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Abstract: While bacterial vaginosis (BV) is a well-known type of vaginal dysbiosis, aerobic
vaginitis (AV) is an inflammatory condition that remains understudied and under-recognised.
It predisposes women to serious complications including urogenital infections and pregnancy
problems. Here, we investigated the bacterial community in AV to explore its possible role in AV
pathogenesis. We collected vaginal lavage fluid samples of women (n = 58) classified by wet-mount
microscopy as suffering from AV or BV and included an asymptomatic reference group without
signs of AV or BV. AV samples showed reduced absolute abundances of bacteria in general and
specifically of lactobacilli by qPCR, but 16S rRNA gene sequencing and amplicon sequence variant
analysis revealed that Lactobacillus remained the dominant taxon in 25% of the AV samples studied.
The other AV samples showed high relative abundances of Streptococcus agalactiae and, unexpectedly,
the anaerobes Gardnerella vaginalis and Prevotella bivia in more than half of the AV samples studied.
Yet, despite increased relative abundance of these potential pathogens or pathobionts in the AV
bacterial communities, the AV samples only slightly stimulated Toll-like receptor 4 and showed
reduced activation of Toll-like receptor 2/6, receptors of two pathways central to mucosal immunity.
Our findings indicate that the reduced total bacterial abundance with associated enrichment in certain
pathobionts in AV might be mainly a consequence of the inflammatory conditions and/or altered
hormonal regulation rather than bacteria being a major cause of the inflammation.

Keywords: aerobic vaginitis; vaginal microbiome; next-generation sequencing; amplicon sequence
variants; qPCR; dysbiosis; vaginal lactobacilli; bacterial vaginosis; Toll-like receptor 4; Toll-like
receptor 2/6

1. Introduction

Aerobic vaginitis (AV) is a highly relevant, yet still underexplored vaginal condition, first described
by Donders et al. in 2002 [1]. Patients suffering from AV experience vaginal complaints such as abnormal
discharge (pH 5.0–8.0 vs. normal pH 3.8–4.5), inflammation with redness and swelling, and small
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erosions or ulcerations. Following this, three main characteristics are at the basis of an AV diagnosis:
(i) a variable amount of inflammation, (ii) thinning of the vaginal epithelium, and (iii) a disturbed
bacterial community, deviating from the often-encountered high abundance of lactobacilli [2]. These
three features are microscopically examined and numerically scored by evaluating the number and
appearance of leukocytes, immature epithelial cells (or parabasal cells), as well as the presence of
specific members of the bacterial community based on their morphologies. As these characteristics are
also present in their most severe form in desquamative inflammatory vaginitis, this condition could
also be seen as the most severe form of AV [1].

Symptomatic and asymptomatic forms of AV have been associated with pathologies that endanger
general health and human reproduction, such as sexually transmitted infections including Chlamydia
infection [3,4], progression of precancerous lesions of the cervix [5,6], severe vulvodynia causing
introital pain and dyspareunia (i.e., experiencing pain during intercourse) [7], and numerous adverse
outcomes of pregnancy [6,8–10]. Regardless of the associations with such serious health problems,
research regarding abnormal vaginal bacterial communities has up to now mainly focused on bacterial
vaginosis (BV). BV can be recognized by (i) a malodorous vaginal discharge, (ii) an elevated pH of
4.5–5.5, and (iii) a healthy, non-inflamed vaginal epithelium covered with a biofilm that can be observed
using microscopy and consists of Gardnerella vaginalis and other species [11]. Regarding the microbial
community composition, studies indicate that the number of lactobacilli is reduced in BV [12–14],
while anaerobic species such as G. vaginalis, Atopobium vaginae, Prevotella, Mobiluncus, and Dialister
species overgrow the niche (as previously reviewed in Van De Wijgert et al., 2014 and Petrova et al.
2015 [2,14]).

Selective bacterial culturing, microscopy data, and quantitative PCR (qPCR) have described
features of the bacterial community in AV. Besides the abovementioned depletion of Lactobacillus species,
based on classical culture techniques, it was suggested that aerobic cocci or small bacilli such as group B
streptococci, Staphylococcus aureus, Escherichia coli, and enterococci are (slightly) increased in the vaginal
microbiome of AV patients [1,15,16], hence the term “aerobic vaginitis”. Next-generation sequencing
(NGS) studies exploring the AV microbial community are currently lagging behind, although they
could provide insights at a community-broad level, and identify members up to the subgenus level,
without the possibility of culture bias by fast-growing aerobic bacteria.

