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Abstract
A majority of proteins in the cell can be modified by ubiquitination, thereby
altering their function or stability. This ubiquitination is controlled by both
ubiquitinating and deubiquitinating enzymes (DUBs). The number of ubiquitin
ligases exceeds that of DUBs by about eightfold, indicating that DUBs may
have much broader substrate specificity. Despite this, DUBs have been shown
to have quite specific physiological functions. This functional specificity is likely
due to very precise regulation of activity arising from the sophisticated use of all
mechanisms of enzyme regulation. In this commentary, we briefly review key
features of DUBs with more emphasis on regulation. In particular, we focus on
localization of the enzymes as a critical regulatory mechanism which when
integrated with control of expression, substrate activation, allosteric regulation,
and post-translational modifications results in precise spatial and temporal
deubiquitination of proteins and therefore specific physiological functions.
Identification of compounds that target the structural elements in DUBs that
dictate localization may be a more promising approach to development of
drugs with specificity of action than targeting the enzymatic activity, which for
most DUBs is dependent on a thiol group that can react non-specifically with
many compounds in large-scale screening.
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Introduction
The conjugation of the 76 amino acid peptide ubiquitin to proteins 
is an important post-translational modification that can modulate 
most if not all cellular processes. This occurs via the consecutive 
action of three enzymes: E1 ubiquitin-activating enzymes (two 
mammalian genes), E2 ubiquitin conjugating enzymes (~35 genes), 
and E3 ubiquitin ligases (~750 genes)1. The E3 ligases are criti-
cal for conferring substrate specificity (reviewed in 2). Ubiquitin 
is covalently linked by its C-terminal glycine to, most commonly, 
the ε-amino group of a lysine on a target protein through an isopep-
tide bond. Occasionally, ubiquitin can be conjugated to cysteine, 
serine, threonine, and N-terminal methionine residues3–7. Sub-
sequent ubiquitin moieties can be covalently linked to one of the 
seven lysine residues or the N-terminal methionine on the proximal 
ubiquitin to generate a polyubiquitin chain. Distinct functions are 
conferred depending on whether the protein is monoubiquitinated 
or polyubiquitinated and on the type of chain linkage. The two most 
common chain linkage types, K48 and K63, typically direct the 
substrate to different outcomes; the former is usually targeting 
proteins for degradation by the 26S proteasome, whereas the lat-
ter is generally involved in signal transduction, DNA repair, or 
endosomal sorting8–10. Conjugation of a linear chain of ubiquitins 
linked via their N-terminal methionines can serve to recruit pro-
teins in cytokine signaling11,12. K11-linked chains13 and probably 
the remaining chain types14 can also target proteins to the protea-
some. The 26S proteasome is a key mediator of intracellular pro-
tein homeostasis. It is an approximately 2.5-MDa macromolecular 
complex comprising a 20S cylindrical core particle capped at both 
ends by 19S regulatory particles. The 19S cap serves to recognize 
ubiquitinated substrates and allow their translocation into the lumen 
of the 20S core particle where the substrate then is hydrolyzed by 
the proteolytic machinery (reviewed in 2).

Importantly, ubiquitination is dynamic and reversible. Whereas 
early studies focused on understanding how ubiquitin is conju-
gated to substrates, recent years have seen markedly increased 
interest in deubiquitinating enzymes (DUBs). These studies have 

demonstrated many functions for deubiquitination, giving support 
to the notion that DUBs play equally important roles as ligases do 
in controlling ubiquitination.

A number of excellent reviews on DUBs have been published 
recently15–18. Therefore, in this commentary, we will highlight only 
the key concepts regarding the structure, functions, and mechanisms 
of these enzymes as these have been discussed in detail elsewhere. 
Instead, we will focus on the regulation of DUBs with emphasis 
on the role of localization in complexes and subcellular organelles 
in modulating their activities and function. We believe that such 
localization is a central factor in explaining how a relatively limited 
number of DUBs can exert a large range of specific functions. We 
will also comment briefly on the implications of this information on 
strategies for targeting DUBs for therapeutic purposes.

