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Abstract

Ecological processes, like the rise and fall of populations, leave an imprint of their dynamics as a pattern in space. Mining
this spatial record for insight into temporal change underlies many applications, including using spatial snapshots to infer
trends in communities, rates of species spread across boundaries, likelihood of chaotic dynamics, and proximity to regime
shifts. However, these approaches rely on an inherent but undefined link between spatial and temporal variation. We
present a quantitative link between a variable’s spatial and temporal variation based on established variance-partitioning
techniques, and test it for predictive and diagnostic applications. A strong link existed between spatial and regional
temporal variation (estimated as Coefficients of Variation or CV’s) in 136 variables from three aquatic ecosystems. This
association suggests a basis for substituting one for the other, either quantitatively or qualitatively, when long time series
are lacking. We further show that weak substitution of temporal for spatial CV results from distortion by specific
spatiotemporal patterns (e.g., inter-patch synchrony). Where spatial and temporal CV’s do not match, we pinpoint the
spatiotemporal causes of deviation in the dynamics of variables and suggest ways that may control for them. In turn, we
demonstrate the use of this framework for describing spatiotemporal patterns in multiple ecosystem variables and
attributing them to types of mechanisms. Linking spatial and temporal variability makes quantitative the hitherto inexact
practice of space-for-time substitution and may thus point to new opportunities for navigating the complex variation of
ecosystems.
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Introduction

The spatial texture of a landscape is a fundamental reflection of

the ecological processes underpinning it. Thus, spatial distributions

of population [1], geological [2] and climatological variables [3]

can impart key details about the forces, operating over time, that

forged them. Spatial patterns are diagnostic when they are used to

uncover hidden mechanisms in the landscape, and predictive when

they indicate the likely future behavior of a process. Ecology is full

of examples of the former, diagnostic approach where spatial

patterns are mined for evidence of mechanisms like dispersal,

competition or environmental structuring [4–7]. But the latter,

predictive approach is also commonplace. Because obtaining long

time series is difficult, inferring temporal patterns from spatial data

is used in such varied contexts as: (i) chronosequences, where

gradients of different-aged sites are used to track how a process

(e.g., succession) changes from one state to another over time [8–

11], (ii) boundary dynamics, where spatial snapshots can reveal the

rate of species spread [12], (iii) complex dynamics, where spatial

data helps detect chaos [13], and (iv) regime or phase shifts, where

changes in spatial variation can expose the incipient reorganiza-

tion of an ecosystem [14–16].

Using spatial patterns to infer temporal patterns (‘‘space-for-

time substitution’’; sensu [8]) or mechanisms quickly encounters the

hard problem of interpreting dynamics [17,18]. We, as others

[18,19], note that progress will require a deep understanding of

what spatial patterns reveal about temporal patterns, and how

these come together in the spatiotemporal patterns of landscapes.

We further suggest that such insight will help both predictive and

diagnostic efforts.

Here we focus on the variability of values over time (i.e., the

inverse of stability [20] or constancy [21]) as opposed to properties

like resistance or resilience [21]. We focus, therefore, on the

dissimilarity of values and whether this variability (e.g., fluctuations

in density) can be predicted from a snapshot of spatial variability.

This application, in particular, would be useful given the rarity of

long time series in ecology [9], the widespread nature of

anthropogenic impacts [22], the increasing attention to ecological

stability [20,23–26], and the need for clearer links between spatial

and temporal concepts [27].

To our knowledge, no links explicitly tie the temporal and

spatial variation of a variable. However, a theoretical foundation

for doing so is available through ANOVA variance partitioning

[28–30] because overall spatiotemporal variation can be broken

down into its spatial and temporal components. Crucially, these

components can be re-expressed in terms of temporal variance at

the regional scale (i.e., spatially-aggregated at time k; given as
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Var(Y) whereYk~
P

n
i~1Xik). This scale reflects the net sum of

what occurs in all patches and thus reflects variation in resources

and ecological functions at the landscape level. Our derivation

makes regional temporal variance itself decomposable (Fig. 1A).

Traditional variance partitioning methods, in contrast, only

decompose total spatiotemporal variance. We show in Fig. 1A

that regional temporal variance (Var(Y)) obeys a simple relation-

ship with a spatial quantity - the sum of spatial variances measured

at time k (gvar(Xk)). This relationship, in turn, is modified by two

spatiotemporal patterns [28–31], inter-patch synchrony and persistence

of spatial variation (Figs. 1 & 2; see File S1 for derivation and details).

Inter-patch synchrony (summed inter-patch covariances;

gcov(Xi,Xj)) refers to temporal changes that happen simulta-

neously in patches i and j. It is well known to boost temporal

variation at the regional scale [32] (e.g., widespread population

decline during drought). On the other hand, persistence of spatial

variation (summed inter-time covariances; gcov(Xk,Xl)) - persistence

for short - describes differences or gradients between patches i and

j that are retained from time k to l (e.g., fixed or permanent

differences between locations). Opposite in sign to synchrony,

persistence is associated with lower temporal variance. This is

because a pattern of spatial variation is retained over time only if

most patches are relatively stable. Temporal variance thus

depends critically on the balance of synchrony and persistence.