AV shares some of the hallmarks of BV, such as a malodorous vaginal discharge and an elevated
vaginal pH. Because of this and since BV is better known, AV is sometimes misdiagnosed as BV.
Wet-mount microscopy can easily distinguish these conditions, but microscopy combined with adequate
scoring systems remains largely underused in clinical practice [9]. Such a microscopic approach
is easily mastered with an intense short course of training and a relatively simple phase-contrast
microscope with ×400 magnification is sufficient for the analysis [17]. However, when this approach is
not applied, women with serious symptoms and/or health risks could be left without proper treatment.
Since AV and BV differ (e.g., in their inflammatory profile), different factors might lie at the basis
of these conditions, so different therapies might be necessary to treat them. For both AV and BV,
the underlying causes have not yet been elucidated. For AV, a dysregulation of the immune system,
a lack of oestrogen, lichen planus (i.e., dermatological condition caused by an inflammatory reaction
of skin and/or mucosa), and vitamin D deficiency have been suggested as causative or contributing
factors, but these need to be substantiated further [15].

Here, we hypothesized that an integrated molecular approach could provide additional
information regarding the important members of the bacterial community in AV and improve
our understanding of AV pathogenesis. Following this, the primary goal of our study was to provide a
detailed, community-wide DNA-based insight into the vaginal microbiome of AV patients. We used
high-throughput 16S rRNA gene sequencing and processed the samples at a single nucleotide level,
allowing us to discriminate closely related biological variants, termed amplicon sequence variants
(ASVs) [18]. Because NGS alone lacks the ability to provide absolute abundance, it was important
to combine NGS with more quantitative methods such as quantitative PCR (qPCR). Furthermore,



Diagnostics 2020, 10, 879 3 of 15

to explore the microbial communities as the stimulus preceding the observed inflammation in AV,
we investigated whether the identified bacteria could also activate Toll-like receptor 4 (TLR4) and the
dimer of TLR2 and TLR6. TLRs form a vital part of host-responses at mucosal sites as they are the
initiators of important and sensitive pathways of the innate immune system, which can lead to activation
of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and immunostimulatory
signaling [19], relevant in light of the pro-inflammatory nature of AV. In fact, an important pathway
of how Gram-negative bacteria (especially Enterobacteriaceae) can trigger inflammation is through
activation of TLR4, the bacterial-responsive TLR that induces most often and most vigorously a
pro-inflammatory response [20]. The dimer of TLR 2 and TLR6 is responsive to a range of bacterial
structures, including peptidoglycan, lipopeptides, atypical LPS (such as from Prevotella species),
and lipoteichoic acid. The latter is present in the cell wall of Gram-positive bacteria, including
lactobacilli and group B Streptococcus [21–25]. Here, we tested the potential of (a subset of) the samples
to stimulate TLR4 and TLR2/6 in NF-kB-reporter cell lines. This combination of 16S rRNA sequencing,
qPCR, and TLR assays brought some specific features of AV to light and allowed us to discriminate
AV, BV, and reference samples. Our findings therefore did not only increase our understanding of AV,
but are also relevant for diagnostics.

2. Materials and Methods

2.1. Study Population and Ethical Approval

58 premenopausal women between 18 and 51 years of age showing a normal Lactobacillus-
dominated microbiota (n = 18) or suffering from BV (n = 20) or AV (n = 20) were recruited at the general
hospital Heilig Hart, Tienen, Belgium. The study was reviewed and approved by the ethical committee
of the Heilig Hart hospital in Tienen (Nr 20040719, 19th of July 2004) and all patients gave their explicit
consent before sampling.

2.2. Sample Collection and Diagnosis

Wet-mount microscopy was used for diagnosis, as previously described [1]. The images were
scored for lactobacillary grades, BV score (similarly to Nugent scoring), AV score (proportional number
of leukocytes, appearance of leukocytes, and presence of parabasal cells and small bacilli and cocci)
and presence of Candida. The group where the wet-mount microscopy showed a lactobacillary grade I
or IIa, without signs of AV, BV, or Candida [1], acted as a reference group. For DNA extraction and
cell experiments, vaginal lavage fluid was collected by flushing and reaspirating 3 mL of sterile saline
through a 0.5 mm wide and 6 cm long needle in the left, central, and right upper vaginal vaults, as
previously described [1]. The fluid was subsequently frozen at −80 ◦C at Femicare Clinical Research
Center (Tienen) until later analysis. Samples were transported on dry ice to the lab and processed
immediately after thawing. DNA was extracted from 700 µL of the lavage fluid by means of the
PowerFecal DNA isolation kit (Qiagen, Hilden, Germany), according to manufacturer’s instructions.
As a control for contamination originating from the kit buffers, a blank extraction was included
whenever opening and finishing the kit.

