that

these defensive tactics may have evolved to provide for faster team movement, allowing the

defensive formations to more effectively achieve a numerical superiority around the moving

focus of play (e.g. the ball and the closest attacking players). This observation supports previ-

ous studies that have suggested training for defensive tactics that resist the disruptions from

attacking players that lead to the loss of possession. Conversely, training for offensive tactics

that maximise disruption of collective order of the defensive formation may yield better match

outcomes. Finally, this work presents a novel view of player movement in team sports, provid-

ing further research opportunities focusing on the relationship between collective states and

performance within individual segments of play or across whole matches. This is of interest to

Fig 11. Density plot for paired angular momentum (mgroup) and polarisation (pgroup) values across the collective

state transitions. (A) Transition from the swarm to polar state, (B) transition from the polar to swarm state, (C)

transition from the polar to polar state and (D) transition from the swarm to swarm state. The quivers overlayed on

each plot indicate the mean direction of movement in the state-space for time series points that lie within each bin. The

divisions of the order parameter space overlayed in red indicate the polar (p), swarm (s), milling (m) and transitional

states.

https://doi.org/10.1371/journal.pone.0251970.g011
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individual teams for improving match outcomes and the broader community as an approach

for characterising the features of exciting and entertaining football matches.
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