Structure and mechanism
DUBs are peptidases that catalyze the cleavage of the bond formed 
between ubiquitin and substrate or ubiquitin and ubiquitin. There 
are approximately 90 DUBs in the human genome, compared 
with the more than 750 E3 ligases1. There are five DUB families 
classified on the basis of the homology of their catalytic domains. 
These families are the ubiquitin C-terminal hydrolase (UCH), 
ubiquitin-specific protease (USP), ovarian tumor domain (OTU), 
Machado-Joseph disease (MJD), and Jab1/Mpn/Mov34 (JAMM) 
enzymes (Table 1). All of these families are cysteine proteases, 
except for JAMM family members, which are metalloproteases. The 
crystal structures of members of each of these families have been 
solved (reviewed in 19). The catalytic mechanism of the cysteine 
protease DUBs is similar to that of plant papains, whereby cysteine, 
histidine, and aspartate residues form a catalytic triad where the 
histidine primes the cysteine for nucleophilic attack on the peptide 
bond and the aspartate aligns and polarizes the histidine. Metallo-
proteases require the co-ordination of a zinc ion for catalysis, which 
allows the abstraction of a hydrogen atom from a water molecule, 
generating a reactive hydroxyl ion capable of attacking the peptide 
bond.

Table 1. Families of deubiquitinating enzymes.

Family Number Deubiquitinating enzymes

Ubiquitin C-terminal 
hydrolase (UCH) 4 UCHL1, UCHL3, UCHL5, BAP1 

Ubiquitin-specific 
protease (USP) 56

USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, 
USP12, USP13, USP14, USP15, USP16, USP18, USP19, USP20, USP21, USP22, USP24, 
USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, 
USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, USP46, 
USP47, USP48, USP49, USP50, USP51, USP52, USP53, USP54, DUB3, CYLD, USPL1

Ovarian tumor (OTU) 16 OTUB1, OTUB2, OTUD1, OTUD3, OTUD4, OTUD5, OTUD6A, OTUD6B, OUT, YOD1, Otulin, 
A20, Cezanne, Cezanne2, TRABID, ACPIP1

Machado-Joseph 
disease (MJD) 4 Ataxin-3, Ataxin-3-like, JosD1, JosD2

JAB1/MPN/
Mov34 (JAMM) 11 PSMD7, PSMD14, EIF3H, BRCC36, CSCN5, CSCN6, AMSH, AMSH-LP, MPND, PRPF8, 

MYSM1 

Enzymes cited in this commentary are shown in bold.
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Function
Maintaining an adequate pool of free ubiquitin available for imme-
diate conjugation is essential for the ability of the ubiquitin system 
to respond rapidly to changing cellular needs. DUBs play several 
critical roles in this general function of maintaining free ubiquitin. 
Ubiquitin is encoded in the human genome as four distinct genes: 
the two polyubiquitin genes UBB and UBC and the ubiquitin-fusion 
genes UBA52 and RPS27A, which encode a single ubiquitin pro-
tein fused to the ribosomal proteins L40 and S27A, respectively. 
Thus, ubiquitin is synthesized de novo as fusion proteins that must 
be cleaved to generate free ubiquitin by DUBs. The free ubiqui-
tin pool is also maintained by recycling ubiquitin that has been 
released from proteins just prior to destruction by either the protea-
some or the endocytic, lysosomal pathway. DUBs act at both loca-
tions to provide this recycling function (see below). Finally, DUBs 
also contribute ubiquitin to the free pool through their removal of 
ubiquitin from specific substrates with the effect of reversing or 
preventing the effects of ubiquitination. DUBs can also act to edit 
or remodel ubiquitin chains on substrates20 and thus may redirect 
their fate21,22. The extent to which DUBs play such a remodeling 
role remains unknown. But the identification of DUBs which 
act on specific chain linkages—e.g. AMSH23 and Ataxin320 for 
Lys 63-linked ubiquitin—clearly makes such a function plausible. 
Interestingly, DUBs can also inhibit conjugation by binding to the 
E2 and interfering with ubiquitin transfer to the E324,25.