2.3. 16S rRNA Gene Sequencing with Miseq and qPCR

For every DNA sample, two PCR reactions amplifying the V4 region of the 16S rRNA gene were
performed as two technical repeats. The primer design and cycling conditions were based on the paper
of Kozich et al. (2013) [26] (Table S3). The PCR-products were purified using Agencourt AMPure
XP magnetic beads (Beckmann Coulter, Brea, CA, USA), according to manufacturer’s instructions,
and eluted in PCR-grade water. DNA concentrations were estimated with Take3 micro-volume plate
(BioTek, Winooski, VT, USA) for equimolar pooling. The resulting amplicon library was loaded onto
a 0.8% agarose gel for gel purification of the amplicon band (Nucleospin gel and PCR clean-up kit;
Macherey-Nagel, Dueren, Germany). The purified library was quantified by Qubit (Thermo Fisher,
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Waltham, MA, USA) and diluted to 2 nM. The library was loaded onto the flow cell of a v2 500 cycle
MiSeq kit (Illumina, San Diego, CA, USA) at 7 pM and spiked with 10% PhiX DNA. MiSeq sequencing
was performed at the Antwerp University Hospital, Belgium (MiSeq M00984).

2.4. Bio-Informatics

Sequencing data were analyzed using the DADA2 package [18] in the R environment following
the DADA2 standard operating procedure. In summary, sequences with at least one ambiguous base,
reads containing the lowest possible quality score 2, and reads that have more than two “expected
errors” were discarded. After visual inspection of the read quality, the first 12 base pairs were trimmed
and the forward reads were truncated at position 240 while the reverse reads were truncated at position
220. Finally, DADA2′s core algorithm was performed, followed by read merging. Taxonomy was
assigned using Silva v123 [27] and further manual classification was done using EZtaxon (Chunlab,
Korea) [28]. The sequence table and taxonomy were then imported into the Phyloseq package [29] and
further processed. At this point, sequences of PCR technical replicates were pooled, resulting in one
merged sample. The compositional analysis of differential abundance for pairwise comparison between
the AV, BV, and normal Lactobacillus-dominated (NL) groups was based on the ANCOM method [30].
Read counts were first aggregated on the genus or ASV level. For each combination of a target
genus/ASV and a reference genus/ASV, the log ratio of their relative abundances was calculated for
each sample. Pseudocounts of one were first added to avoid division by zero. Subsequently, differential
abundance between two groups was assessed by a Wilcoxon rank-sum test per target/reference taxon
combination. Significant differences were determined from the Wilcoxon p-values by capping the false
discovery rate at 10% with the method of Benjamini and Yekutieli [31]. Quantification of differential
abundances was performed using the two-sample Hodges–Lehmann estimator (the median of all
pairwise differences between the samples).

2.5. qPCR

The previously isolated DNA of the samples was diluted 20 fold in qPCR grade water (Invitrogen,
Carlsbad, CA, USA) and used to determine bacterial and human cell concentrations by qPCR, using
the StepOnePlus real time qPCR system (Applied Biosystems, Foster City, CA, USA) and SYBR®

Green chemistry (PowerUp™ SYBR® Green Master Mix, Applied Biosystems, Foster City, CA, USA).
DNA was extracted from 500 µL and 100 µL of overnight cultures of Lactobacillus crispatus LMG12005
and Streptococcus agalactiae ATCC49447 and from 500 µL and 75 µL of a culture of THP-1 monocytes
(kindly donated by professor Peter Delputte, LMPH, University of Antwerp), using the same protocol
as for the samples (Table S2). The obtained DNA was serially diluted (10 fold dilutions) and used as
specific standard curve. Further, 5 µL of DNA (sample or standard) was used for every 20µL reaction,
performed in duplicate. Primer sequences can be found in Table S3.

2.6. HEK-Blue™ hTLR4 and hTLR2/6 Experiment

The ability of the samples to stimulate TLR4 and the dimer of TLR2 and TLR6 was estimated
through the use of the HEK-Blue™hTLR4 and the HEK-Blue™hTLR2-TLR6 reporter cell line (Invivogen,
San Diego, CA, USA; the former kindly donated by proffesor Rudi Beyaert), which produces secreted
embryonic alkaline phosphatase in response to TLR4 or TLR2-TLR6 stimulation. The day prior to
an experiment, cells were seeded in a 96 well plate at a concentration of 2.5 × 105 cells/well (details
on growth conditions can be found in Table S2). Samples were thawed and diluted 1:10 with fresh
growth medium (DMEM with 10%fetal calf serum, Gibco, Carlsbad, CA, USA) and added to the wells
(100 µL/well) in triplicate. A lipopolysaccharide (LPS) standard, isolated and purified from E. coli K12
(LPS-EK, Invitrogen, San Diego, CA, USA), was diluted to a final concentration of 10 ng/mL and used
for the HEK-Blue™ hTLR4 cells. PAM2CSK4 was resuspended and diluted to a final concentration
of 50 ng/mL and used as a positive control for the HEK-Blue™ hTLR2-TLR6 cells. The cells were
incubated with the standards/samples for 24 h at 37 ◦C, 5% CO2. The embryonic alkaline phosphatase
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secreted by the cells was quantified by adding 50 µL of supernatant of each well (in duplicate) to
100 µL of substrate solution (1.5 mg/mL pNPP, 150 mM Tris-HCl, 150 mM NaCl, and 7.5 mM MgCl2 at
pH 9.5). After 20 min of incubation shielded from light, absorbance was measured at 405 nm.