Implications of Analytical Framework
The relationship captured in Fig. 1A points out the basis for

predictive applications like space-for-time substitution. It does so by

showing that spatial and temporal variance will scale exactly (by a

factor of ni/nk) for stochastic processes. Stochastic processes enable

this because their values are uncorrelated between patches i and j,

as well as between times k and l, and this sets synchrony and

persistence terms to zero (gcov(Xi,Xj) = 0, gcov(Xk,Xl) = 0). This

is a form of ergodicity [33] that can be illustrated by an analogy.

Imagine a seascape in which wave peaks are independent of each

other: In this null case, wave amplitudes from trough to peak

would be equally large or small whether waves were measured

from a fixed point (i.e., waves passing over time) or from a transect

across the seascape (i.e., a snapshot of waves across space). Our

formulation merely adds that this match between temporal and

spatial variability applies at the regional (seascape) scale as well as

at the patch (wave) scale. Fig. 2 summarizes this mechanism,

showing how temporal fluctuations are recorded as spatial

variability.

Diagnosis, where inferences are made about how patterns came

about, may also be made possible by the analytical solution. This is

because components of temporal variance from Fig. 1A also

describe and summarize spatiotemporal patterns that are the net

result of ecological mechanisms. Moreover, because these terms

are linked to temporal variability, they may provide a new view of

dynamics and their consequences for stability.

Because they are commonly used in ecology, we extended our

analytical framework to include common indices (Fig. 1B) like the

Coefficient of Variation (CV), and indices of synchrony ( T) and

persistence ( S). We test the validity of these formulations and turn

them to answering three questions: (i) Is the spatial CV of a

landscape variable a meaningful proxy for its (regional) temporal

CV? (ii) Under what conditions is it predictive? And (iii) what do

departures from an exact match between spatial and temporal CV

tell us about the forces shaping dynamics of variables? We apply

our approach to 136 biotic and physicochemical variables from

three landscape types: Laboratory arrays of connected aquatic

microcosms (measured for 20 weeks), a natural array of Jamaican

coastal rock pool ecosystems (13 years), and a set of seven lakes

from the North Temperate Lakes LTER site (30 years). Results

shed light on what real world inferences can be drawn when the

relationship between spatial and temporal variation is known.

Materials and Methods

Ethics Statement
Invertebrate species were sampled with permission on land

owned by University of West Indies (Discovery Bay Marine Lab)

and are not protected by law. Laboratory experiments used

invertebrate species that do not require permits or procedural

approvals.

Analytical Relationship: Linking Spatial and Regional
Temporal Variance

Values in a landscape vary over time (k…n), and across patches

(i…n). These dimensions of variation both contribute to regional

temporal variance, which is the variance of the spatially-

aggregated time series (i.e., Var(Y) whereYk~
P

n
i~1Xik). Spatial

and temporal variation can be precisely linked through two

mathematical truisms: (i) Spatial and temporal variances, estimat-

ed from the same site6 time data matrix, are related by rules that

underlie ANOVA variance partitioning and (ii) these variances,

which capture variation at the aggregate scale for both time (i.e.,

Var(Y)) and for space (i.e., temporally-aggregated; Var(Z)

whereZi~
P

n
k~1Xik), can be further decomposed into variances

and covariances of patches i and j or time points k and l [34]. See

File S1 for derivation. Var(Y) can thus be re-expressed as in Fig. 1A

where; var(Xk) is the spatial variance at time k, cov(Xi,Xj) is the

covariance of patch i with j (synchrony), and cov(Xk,Xl) is the

Figure 1. The spatial-temporal variability link. (A) We derived an
analytical relationship linking regional temporal variance of a process
(Var(Y)) to summed spatial variances at time k (gvar(Xk)). Inter-patch
synchrony (gcov(Xi,Xj)) and persistence (gcov(Xk,Xl)) modify this link
and lead temporal and spatial variance to scale as a function of number
of patches (ni) and time points (nk) when these terms are zero. (B) We
evaluate the usefulness, for prediction and description, of the
corresponding (relative) relationship that uses dimensionless coeffi-
cients: Regional temporal CV (CVY), mean spatial CV (CVk), and indices
of synchrony ( T) and persistence ( S). While an exact solution exists
(Eq. S28, File S1), we use a more useful approximation,

CVY% 1=ni
1=2

� �
CVk, that gives an expected temporal CV for a given

spatial CV when synchrony and persistence are negligible (Eq. S31,File
S1).
doi:10.1371/journal.pone.0089245.g001
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covariance of time k with l (persistence of spatial variation). These

three components of spatiotemporal pattern are consistent with

prior theory and statistical concepts [28–31].