Regulation
The many fewer DUBs compared with ubiquitin ligases sug-
gest that DUBs may have much broader specificity with many 
more substrates per DUB than per ligase. Therefore, regulation of 
their activity is critical to maintain specificity and occurs through 
both intramolecular and external factors (reviewed in Sahtoe and 
Sixma18). Indeed, evidence to date indicates that DUBs employ 
all the classic mechanisms of enzyme regulation in sophisticated 
fashions.

Regulation of expression is well documented. Variation of expres-
sion of some enzymes in tissue(s)/cell type15 or upon specific 
stimuli26 represents one layer of control which can allow DUBs 
to have specific effects. Such regulation of expression takes place 
through both transcriptional and post-transcriptional mechanisms, 
including regulation by miRNAs27. Furthermore, regulation of 
enzyme levels by cleavage or degradation also occurs. USP1 
cleaves itself following ultraviolet irradiation, leading to accumula-
tion of the DNA replication processivity factor PCNA28. The OTU 
domain containing A20 can be inactivated by cleavage by MALT1, 
a protein associated with mucosa-associated lymphoid tissue 
lymphoma29. A number of DUBs exist in complex with E3s. The 
DUBs often can modulate ubiquitination of the E330–32 as well as 
ubiquitination by the E3—whether of itself or other substrates 
(e.g. USP7 on p5333 and its ligase Mdm234)—but the E3 can also 
modulate the stability of the DUB35.

Substrate activation – The apo enzymes are often in an inactive 
state and this is due to being in a conformation that does not allow 
catalysis or due to auto-inhibitory loops that impair substrate access 
to the active site. Binding of the substrate36 or the ubiquitin portion 
of the substrate37 can result in reorganization of the enzyme into a 

conformationally active form, indicating that substrate activation is 
an important regulatory mechanism.

Regulation by post-translational modification is also well described 
with examples of modulation of activity by phosphorylation38,39, 
sumoylation40, and ubiquitination41,42. Furthermore, recent studies 
indicate that reactive oxygen species can inactivate many DUBs 
in a reversible manner by oxidizing the active-site cysteine to a 
cysteine sulphenic acid or sulphene amide43–45.

Allosteric regulation due to binding of other proteins to the 
DUB is well described with examples of both activation46,47 and 
inhibition48,49 of enzyme activity.

Localization of the enzyme is becoming an increasingly appreciated 
regulatory mechanism allowing action on substrates that might not 
otherwise occur at significant rates if both enzyme and substrate 
were freely circulating, diluted in the cytoplasm. Here, we will 
highlight a few well-developed examples of localization – either 
to intracellular complexes or to organelles (Table 2) as a regula-
tory layer for DUB function. In many cases, the localization to a 
complex also results in allosteric regulation of the enzyme. A sys-
tematic study of localization of GFP-tagged DUBs indicates that 
approximately 25% of the enzymes are found in specific subcellular 
structures50.

PMSD14, UCHL5, USP14, and the proteasome
The DUBs PMSD14/Rpn11, UCHL5/UCH37, and USP14 are all 
associated with the 19S regulatory cap of the proteasome; PMSD14 
is a constituent component, whereas UCHL5 and USP14 are revers-
ibly associated proteins. Upon binding to the 19S cap, UCHL5 and 
USP14 undergo restructuring, resulting in greatly increased enzy-
matic activity. Binding of UCHL5 to the proteasome repositions 
a crossover loop, thereby relieving an auto-inhibitory effect and 
allowing substrate access to the active site48. Similarly, in USP14, 
the ubiquitin-binding pocket is obscured by two loops and binding 
to the 19S regulatory cap reveals the ubiquitin-binding site neces-
sary for deubiquitination51. The localization of these DUBs gives 
them specific access to substrates associated with the proteasome. 
PMSD14 cleaves the ubiquitin chain at its junction with the sub-
strate, thereby allowing efficient unwinding and insertion of the 
substrate into the 20S core and so its DUB activity promotes prote-
olysis. Both USP14 and UCHL5 have been shown to deubiquitinate 
and impair proteolysis of some substrates. However, it remains pos-
sible that, for some substrates, these enzymes may edit chains into 
forms which allow more effective binding to or processing by the 
proteasome.