2.7. Statistical Analysis

All statistics and visualizations were performed using RStudio (v. 1.1.383, Boston, MA, USA),
ggplot2, and ggpubr packages. For pairwise comparisons between the groups (qPCR and TLR
reporter cell experiments), pairwise Wilcoxon tests were used, corrected for multiple testing with the
Holm-Bonferroni method.

2.8. Availability of Data

The complete sequencing analysis pipeline is available at https://github.com/swuyts/AV_BV_study
and the data can be accessed through ENA accession number PRJEB29686. qPCR data is available as
Supplementary dataset 1.

3. Results

3.1. Taxonomic Profiles of AV Bacterial Communities

The vaginal bacterial communities of women suffering from AV (n = 20) or BV (n = 20, 19 samples
passed quality control), diagnosed by conventional phase contrast microscopy (Table S1 and Figure S1),
and a reference group of women (n = 18) with a normal Lactobacillus-dominated (NL) microscopy
image were characterized by 16S rRNA gene sequencing. Although the classification in NL, BV, and AV
of our samples was initially based on wet-mount microscopy (and thus, mainly based on bacterial
morphotypes, inflammatory cells, and quality of host cells) [1], 16S rRNA gene sequencing analysis
confirmed that most samples of the NL and BV group showed distinct community compositions as
expected (Figure 1, Figure S2). Half of the Lactobacillus-dominated group (NL) was almost exclusively
dominated by Lactobacillus sequences (>95% relative abundance) (Figure 1) and in five other samples
(NL04, NL06, NL12, NL16, and NL19), high relative abundances of Lactobacillus species (31.9–58.0%)
were observed. In four samples (NL02, NL03, NL15, NL17), no or only few lactobacilli could be
detected (<5%), but this is in agreement with previous work that not all healthy women are dominated
by lactobacilli [14]. In the BV classified group, almost all samples were characterized by a typical
BV microbiome profile with co-occurrence of Atopobium, Gardnerella, Prevotella, Dialister, Sneathia,
and Megasphaera as the most important genera.

The microbiome profiles of the AV group were characterized by dominance of only a few ASVs
in every sample (Figure 1). The four genera most prevalent in the AV group (only taking ASVs into
account when they exceeded 1% relative abundance) were Lactobacillus (dominant with a relative
abundance above 50% in 5/20, present in 11/20 samples), Prevotella (dominant in 5/20, present in 13/20
samples), Streptococcus (dominant in 2/20, present in 13/20 samples), and Gardnerella (dominant in 1/20,
present in 8/20 samples). The occurrence of Prevotella was associated with higher AV scores (Pearson’s
correlation r = 0.6, p = 0.008, also when lactobacillary grades were not taken into account for the AV
score, r = 0.57, p = 0.01, Supplementary Figure S3), while the relative abundances of Lactobacillus,
Streptococcus, and Gardnerella were not correlated with AV scores. Various other genera were also
detected, including Veillonella, Dialister, Anaerococcus, Streptobacillus, Sneathia, and Escherichia/Shigella,
but these were only present in low relative abundances and/or occurred only in one or a few samples.

https://github.com/swuyts/AV_BV_study
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of the 11 most abundant genera are indicated in the bar graph with the y-axis corresponding to the 
relative abundance. Bars are colored according to genus or as residual in case the amplicon sequence 
variant (ASV) did not belong to the 11 most abundant genera. Samples are ordered according to 
similarity by minimizing Bray-Curtis distance between neighboring samples (A,B) or AV score (C). 
AV score is indicated below the sample number, colored according to lactobacillary grade (one 
component of composite AV score). AV: aerobic vaginitis, BV: bacterial vaginosis, NL: reference 
group with a lactobacillary microbiota (Lactobacillary grade I, no signs of AV or BV) according to 
microscopy. 
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Figure 1. Bar graphs showing the taxonomic composition of the samples. Samples are categorized as
(A) reference sample (NL), (B) BV, and (C) AV based on wet-mount microscopy (1). The abundances of
the 11 most abundant genera are indicated in the bar graph with the y-axis corresponding to the relative
abundance. Bars are colored according to genus or as residual in case the amplicon sequence variant
(ASV) did not belong to the 11 most abundant genera. Samples are ordered according to similarity
by minimizing Bray-Curtis distance between neighboring samples (A,B) or AV score (C). AV score
is indicated below the sample number, colored according to lactobacillary grade (one component
of composite AV score). AV: aerobic vaginitis, BV: bacterial vaginosis, NL: reference group with a
lactobacillary microbiota (Lactobacillary grade I, no signs of AV or BV) according to microscopy.