We converted the above analytical relationship into dimension-

less quantities (Eq. S28; File S1) – regional temporal CV (CVY),

spatial CV (CVk), and indices of synchrony ( T) and persistence

( S). While exact, this relationship does not yield a clear null

relationship between CVY and spatial CV. We therefore used an

approximation of it (Eq. S31; File S1) that gives the expected value

of temporal CV from spatial CV in the absence of synchrony or

persistence (Fig. 1B). Temporal CV values calculated using this

approximation were 94–98% correlated (1:1) with values from

random number simulations where synchrony and persistence

were close to zero. These null values, in turn, were used to plot the

lines of ‘‘independent dynamics’’ shown in spatial-temporal CV

plots (Figs. 3–5).

Data Analysis
Biotic variables included population densities of invertebrate

and fish species and ecosystem-level quantities like NPP, while

physicochemical variables ranged from temperature and pH to ion

concentrations (Table S1, S2). For each variable, we estimated all

indices in Fig. 1B. Regional temporal CV was estimated as the

quotient of the time series standard deviation and mean. Mean

spatial CV of a variable was defined as the average of spatial CV’s

measured at time k. These were calculated either across the three

microcosms of each experimental replicate, across 49 Jamaican

rock pools, or across the seven LTER lakes. If a species was absent

from all water bodies spatial CV could not be calculated for that

time point. In these cases, mean spatial CV was calculated as an

average of the time points in which it was present (mean frequency

of occurrence = 65% of years).

We estimated inter-patch synchrony using a variance ratio T

[35] which is, roughly speaking, a ratio of aggregate (regional) to

component variances:

T~
Var Yð Þ

P
SD Xið Þð Þ2

ð1Þ

where SD(Xi) is the standard deviation of a patch. As patches

synchronize, the value of T grows from zero to one. The

counterpart of inter-patch synchrony is persistence where, instead

of temporal changes being similar from patch i to j, spatial

differences are similar from time k to time l. We therefore

estimated persistence with the spatial counterpart of T, which we

call S. S was calculated by replacing Var(Y) and SD(Xi) in Eq. 1

with their spatial equivalents; the variance of the temporally-

aggregated series (i.e., Var(Z)) and spatial standard deviation at

time k (SD(Xk)). Analogous to T, S values increase from zero to

one as differences among patches persist more through time.

We used General Linear Models (GLM) and multiple regression

in Statistica v. 8.0 (StatSoft Inc., 2007) to predict regional temporal

CV from mean spatial CV, T, and S (i.e., ,Fig. 1B). Temporal

and spatial CV values were log transformed for analysis because,

when plotted, they tended to form fan-shaped data clouds that

were best described by power functions. We tested residuals of all

analyses for normal distribution using Kolmogorov-Smirnov tests.

Surfaces (Fig. 5) were fitted by distance-weighted least squares.

Microcosm Connectivity Experiment
We assembled replicate arrays of three 6700 mL aquatic

microcosms. Each array contained community types that were

relatively stable under laboratory conditions: (i) impoverished,

containing ubiquitous microbes initially surviving in distilled

water, (ii) phytoplankton and microbes, and (iii) 10 invertebrate

species (cladocerans, ostracods) and phytoplankton and microbes.

We arranged microcosms such that each initially contained a

Figure 2. Spatial imprinting of ecosystem processes. Theorized mechanism by which temporal fluctuations of patches create spatial variability
in the landscape, which may in turn be a proxy for temporal variability. Spatiotemporal patterns (inter-patch synchrony and persistence) modify the
correspondence of spatial and temporal variability (Fig. 1), so it is unknown whether the link is strong enough for predictive (e.g., space-for-time
substitution) applications and whether modifying terms have diagnostic/descriptive value.
doi:10.1371/journal.pone.0089245.g002
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distinct community type, with all three types represented in an

array.