AMSH and USP8 and ESCRT complexes
Receptor endocytosis followed by either recycling to the plasma 
membrane or trafficking through multi-vesicular bodies (MVBs) 
to lysosomes for degradation plays an important role in modulat-
ing signal transduction. During endocytosis, monoubiquitination 
and polyubiquitination of the receptor constitute a sorting signal 
that can be decoded by the ESCRT (endosomal sorting complex 
required for transport) complexes. The four ESCRT complexes 
(ESCRT-0, -I, -II, and -III) function together to generate MVBs 
by allowing the remodeling of the plasma membrane and the 
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hyperubiquitination and enhanced degradation of EGF, MET, and 
ERBB3 receptors57,58 but increases the level of the Wnt receptor 
Frizzled by enhancing receptor recycling59. The contrasting effects 
of loss of AMSH and USP8 on receptor stability as well as their 
differences in chain linkage specificity indicate that these ESCRT-
associated DUBs have distinct functions.

USP30 and the mitochondria
Mitochondrial dysfunction can have profound effects on cell 
function and viability. Indeed, mitochondrial dysfunction and 
impaired clearance of damaged mitochondria are hallmarks of the 
neurodegenerative disorder Parkinson’s disease. The ubiquitin ligase 
Parkin is mutated in an autosomal recessive form of the disease. In 
Parkin-mediated mitochondrial clearance (mitophagy), the kinase 
PINK1 accumulates on damaged mitochondria and recruits Parkin 
to ubiquitinate a variety of substrates on the mitochondria (reviewed 
in 60). USP30 was first identified as a DUB with a mitochondrial 
targeting sequence that is embedded in the mitochondrial outer 
membrane and plays a role in mitochondrial dynamics61. Subsequent 
studies revealed that it is a negative regulator of mitophagy. USP30 
antagonizes Parkin-mediated mitophagy by deubiquitinating its tar-
get substrates62. It has also been shown to delay the recruitment of 
Parkin to damaged mitochondria63. Other DUBs may also co-localize 
to the mitochondria and play a role in mitophagy. USP15 antag-
onizes Parkin mitochondrial ubiquitination64, USP35 can delay 
Parkin-mediated mitophagy through unclear mechanisms63, and 
USP8 removes K6-linked polyubiquitin chains from Parkin itself to 
facilitate its recruitment to damaged mitochondria65. Additionally, 
ubiquitin itself can be phosphorylated on serine 65 by PINK166–68. 
Interestingly, mitochondrial DUBs, including USP30, USP8, and 
USP15, are impaired at hydrolyzing these phosphoUb chains69, thus 
providing an additional regulatory mechanism for Parkin-mediated 
mitophagy.

USP19 and the endoplasmic reticulum
USP19 was first identified as a DUB upregulated in skeletal muscle 
during catabolic conditions70. It is expressed as two major isoforms: 
one cytoplasmic and the other with a transmembrane domain that 
results in anchoring of the C-terminal tail of the protein in the 
endoplasmic reticulum (ER) membrane with retention of the cata-
lytic domain in the cytoplasm71. Overexpression of USP19 has 
been shown to rescue model substrates from ER-associated deg-
radation (ERAD)71 as well as an ER-localized ligase MARCH672. 
However, silencing of USP19 does not affect levels of ERAD sub-
strates in a consistent manner72,73, so its physiological functions at 
the ER remain unclear. USP19 can inhibit myogenic differentiation 
through suppression of an unfolded protein response that is required 
for muscle cell fusion74. Interestingly, these effects are dependent 
on catalytic activity and occur with the ER but not the cytoplas-
mic isoform although both isoforms’ catalytic domains are in the 
cytoplasm, indicating that the localization is critical for its ability to 
deubiquitinate specific substrates74.