The dominance of lactobacilli in AV may seem unexpected because a higher lactobacillary grade
(which corresponds to other bacteria gaining dominance over lactobacilli) is one of the three main
features of microscopic AV diagnosis. Nonetheless, lactobacillary grades are just one element in the
composite score of AV, explaining the high relative abundance of lactobacilli in some samples (here, >50%
in 5/20). Upon compositional analysis of differential abundance (using our own implementation of
ANCOM analysis [30]), we found the strongest differences in abundance between the AV and NL
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group for the genera Lactobacillus (more abundant in the NL group), Prevotella, and Streptococcus
(more abundant in AV) (Figure S4a). Also, Dialister and Anaerococcus showed to be overrepresented in
the AV group (Figure S4a). Dialister and Anaerococcus were present (>1% relative abundance) in seven
samples but dominant (>50% relative abundance) in none. These differences did not reach statistical
significance for AV versus NL, possibly due to a lack of statistical power (low sample size). However,
when comparing AV versus BV, many genera were found to be significantly differentially abundant,
with the strongest effects for Streptoccocus (more abundant in AV), Megasphaera, Atopobium, and Sneathia
(more abundant in BV; Figure S4b).

As Lactobacillus, Prevotella, Streptococcus, and Gardnerella constituted the most abundant genera
across the entire dataset in terms of relative abundance, the most abundant ASVs of these genera
were classified further by EZ BioCloud [28] to a sub-genus level based on single nucleotide resolution
when possible (Figure 2). In total, 17 Lactobacillus ASVs were found in the dataset. The four
most abundant Lactobacillus ASVs were classified as L. iners, L. crispatus/acidophilus/gallinarum,
L. gasseri/hominis/taiwanensis/johnsonii, and L. jensenii/fornicalis, in agreement with community groups
III, I, II, and V proposed by Ravel et al. (2011), respectively. Interestingly, although L. iners was the
most abundant ASV in BV and our reference group, followed by L. crispatus/acidophilus/gallinarum,
this was not the case for the AV group, where three of the five subjects were still dominated by L. gasseri
(or related). In total, 26 different Prevotella ASVs were found in the dataset. The most abundant
Prevotella ASV was classified as Prevotella bivia, while two others were classified as Prevotella timonensis
and a fourth abundant Prevotella ASV could not be classified further than to genus-level. The dataset
contained six Streptococcus ASVs and two of them occurred in multiple samples at higher relative
abundances (up to 100% and 27.9% relative abundance), which could be identified as Streptococcus
agalactiae (i.e., group B Streptococcus) and Streptococcus anginosus, respectively. The Streptococcus ASVs
were limited to the AV group, except for two NL samples, NL12 and NL02 (at 15.1% and 24.8%
relative abundance, respectively). Our dataset also contained four Gardnerella ASVs of which two
occurred often (in 24/58 and 17/58 samples) and in higher relative abundances (up to 99.6% and 47.2%).
Both sequences were found in BV, AV, and the reference group and were both derived from Gardnerella
vaginalis strains. These ASVs matched perfectly with the sequences of G. vaginalis variants reported
by Callahan et al., 2017 [32], including their variant which was solely associated with preterm birth
(cfr. our G. vaginalis ASV1) (Figure 2).

When we looked into the compositional analysis of differential abundance of the ASVs in the
AV versus the NL group, we found Lactobacillus iners 1 was significantly underrepresented in the
AV group (Supplementary Figure S4c). On the other hand, Prevotella bivia 1, Streptococcus agalactiae
and Streptococcus anginosus, and one Dialister ASV (identified as Dialister propionicifaciens) were
overrepresented in the AV group as compared to the NL group. However, the latter differences were
not statistically significant, indicating that the mere bacterial composition of the vaginal microbiota
can be insufficient to discriminate AV from NL. On the other hand, similar to the genus-level analysis,
multiple significant differences in abundance were found for AV and BV, such as for ASVs belonging to
the genera mentioned before (i.e., Streptococcus, Megasphaera, Atopobium, and Sneathia; Supplementary
Figure S4d). However, Gardnerella vaginalis 2 also showed to be highly differentially abundant, being
much more abundant in BV as compared to AV.
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Figure 2. Relative abundances of Lactobacillus, Gardnerella, Prevotella, and Streptococcus ASVs in the NL
(A), BV (B), and AV group (C). Bars are colored according to ASV. Only ASVs that accounted for at
least 5% of sequences in at least two samples are visualized. ASVs were classified by EZBioCloud (27)
as the closest matching species (allowing for a maximum of two mismatches). AV: aerobic vaginitis,
BV: Bacterial Vaginosis, NL: reference group with a normal lactobacillary microbiota (Lactobacillary
grade I-IIa, no signs of AV or BV) according to microscopy.