Spatial exchange was manipulated by connecting component

microcosms with clear TygonH tubes. Treatments were: No

connection among microcosms and bi-directional connection

among all three microcosms. Connector tube diameters were

increased by ,70% at week 10 of the 20-week experiment. Seven

ecosystem-level variables were measured weekly in each micro-

Figure 3. Anatomy of a plot between spatial and regional temporal variability. A stochastic null model of a three patch mosaic illustrated
several features of a plot between log mean spatial CV and log regional temporal CV. (A) Three regions exist in which a variable (point) can fall - an
‘‘independent dynamics region’’ when values are independent between patches i and j and time points k and l, a ‘‘synchrony region’’ when inter-
patch synchrony boosts temporal CV, and a ‘‘persistence region’’ when spatial gradients are retained over time; (B) Weak linear relationship when
variables share similar spatiotemporal variability, leading to scatter from small variations in synchrony or persistence; (C) Strong linear relationships
when variables differ in spatiotemporal variabililty and occupy the ‘‘independent dynamics region’’ (black circles), but also when all variables are
equally dispaced by synchrony (blue circles) or by persistence (red circles); (D) Deviation of regression slope from ,1 (black circles) when variables
change in synchrony or persistence as a function of variability. Here, a gradient exists from variables with low variability and synchrony to variables
with high variability and persistence. Spatial CV values are means of spatial CV measured at time point k. Each point represents a variable and is a
mean of ten replicates.
doi:10.1371/journal.pone.0089245.g003
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Figure 4. Empirical CV plots illustrating an underlying spatial-temporal link (Fig. 1B). The regional temporal CV of an ecosystem variable
(data point) was predictable from its spatial CV in microcosm (n = 7) (A, D), rock pool (n = 33) (B, E), and lake systems (n = 60) (C, F). The predictive
value of spatial variability was consistent in that linear associations emerged whether spatial variability was estimated as the mean of spatial CV’s at
time k (A–C), or whether a spatial CV from an initial time point (k) was used to predict temporal CV of the remaining (k+1…n) time series (D–F).
Dashed lines denote the relationship expected for stochastic processes i.e., when values are independent across space and time. These were obtained
by simulating random numbers with the same data structure as empirical data sets. Abiotic variables (blue circles) were consistently more stable and
less spatially patchy than biotic variables (red circles).
doi:10.1371/journal.pone.0089245.g004

Figure 5. The modifying role of inter-patch synchrony. Relationship between spatial CV and regional temporal CV as modified by the degree
of inter-patch synchrony in (A) microcosm, (B) rock pools and (C) lakes. Synchrony increased regional temporal CV relatively little over that explained
by spatial CV. Black points = empirical variables, blue points = simulated, randomly-generated variables (n = 20; see File S1) to represent ‘‘independent
dynamics region.’’
doi:10.1371/journal.pone.0089245.g005

Predicting Dynamics from Spatial Variation
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cosm of the array for 20 weeks using light-dark bottle methods,

chlorophyll extractions and environmental sensor probes (Table

S1). Microcosm NPP data were rescaled, bringing the lowest value

to zero to correct spatial and temporal CV’s for negative values.

Natural Rock Pool Ecosystem
We collected data over thirteen annual surveys (1989–2002) in a

Jamaican rock-pool system of 78 invertebrate species, dispersing

among 49 rock pools. The system lies near Discovery Bay Marine

Laboratory, University of the West Indies, on the northern coast of

Jamaica (18u289 N, 77u259 W). Pools create a mosaic 25 m in

radius on a fossil reef no further than 10 m from the ocean and

have volumes ranging from 0.5 to 78.4 L. Pools are, on average,

within 1 m of the nearest neighbor and never more than 5 m

away. Ocean tides occasionally flood a few of the most seaward

pools. But most are refilled only by precipitation or, on some

occasions, ocean spray. We treated the 49 pools as a single system

linked by material fluxes and organism dispersal.

The 70+ invertebrate species in rock pools disperse predomi-

nantly by propagules transported via wind, ocean spray, animal

vectors and, very occasionally, by overflow from neighboring pools

after heavy rainfall [36]. Invertebrate species include: Ostracods

(20 species), copepods (five species), cladocerans (five species),

worms (15 species), aquatic insects (18 species) and other

crustaceans (six species). Most species occurred rarely, some only

once (for more details, see [37]). We therefore confined all

analyses, except for contributions of variance components (Fig. 6)

to 26 common species and temperature, pH, salinity, dissolved

oxygen, oxygen saturation, and chlorophyll-a.

Invertebrate densities were estimated for each pool as the

number of animals in a 0.5 L sample of water, which was

withdrawn after stirring the pool to dislodge organisms from rock

walls and to homogenize contents. Each sample was filtered

through 63 mm mesh to isolate invertebrates, which were

immediately preserved in 50% ethanol. Community samples were

sorted, identified to highest possible taxonomic resolution and

counted by microscope.

Environmental variables like salinity and pH (Table S2) were

measured in each pool using multiprobe sondes (DataSonde,

Yellow Springs Instruments, Yellow Springs, Ohio, USA or

Hydrolab, Austin, Texas, USA) during biotic surveys for 6–11 of

the survey years, depending on the variable.

Small rock pools occasionally dried up, preventing community

sampling. These events were recorded as blank data entries, and

were ,10% of total observations. For our main analyses (Figs. 4–

5), we replaced blank entries with zeroes, assuming that a

desiccated pool harbored no living, adult invertebrates. To check

if this assumption introduced bias, analyses were repeated using

two alternative procedures; (i) leaving blank cells unchanged or (ii)

interpolating by replacing blanks with the pool mean. All

procedures produced similarly significant results indicating no

major effect of our assumption. For abiotic variables, blank entries

had no logical association with zero (e.g., desiccation does not

suggest a 0uC temperature), so these cells were left blank.