Chromatin deubiquitinating enzymes
Histone modifications are critical for DNA-dependent processes, 
including repair, replication, and transcription. Many DUBs have 
been shown to remove ubiquitin from chromatin, most commonly 
from histones H2A and H2B. MYSM1 and BRCC36 are two JAMM 
family members known to deubiquitinate H2A, with BRCC36 

Table 2. Subcellular localization of some deubiquitinating 
enzymes.

Cellular 
compartment Family Deubiquitinating 

enzymes Reference

Nucleus USP USP1 81

USP3 78

USP4 82

USP7 83

USP16 77

USP21 84

USP22 85

USP26 86

USP28 87

USP36 88

USP39 89

USP44 90

UCH UCHL5 91

BAP1 92

MJD ATXN3 93

JAMM BRCC3 76

MYSM1 75

Mitochondria USP USP8 65

USP15 64

USP15

USP30 61

USP35 62

Endoplasmic 
reticulum

USP USP19 71

USP20 94

USP25 95

USP33 94

UCH UCHL1 96

Golgi USP USP32 97

USP33 98

Endosome USP USP8 53

JAMM AMSH 52

JAMM, JAB1/MPN/Mov34; MJD, Machado-Joseph disease; UCH, 
ubiquitin C-terminal hydrolase; USP, ubiquitin-specific protease. 

budding and internalization of cargo-bearing vesicles. The con-
tents of MVBs then are sent to the lysosome for degradation. 
Two DUBs are known to associate with ESCRT complexes in the 
endocytic/lysosomal pathway. AMSH (a JAMM family member 
with specificity for K63 chains) and USP8 associate with STAM 
proteins, a component of the ESCRT-0 complex52,53. AMSH and 
USP8 can also interact with CHMP proteins that are components of 
the late ESCRT-III machinery23,54. Association with ESCRT is nec-
essary for AMSH function in endocytosis55 and disruption of this 
association causes accumulation of the EGF receptor via impaired 
degradation56. Thus, AMSH activity enhances receptor trafficking 
toward lysosomal degradation. USP8 can be both a positive and a 
negative regulator of receptor endocytosis. Loss of USP8 leads to 
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preferentially removing K63 polyubiquitin and suppressing DNA 
repair pathways. Importantly, MYSM1 and BRCC36 are associ-
ated with complexes that activate their deubiquitinating activity. 
MYSM1 is active as part of the 2A-DUB complex75, whereas 
BRCC36 is associated with the BRCA1-A complex and this asso-
ciation activates its activity in the nucleus76. Other DUBs capable 
of deubiquitinating histones include USP3, USP7, USP12, USP16, 
USP21, USP22, and USP44. Disruption of some of these DUBs 
results in altered cell cycle progression. Although USP3 and USP16 
are not known to associate with any complexes, depletion of either 
enzyme results in aberrant cell cycle progression, with USP16 
knockdown resulting in impaired mitosis77 and depletion of USP3 
resulting in a delay in S-phase progression78. These different out-
comes suggest that localization of DUBs to specific chromatin 
loci results in differential gene expression. DUBs could also target 
non-histone substrates at these sites to contribute to the phenotype.

Pharmacological targeting
Given the role of ubiquitination in many important processes that 
are deranged in disease, it is an attractive set of enzymes for phar-
macological intervention. Targeting deubiquitination is also allur-
ing in that the more limited number of DUBs in comparison with 
ligases makes phenotypic screens of DUBs more feasible. Indeed, 
the availability of small hairpin RNA (shRNA) or small interfering 
RNA (siRNA) libraries targeting all of the DUBs allows relatively 
rapid determination of whether loss of function of a DUB will yield 
a desirable phenotype. The limited number of DUBs allows screen-
ing to be applied to even relatively low-throughput assays.