3.2. Bacterial Counts of the Entire Community and Specific Community Members

As 16S rRNA gene sequencing can only give semi-quantitative results, and did not reveal a lot of
differences between AV and NL, we complemented these data with qPCR, allowing us to estimate
and compare absolute numbers of human and bacterial cells in the samples, as well as selectively of
lactobacilli, streptococci, Enterobacteriaceae, and staphylococci, i.e., taxa which have previously been
proposed for diagnosis of AV [16].

The highest concentrations of human cells, estimated by qPCR of the cytochrome c1 gene, were found
in the AV group (median = 2.7.106 cells/mL), followed by the BV group (median = 1.4 × 106 cells/mL)
and then the reference group (median = 7.4 × 105 cells/mL) (Figure 3a). Higher eukaryotic DNA loads
are expected in the AV group due to large amounts of parabasal cells and/or leukocytes typically
seen in AV lavage fluids, resulting from the epithelial thinning and inflammation, respectively [1].
Larger differences between the groups were observed for total bacterial concentrations (Figure 3b).
The BV group showed the highest concentrations (median = 2.2 × 109 CFU/mL) and was significantly
higher than those of the reference group (median = 9.6 × 107 CFU/mL, p = 0.00034) and the AV group
(median = 1.1 × 107 CFU/mL, p = 6 × 10−6). Looking at specific genera with genus-specific primer sets,
the reference group had the highest concentration of lactobacilli (median = 1.5 × 107 CFU/mL AV-NL
p = 0.021; Figure 3c) and lowest concentration of streptococci (median = 254 CFU/mL, AV-NL p = 0.0005;
Figure 3d), while this was reversed for the AV group (median concentration of lactobacilli = 2.2 × 105
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CFU/mL, AV-BV p = 0.024, and streptococci = 2.7 × 105 CFU/mL, AV-BV p = 0.0008). Even though the
relative abundances were lower, the BV group had somewhat similar concentrations as the reference
group for both lactobacilli (median 8.2 × 106 CFU/mL) and streptococci (median = 3.102 CFU/mL).
In contrast to the streptococci, the association of AV with two other bacterial groups, Enterobacteriaceae
and Staphylococcus, was less evident from our data. For Enterobacteriaceae, 14 of 20 AV samples
showed amplification (Ct > 38; median = 1.2 × 103 CFU/mL), with three samples showing estimated
concentrations above 104 CFU/mL (Figure 3e). This was statistically higher than the BV samples
(amplification in 9/19 samples with a median of 4.2 × 102 CFU/mL), but not the reference samples
(amplification in 10/18 samples with a median of 5.4 × 102 CFU/mL). For staphylococci, we found
that several samples also did not amplify Staphylococcus DNA (Ct > 38), (3/18, 6/20, and 6/19 in the
reference group, AV group, and BV group, respectively). However, in the other samples, we observed
relatively similar concentrations of staphylococci in the three groups (Supplementary Figure S5;
median AV = 2.3 × 105 CFU/mL, median NL = 1.5 × 105 CFU/mL, median BV = 3.2 × 105 CFU/mL).
Nevertheless, despite their similar DNA abundance, their activity could be altered between the two
states (AV and reference) because of the different abundance of lactobacilli. For example, we tested six
vaginal Lactobacillus isolates of various species and their secreted molecules in spent supernatant were
all able to inhibit the growth of S. aureus, in contrast to Streptococcus salivarius and E. faecium (Figure S6).
This can indicate that since vaginal lactobacilli and staphylococci often co-occur and therefore compete
for resources, these organisms have developed strategies to inhibit each other’s growth.Diagnostics 2020, 10, x 3 of 4 
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Figure 3. Estimated human cell (a) and bacterial concentrations (b–d); (a) Concentration of human
cells, estimated by qPCR of the cyc1 gene. A Kruskal-Wallis test indicated significant differences
between the groups (p = 0.041), but this was not confirmed by pairwise Wilcoxon tests. (b) Total
bacterial concentration estimated by qPCR with general primers for the V4 region of the 16S rRNA gene.
(c) Concentration of lactobacilli, (d) streptococci, and (e) Enterobacteriaceae, estimated by qPCR with
genus-specific primers. (f) Ratio of bacteria to human cells as an estimator for bacterial load. For each
gene, a standard curve was used to calculate CFUs or cell concentrations, as indicated in Materials and
Methods and Supplementary Figures. The significance levels from Wilcoxon and Kruskal-Wallis tests
indicated in the graphs correspond to ns: p > 0.05, *: p < 0.05, ***: p < 0.001, ****: p < 0.0001.
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When comparing the total bacterial load as a ratio of the concentration of total bacteria to the
concentration of human cells, the three groups could be clearly distinguished (Figure 3f). The highest
values were found for BV (median = 1282, AV-BV p = 1.7 × 10−5 and BV-NL p = 0.004), intermediate
values for NL (median = 99), and the lowest values for AV (median AV = 5.7, AV-NL p = 0.0003).