Figure 6. Patterns of spatiotemporal variation underlying the temporal variability of ecosystem variables. The interplay of the three
components of temporal variance - spatial variation, synchrony and persistence - was captured by plotting the normalized values of each term in Fig.
1A against each other. Values of each term were standardized to the sum of all three terms such that the resulting proportions summed to one.
Variables were assigned to a priori groupings based on their likely genesis and mode of regulation, where blue points = species populations,
green = atmospheric, red = non-population biotic, black = watershed. n = 136, and includes an additional 36 rare rock pool species that were excluded
from earlier analyses due to sparseness of data. Points scatter across theorized modes of dynamics described in Table 1: A = destabilized by
synchrony, B = stabilized by persistence, destabilized by synchrony, C = stabilized by persistence, D = stabilized by compensatory dynamics,
Intersection of A-D = stabilized by asynchrony. Gray histograms show frequency distributions for each component of temporal variance.
doi:10.1371/journal.pone.0089245.g006
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North Temperate Lakes Long-Term Ecosystem Research
Program

We used data from seven Wisconsin lakes (Allequash, Big

Muskellunge, Crystal, Sparkling, Trout, Crystal Bog and Trout

Bog), collected by the North Temperate Lakes Long-Term

Ecological Research program. Lake data were obtained from a

public database hosted by the North Temperate Lakes LTER,

NSF, Center for Limnology, University of Wisconsin-Madison,

available at http://lter.limnology.wisc.edu. We included up to 30

years of data from 60 biotic and abiotic variables across five

datasets (Table S2). The following datasets, collected and

maintained by LTER associates, were used:

N Chemical limnology of primary study lakes: Major ions

N Chemical limnology of primary study lakes: Nutrients, pH and

carbon

N Physical limnology of primary study lakes

N Pelagic macroinvertebrate abundance

N Fish abundance.

Collection methods corresponding to datasets can be found as

metadata on the online database (http://lter.limnology.wisc.edu).

For fish data, only fyke net catches were used and were

standardized by effort (i.e., catch per unit effort) to facilitate

comparison. Values for a given lake were annual, obtained by

averaging organism densities or physicochemical values across

depths, across sampling dates and across stations. Density data

were used to equalize the contribution from each lake because

Trout Lake is up to 3200 times larger than other lakes, and

therefore dominates the landscape spatiotemporal pattern. Results

therefore emphasize patterns owing to ecological differences

among lakes, rather than to lake size.

Data are available from the LTER database or upon request

from the authors.

Results

Three quantities jointly accounted for 87–100% of a variable’s

regional temporal CV (Table S3) - mean spatial CV, inter-patch

synchrony T, and persistence S. This result verifies that spatial

and temporal CV’s are related and substitutable to the degree that

synchrony or persistence does not interfere. Perfect substitution

occurs when values are uncorrelated between patches i and j and

between times k and l. In this case, regional temporal CV is

roughly 1/ni
1/2 times the mean spatial CV (Fig. 1B; Eq. S31). A

null, stochastic model (see File S1) showed that such a variable

(data point) lies within an ‘‘independent dynamics region’’ on a

plot of spatial and temporal CV (Fig. 3A). It falls on a line of slope

,1/ni
1/2 or ,1 on a log-scale (Fig. 3C). Inter-patch synchrony

(e.g., from climatic forcing) increases regional temporal variability,

shifting a variable to an upper ‘‘synchrony region’’ of the plot

(Fig. 3A). But the data point shifts to a lower, ‘‘persistence region’’

(Fig. 3A) when spatial gradients are retained over time (e.g., from

patch-specific factors).

A range of plot patterns can emerge depending on the variables

sampled and their spatiotemporal dynamics. First, weak or no

linear association exists when variables’ spatial and temporal CV’s

span only a narrow range and stochastic differences in synchrony

and persistence create scatter (Fig. 3B). Second, strong linear

association emerges if all landscape variables have stochastic

behavior (black circles, Fig. 3C), similar degrees of inter-patch

synchrony (blue circles, Fig. 3C) or similar degrees of persistence

(red circles, Fig. 3C). The latter two cases occur because all points

are equally displaced up or down from the independent dynamics

region. Finally, regression slopes deviate from the expected slope

of 1 when some variables display synchrony and others persistence

to produce skew (Fig. 3D).

Significant linear regressions existed between spatial CV and

regional temporal CV for real ecosystem variables (Fig. 4). In all

three data sets, the most stable variables (e.g., hydrological and

environmental variables) had low spatial variability, while unstable

variables (e.g., species populations) were spatially patchy in the

landscape (Fig. 4A–C). Some statistical dependence exists in these

plots because mean spatial CV and regional temporal CV are

calculated from the same data matrix. However, results were

almost perfectly conserved when a single sampling event (k) served

to estimate spatial CV and predict subsequent (k+1…n) temporal

CV (Fig. 4D–F). Results are also unlikely to have arisen from

biased estimators, since trends were confirmed using several

alternative indices (Table S3).