Once loss of function of a DUB is shown to produce an effect 
that might be clinically desirable, the development of that obser-
vation into a potential drug is much more challenging. Although 
a number of assays of DUB activity are available and amenable 
to high-throughput screens of large compound libraries and have 
resulted in some lead compounds (reviewed in 79), these assays are 
at high risk of yielding many unproductive hits as almost all of the 
DUBs are thiol-based proteases and the highly reactive thiol group 
of the catalytic cysteine residue is well recognized to react non- 
specifically to many compounds. Inhibition of the enzymatic activ-
ity may not be desirable for other reasons. The large number of 
potential substrates for each DUB may lead to many more undesir-
able effects arising from inhibition of catalysis. Whole body gene 
inactivation of the enzyme in mice may be helpful in predicting the 
extent of such adverse effects.

A number of alternative strategies can be proposed to inhibit DUBs; 
however, these strategies require significantly more characterization 
of the enzymes. Since the enzymes must bind ubiquitin, an alterna-
tive approach to broad inhibition of a particular enzyme would be 
to inhibit its ability to bind ubiquitin. Generally, such inhibition 
would require knowledge of the structure of the enzyme bound to 
ubiquitin to identify the essential elements of the ubiquitin-binding 
domain(s). A recent mutagenic strategy has created ubiquitin vari-
ants that are able to bind and inhibit enzymatic activity80. Remark-
ably, variants that were selective for specific DUBs were obtained. 
Crystallization of the ubiquitin variant/DUB complex identified 
specific residues on the DUB that contact the variant and that yield 
specificity for a particular enzyme. Some DUBs have multiple 
ubiquitin-binding sites that permit binding of ubiquitin chains. 

These likely restrict the orientation of the ubiquitins in the chain 
that can be accommodated and therefore result in specificity of the 
enzyme for particular chain cleavages. Thus, inhibition of one of 
these specific domains may result in interference with ubiquitin 
chain binding or with the chain linkage specificity of the enzyme.

Targeting specific functions of a DUB may be achieved by identi-
fication of the specific substrates that mediate these effects. Subse-
quent structure function analyses then can identify the interacting 
domains of the enzyme and substrate and lead to the development 
of assays that can screen for compounds that interfere with the 
interaction. As discussed earlier, an important determining factor 
for both substrate specificity and regulation is the localization of 
the DUB. Once the mechanisms that result in targeting to a specific 
compartment or complex are determined, then assays that measure 
this binding can be similarly designed to screen for inhibitors. Since 
there are several examples in which complex formation or substrate 
binding activates the DUB, inhibitors that stabilize the enzyme in 
the auto-inhibited form could be developed. All of these approaches 
will rely heavily on structural studies both to help design the assay 
and to confirm that the identified compounds are functioning 
through the expected mechanisms.

Closing perspectives
Much progress has been made in our understanding of DUBs 
over the past 15 years. Structures have now been solved for many 
DUBs. However, in a number of cases, only the catalytic domain 
has been resolved and it is clear that important information resides 
in the other regions of the enzyme and will be needed to improve 
success in pharmacological targeting. A much larger gap in our 
understanding is in the functions of the enzymes, both at a molecu-
lar level (substrate identification) and at a cellular or whole organ-
ismal level (the physiological effects of removal of ubiquitin from 
the substrates). The former may be addressed through analysis of 
differential ubiquitination of proteins upon loss of function of the 
DUB. Although much progress has been made in ubiquitinome 
analysis, it remains to be determined whether current methods are 
sufficiently reproducible and precise to detect what might be small 
differences in steady-state levels of ubiquitination that arise upon 
DUB inactivation. The availability and application of methods for 
RNA silencing, gene editing, and gene knockout have been trans-
formative in permitting the elucidation of physiological functions. 
However, such information remains available for only a small minor-
ity of the DUBs. Finally, our understanding of regulation of DUBs 
has progressed significantly. All of the classic types of enzyme regu-
lation are present, but localization within organelles and complexes, 
allosteric regulation within complexes, and substrate activation 
appear to be prominent mechanisms which together allow tightly 
regulated activity on specific substrates. Identifying the structural 
elements underlying these mechanisms will offer the potential of 
targeting them to obtain drugs with highly specific effects.
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