3.3. Toll-like Receptor Activation Capacity

After characterization of bacterial abundance and taxonomic composition of the AV microbiome,
we subsequently monitored the ability of the microbially characterized vaginal lavage samples to
stimulate the innate immune system through TLRs. Limited activation of TLR4 was observed in
most samples of the AV group, which yielded only slightly higher activation (p = 0.04, pairwise
Wilcoxon test) as compared to the reference group (Figure 4A). In the BV group, nine out of 10 tested
samples were able to stimulate TLR4, yielding a significantly higher response than the AV group
(p = 0.001) and the reference group (p = 0.023). In contrast, in the TLR2-TLR6 assay (Figure 4B),
the Lactobacillus-dominated reference group showed the highest stimulation (median = 1.99), followed
by the BV group (median = 1.50, BV-NL p = 0.02) and finally the AV group (median = 1.13; AV-NL
p = 0.001). However, we acknowledge that while such minimalistic models are useful to eliminate
other signals and focus just on particular immune pathways, this approach is too limited to generalize
to a possible inflammatory response of the host to the resident bacteria since many other pathways
could be involved as well.
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Figure 4. HEK-Blue hTLR4 and HEK-Blue hTLR2-TLR6 cell response after stimulation of diluted
samples. Formation of p-nitrophenol, generated by alkaline phosphate, induced by (A) TLR4 or
TLR2-TLR6 (B) stimulation was measured through spectrophotometry by its absorbance at 405 nm
(Y-axis). The individual dots are colored according to the cumulated relative abundances of LPS
positive taxa (Gram-negative and Gram-variable) as LPS is the clear ligand of TLR4, while the dimer of
TLR2 and TLR6 is generally more responsive to Gram-positive ligands (peptidoglycan, lipoteichoic
acid). The grey dots indicate the blank measurements (mean = 0.156 and 0.155) and the positive controls
(LPS, 10 ng/mL, mean = 1.72 ± 0.05 sd and PAM2CSK4 50 ng/mL, mean = 2.03 ± 0.07 sd). p-values are
indicated, as obtained from a pairwise Wilcoxon test corrected for multiple testing.
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4. Discussion

Vaginal dysbiosis affects millions of women annually, having a significant impact on their health
and fertility [33]. Here, we studied the microbial community in AV with molecular techniques, which
revealed a markedly reduced bacterial load in AV and the presence of group B Streptococcus and
Prevotella bivia as important discriminatory vaginal community members. Moreover, we could show
altered stimulatory potential for TLR4 and TLR2-TLR6 of AV samples. These features can not only
increase our understanding of AV as a concept, but could also be applied in future diagnostic tools as
here we could discriminate AV, BV, and reference samples from each other.

Studies using 16S rRNA sequencing had not yet been applied for AV. Previous studies based on
culture, microscopy, and qPCR indicated an increased presence of aerobes such as group B streptococci,
S. aureus, E. coli, and enterococci and depletion of lactobacilli in AV [1,16]. Here, we did find high
relative and absolute abundances of Streptococcus ASVs in two thirds of the AV samples (13/20 > 1%
relative abundance and 14/20 > 104 CFU/mL). Therefore, our results support the previous suggestions
of an increased prevalence of streptococci in AV (cfr. culture and qPCR [1,16]). This is highly relevant
with group B Streptococcus being a leading cause of serious neonatal infections [34] and is thus of value
for early stratification of women at risk for this complication. For Enterobacteriaceae and Staphylococcus,
our 16S rRNA gene deep sequencing approach did not show (multiple) ASVs with high relative
abundance and our qPCR analysis did not indicate elevated concentrations. Nonetheless, we could
have underestimated the role of staphylococci since it is plausible that the activity of the staphylococci
is different in AV due to the lack of competing microbes such as lactobacilli with bacteriostatic effects
on S. aureus growth. Although some AV samples did show Lactobacillus as a dominant taxon in the 16S
rRNA analysis, overall, Lactobacillus (and especially Lactobacillus iners 1) showed a lower abundance in
the AV group as compared to the NL samples in the compositional analysis. Additionally, in accordance
with previous studies, the AV samples tested here also exhibited lower absolute numbers of lactobacilli
in qPCR analyses. This could suggest that although lactobacilli are diminished in numbers, this did
not result from other bacteria becoming more abundant and outcompeting them, but rather from host
(immune) factors killing or inhibiting their growth (e.g., by reducing sugar availability).