Not all variables lay close to the independent dynamics region.

This was reflected in regression slopes and intercepts (solid lines,

Fig. 4) which departed from the independent dynamics case

(dashed lines, Fig. 4). For instance, regression slopes for

Table 1. Theorized modes of dynamics in landscape variables, their effect on regional temporal variation, and ecological
examples.

Graph region Synchrony/persistence
Dominant effect on
temporal variation Ecological scenario

A High/Low Destabilized by synchrony Local factors less important, landscape-scale factors synchronize dynamics. E.g.,
synchrony of isolated mammal populations via weather [63]

B High/High Stabilized by persistence and
destabilized by synchrony

Local factors establish permanent spatial gradients, landscape-scale factors
synchronize dynamics. E.g., synchrony of source-sink fish populations via dispersal
[64]

C Low/High Stabilized by persistence Local factors establish permanent spatial gradients, dynamics differ among sites.
E.g., stable spatial distributions of organisms across habitats [65]

D Low/Low Stabilized by compensatory
dynamics

Dynamics negatively correlated from time to time, site to site. E.g., spatiotemporal
refugia of competing soil nematodes [60]

Intersection of
A,B,C,D

Zero/Zero Stabilized by asynchrony Dynamics appear stochastic, independent from time to time, site to site. E.g.,
settlement of broadcast oceanic larvae [66]

Modes reflect different mixtures of inter-patch synchrony and persistence, and correspond to regions of Fig. 6, where variables from three natural ecosystems are
plotted by their spatiotemporal patterns.
doi:10.1371/journal.pone.0089245.t001
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microcosms and rock pools were reduced because physicochemical

variables (blue circles) at one end of the data cloud exhibited more

inter-patch synchrony (Fig. 4A,B,D,E). Meanwhile, lake physico-

chemical variables showed considerable persistence, lowering

temporal variability and steepening the slope (Fig. 4C,F). Though

slopes and intercepts deviated from the independent dynamics

region, r2 values of 0.70–0.93 suggest that the rank order of

variable’s CV’s was preserved. We do note some outliers, however,

such as pH, Mg and Ca in the persistence region of Fig. 4C, F.

Also, some variable types (e.g., species populations; red circles) had

greater scatter. Overall, however, synchrony and persistence

interfered relatively little with the scaling of spatial and temporal

CV. Multiple-regression beta coefficients, for instance, revealed

that temporal CV increased 2.9–6.2 times more with a variable’s

spatial CV than with its synchrony (Fig. 5).

Variables differed in the relative importance of spatial

variability, synchrony or persistence to their landscape dynamics.

We generated a fingerprint of these dynamics by normalizing the

right hand terms of the variance equation (Fig. 1A) for each

variable and then plotting them (Fig. 6). A division existed between

biotic and physicochemical dynamics, and variables spread across

several regions of the plot (quadrants A-D) corresponding to

different spatiotemporal behaviors leading to temporal variability.

Table 1 synthesizes results by describing these modes of behavior

and how they may arise in nature.

Species populations (blue points) clumped together, their

dynamics dominated by spatial variability with little synchrony

or persistence (Fig. 6; intersection of quadrants A-D). Meanwhile,

most atmospherically-driven processes (green points e.g., temper-

ature, dissolved oxygen) were set apart by little persistence but

were destabilized by synchrony (quadrant A). In contrast, many

watershed-associated variables (black points e.g., ion concentra-

tions) were characterized by persistence but little synchrony

(quadrant B), a combination leading to lower temporal variability

at the regional scale.

Discussion

Spatial Signatures of Temporal Variability
Variables from three aquatic ecosystems showed a striking and

tight correspondence between their regional temporal CV and

mean spatial CV. This trend may be considered predictive

because it held even when the spatial CV was known from only

one time point. Moreover, trends emerged in ecosystems ranging

from large to small, and from tropical to temperate, suggesting a

potentially general and widespread phenomenon. Applying a

space-time correspondence follows more than a century of studies

involving substitution [8–10,38], but our formulation extends

usefulness in two ways; (i) it is quantitative in the form of equations

in Fig. 1 rather than qualitative (e.g., chronosequence studies; see

[33] for critical review) and (ii) the logic applies equally when

substituting CV’s of a single variable or when plotting many

ecosystem variables for a multivariate view of landscape variation.

Tight linear dependence between spatial and temporal CV’s

likely owes to two reasons: First, when dynamics are stochastic or

independent, variation in space roughly matches that in time as in

ergodicity. Thus small fluctuations in time render equally small

fluctuations across space. Second is the empirical observation that

the factors which theoretically interfere with this correspondence -

synchrony and persistence - do so little, at least when using the

CV. While variables can lie anywhere on the plot (shifted up the y-

axis by synchrony, down by persistence; Fig. 3C), they adhered

more to the ‘‘independent dynamics’’ region than being shifted

(Fig. 5). This makes sense in that a variable (e.g., a population)

with low temporal CV in each patch will still be relatively stable

regionally even when patches partially synchronize. This, in turn,

registers as a low spatial CV because of how small temporal

fluctuations beget small spatial variation (Fig. 2). There are

exciting hints that this type of correspondence also applies to other

temporal properties, such as recovery time or deterministic chaos,

that leave a telling trace of their temporal dynamics in space

[13,16].

Analytical solutions and simulations show that spatial CV has

value as a signature of temporal variability under certain

conditions. When values of a variable are relatively uncorrelated

in time and space (e.g., Fig. 4A), the temporal CV can be

recovered with an analytical approximation (Fig. 1B; Eq. S31).

Accuracy wanes when ecological forces synchronize patches and

shift the variable into the synchrony region of the plot (Fig. 3)

where spatial CV underestimates temporal CV. Here, synchrony

simultaneously boosts temporal variability and lowers spatial

variability by aligning the peaks and troughs of fluctuations.

Accuracy is also lower when ecological forces cause spatial

gradients to persist through time and shift a variable into the

persistence region of the plot (Fig. 3). Here, spatial variability

exists, but it is created by patches that are stable over time.

Dynamics must be reasonably assumed to be stochastic to use

spatial CV as a quantitative proxy for temporal CV. This

assumption will often not hold in nature (e.g., when climate

swings induce synchrony). And whether it does hold will likely

depend on the types of variables chosen (fast or slow, broad-scale

or fine-scale) as well as the spatial and temporal sampling scales

(Table 2). Even when the assumption does not hold, however,

regressions suggest that the rank order of temporal CV’s (e.g.,

highest to lowest) might still be recovered from spatial CV’s for

qualitative substitution. This should be possible when: (i) All

variables are thought to be synchronized or persistent to the same

degree (Fig. 3C), (ii) they smoothly intergrade from synchrony to

persistence (Figs. 3D; 4C,F), and/or (iii) the distorting effect of

synchrony and persistence can be estimated and corrected for

(Table 2). Thus, the link between spatial and temporal variation

may be valuable for understanding when CV’s are interchange-

able, and how to interpret them when they are not.

Some variable types may be better suited to substitution than

others. Interestingly, species populations (Fig. 4; red circles)

illustrated a tradeoff between precision and accuracy. Precision

to distinguish species with high versus low temporal CV’s using

spatial CV’s was weak. This was for the sampling reasons that

species had a limited range of variability (i.e., range of CV’s,

scatter) or possibly greater measurement error; or for the

ecological reason that they differed in synchrony or persistence

which created scatter. Such differences can occur when species

respond even slightly differently to the spatial over the temporal

environment [39]. But on the other hand, accuracy was probably

higher for species because these variables lay closer to the

independent dynamics line than physicochemical variables.

Results captured strong associations between spatial and

temporal CV when data were separated by one time point

(Fig. 4C–F) or were overlapping (Fig. 4A–C). Future work must

address how far into the future a spatial CV can be a proxy for

temporal CV. Additional error will certainly accrue for substitu-

tion if unexpected events alter a variable’s temporal variability in

ways not indicated by its initial spatial variability. The exact

impact of this non-stationarity, however, is a matter of scale and of

research question asked. For instance, high resolution prediction of

single-species dynamics following a stochastic disturbance (e.g.,

forest fire) may be untenable if the disturbance drastically alters

variability, synchrony or spatial persistence. But spatial CV should
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be a rough proxy – either quantitative or qualitative – for regional

temporal CV under the ecological and sampling conditions in

Table 2.

Diagnostic Signatures of Complex Dynamics
The terms of Fig. 1 also allowed a window into diagnosing

landscape dynamics. Ecosystems conceal ecological information in

an eclectic range of spatiotemporal patterns [40,41]. Populations

of exploited species [42], biodiversity hotspots [43], harmful algal

blooms [44], pest outbreaks [45] and wildfires [46] all display

complex patterning in space and time. A range of analyses explore

these patterns by examining underlying frequencies (e.g., spectral

[47] and wavelet analysis [48]) and patterns of correlation (e.g.,

correlograms [49]), or by fitting predictive models (e.g., auto-

regressive [50]). But these approaches are not designed for linking

spatiotemporal pattern to a variable’s temporal variation.

We used plots of spatial versus temporal CV’s as convenient and

unique summaries of landscape dynamics (Fig. 4). Some variables

occupied the synchrony region (above dashed line), others the

persistence region (below dashed line). Such a mixture may be

typical when a wide array of ecosystem processes is sampled.

These mixtures left their mark on regression slopes. Slopes ,1 in

Fig. 4A–B show that abiotic variables in microcosms and rock

pools were more stable, but also more prone to synchrony, than

populations. Y-intercepts also changed to the degree that multiple

variables displayed synchrony or persistence. These therefore offer

multivariate indices of the degree of synchrony (b0. expected) or

persistence (b0, expected) experienced by a landscape (Fig. 3C).