In contrast to previous culture-based studies and what the name ‘aerobic” vaginitis would suggest,
we also unexpectedly recovered the anaerobic Prevotella, Gardnerella, and Dialister from the AV samples.
These genera were not previously found in AV and were only associated with BV (or community state
type IV) up to now [12,14]. This suggests that although AV and BV are very different conditions with
different clinical presentations and bacterial communities, they also share some features in their specific
microbiota. However, metronidazole, the standard treatment for BV, is not effective in treating AV [1],
but will affect the presence of Gardnerella, Prevotella, and Dialister [35,36]. As the clinical symptoms
they would cause (inflammation-grade/epithelial shedding) are also so different in AV compared to BV,
it is unlikely that these taxa are solely responsible for causing AV. Nonetheless, these could probably
still contribute to symptoms or complications. In fact, Prevotella bivia (found in 9/20, predominantly
severe, AV samples) is known to produce enzymes such as sialidases that might contribute to mucosal
degradation and thus epithelial thinning in AV [37,38]. Furthermore, increased sialidase concentrations
have been found previously in AV [10] and both sialidase activity and P. bivia have been linked to
preterm delivery [39]. Therefore, finding commonalities in the bacterial communities of AV and BV
still provides an interesting route to explore the associated health complications that AV and BV share,
such as preterm birth [9,32,40,41].

For the assay evaluating TLR2-TLR6 responses, induction was most remarkable in the
reference group. This could possibly be explained by a large presence of lactobacilli in these
samples [23]. Importantly, while traditionally TLR activation is linked with pro-inflammatory responses,
stimulation of TLR2-TLR6 has been proposed to also have an anti-inflammatory role in certain
circumstances [19]. As the vaginal epithelium is proposed to be in a controlled state of inflammation [21],
this immunomodulatory role of TLR2-TLR6 activation by the resident Lactobacillus-dominated
commensal community might be an important part of maintaining homeostasis in the reference
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group. Furthermore, the lower activation of TLR2-TLR6 observed in the AV samples as compared to
reference samples, and possibly, therefore, lower anti-inflammatory activity, combined with the slight
activation of pro-inflammatory TLR4 signalling might affect this delicate immunological balance in the
vaginal mucosa. This lack of clarity highlights the importance to study the interactions between the
immune system and the AV microbial community.

The possibility of immune dysfunction itself as an underlying cause of AV has already been the
subject of previous research [4]. While we could not find strong clues of inflammation triggered by
TLR4 or TLR2-TLR6 in AV, there are many other bacterial factors that could cause inflammation via
other pathways. However, if AV were the result of a disturbed immune response, the present microbial
community would not trigger the disease but rather be shaped by it, selecting for bacteria with immune
evasion strategies such as group B Streptococcus and P. bivia [25,42], while the activity of S. aureus
might shift to a more virulent phenotype because of the absence of lactobacilli [43]. Several of our
observations favour the hypothesis of an underlying host-derived cause in AV: (i) a clear heterogeneity
in the microbial community, (ii) presence of all four “typical” lactobacilli, (iii) a decreased abundance of
all bacteria, including lactobacilli, and finally, (iv) a limited ability to stimulate TLR4 and TLR2-TLR6.
These findings could also be explained by a second interesting hypothesis concerning the causation
of AV, which suggests that the bacterial community is disturbed by impaired function of oestrogen
receptors [4]. This would lead to a reduction of the superficial cells of the vaginal wall, with a decrease
in glycogen availability and subsequently, lactobacilli as a result. This local disturbance could then
pave the way for other bacteria to increase in abundance by, for example, loss of lactate production and
bacteriocins, but not to the concentrations seen in BV due to the limited availability of carbon sources.

Here, we describe a first explorative study of the AV microbiome using NGS, however currently
our main shortcoming is our sample size. Therefore, our findings should be confirmed in larger and
more diverse cohorts. If such studies confirm the hypothesis that the altered microbial community is
the result of the disease rather than the cause of it, this would hold important implications regarding
the treatment options and AV as a concept. For example, it would argue against the use of antibiotics
for the treatment of AV [44] as they would just temporarily clear the remaining bacterial community
disturbed by the inflammation or epithelial thinning. At the moment, antibiotics have been suggested
as one of three cornerstones of AV treatment, but based on the above mentioned hypotheses (immune
dysfunction or impaired receptor function), two other proposed main therapeutic strategies, topical
steroids and oestrogens, are likely to be more effective in the long term [15]. Lastly, these findings also
have important implications for the development of probiotics targeting AV microbiota and Lactobacillus
restoration since the inflammation and associated antimicrobial environment will complicate the
survival and efficacy of the probiotics in these patients. Selection strategies will therefore benefit from
in vitro prediction models taking this into account [45].
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