Such plots may be fruitful ground for streamlined comparisons of

landscapes containing diverse variables and dynamics, like pre-and

post-disturbance ecosystems.

The components of temporal variance themselves – spatial

variance, synchrony and persistence (Fig. 1A) – may also prove

useful for describing patterns and mechanisms driving temporal

variation. As we have seen, spatial variance can signal instability at

the local, patch scale (e.g., from demographic [51], community

[52], natural enemies [53], spatial [26] or local environmental

causes; Table S4). Synchrony, in turn, indicates landscape-scale

causes of variation like dispersal [53,54] or weather [55,56].

Finally, persistence points to the existence of long-term differences

in mean value or state among patches, such as regulation by local

communities or physical conditions. Combined, these components

of variation gave an alternative view of dynamics.

Fine distinctions emerged when all elements of Fig. 1A were

normalized to create a fingerprint or signature of dynamics. The

grouping of variables controlled by different parts of the biosphere,

like the atmosphere (e.g., temperature, dissolved oxygen) and the

watershed (e.g., pH, ion concentrations), suggests that unique

signatures may exist for types of ecological processes. Potential

may thus exist for predicting the likely dynamics of a variable

based on its type (e.g., atmospheric). Meanwhile, the breadth of

spatiotemporal behaviors seen suggests a range of spatial variation,

synchrony and persistence combinations leading to temporal

variation in nature. Our framework may be useful for cataloguing

these types of spatiotemporal dynamics in ecosystems (e.g.,

Table 1), and for making broad-stroke inferences about spatio-

temporal mechanisms (e.g., population rescue effects [26,57],

predator-prey cycles [58], species coexistence [59,60], and invasive

species spread [61]).

Conclusions

Unexplained variation is common in nature, both across

heterogeneous landscapes and over timespans of interest. By

illustrating the link between spatial and temporal variation, we

bring more clarity to the problems of prediction and diagnosis from

spatial or spatiotemporal patterns. More work is needed to test the

limits of prediction across scales, variables and ecosystem types.

Yet, indications here suggest usefulness in; substituting spatial for

temporal variability (either quantitatively or qualitatively), judging

when substitution will not work, and interpreting the manifold

changes of multivariate landscapes. Such efforts are hoped to add

momentum towards the Rosetta Stone of landscape and ecosystem

ecology, in which process and mechanism may be deeply and

easily discerned from landscape pattern [62].

Supporting Information

File S1.

(DOCX)

Table S1 Community and ecosystem variables mea-
sured over the 20-week microcosm connectivity exper-
iment.

(DOCX)

Table S2 Variables from lake, rock pool and micro-
cosm data sets used in analyses. An additional 36 rock pool

species (not shown), known from fewer occurrences, were included

for calculating spatiotemporal signatures (Fig. 6).

(DOCX)

Table 2. Conditions under which the spatial variability of an ecological process is a precise or accurate substitute for its regional
temporal variability.

Condition Description Substitution Requirements Ecological scenario

Independent dynamics Values must be reasonably assumed
independent from place to place,
time to time

Spatial and temporal CV
values roughly
interchangeable (see Fig. 1B)

Scale of process # scale of
measurement in both space
and time

Isolated communities with fast
dynamics; intercontinental, long-term
comparisons

Constant levels of
synchrony or
persistence across
variables

Spatiotemporal behavior (e.g.,
synchrony) that is shared by all
variables shifts all points equally
on plot (Fig. 3C). Values shifted
by a constant

Order (rank) of temporal
CV’s is conserved among
variables

Approximately equivalent
spatiotemporal behavior
among variables

Variables similarly shaped by spatial
constraints (e.g., microclimates) or by
landscape-scale temporal shocks (e.g.,
weather)

Mixed synchrony and
persistence of known
magnitude

Variables differ in their synchrony
and persistence (Fig. 3D), but
degree of divergence is known
and corrected for

Temporal CV value or
order (rank) can be
back-calculated

Estimates of synchrony
and/or persistence; Fairly
stationary dynamics

Variables responding differentially to
spatiotemporal variation in the
landscape with synchrony or
persistence

doi:10.1371/journal.pone.0089245.t002
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Table S3 Comparison of CV-based results with alter-
native indices of variability. General Linear Models were fit

between indices of aggregate temporal variability and three

spatiotemporal descriptors: Spatial variability, inter-patch syn-

chrony and persistence (see Fig. 1B). Indices of variability included

CV and four others. Asterisks denote statistical significance and p-

value. *p,0.05, **p,0.01, ***p,0.001. R2 values in parentheses.

(DOCX)

Table S4 Mechanisms that may dampen regional
variability and reduce spatial variability by stabilizing
local patches.
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