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Stockholm University, Stockholm, Sweden

Abstract

In the Susceptible–Infectious–Recovered (SIR) model of disease spreading, the time to extinction of the epidemics happens
at an intermediate value of the per-contact transmission probability. Too contagious infections burn out fast in the
population. Infections that are not contagious enough die out before they spread to a large fraction of people. We
characterize how the maximal extinction time in SIR simulations on networks depend on the network structure. For example
we find that the average distances in isolated components, weighted by the component size, is a good predictor of the
maximal time to extinction. Furthermore, the transmission probability giving the longest outbreaks is larger than, but
otherwise seemingly independent of, the epidemic threshold.
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Introduction

Over the last decades the mathematical and computational

study of infectious disease epidemiology has increasingly come to

focus on the structure of human contact patterns, often modeled as

contact networks [1–3]. Such networks are not completely random

but have regularities, or structures, that affect disease spreading.

This approach can explain phenomena that earlier approaches

(based on the assumption that any pair of individuals have the

same chance of meeting at any given time) cannot. For example,

the relatively slow early phase of some outbreaks have been related

to clustering (many short cycles) in the contact network [4]; the

existence of ‘‘super spreaders’’ (people infecting many more others

than the average infectious person do) has been attributed to the

broad distribution degree (number of neighbors) in the contact

network [2]. One, we think, understudied topic of network

epidemiology is the time for an epidemic outbreak to die–the

extinction time. Not all diseases have such a life cycle of birth and

extinction, but some do and the canonical model for these is the

Susceptible–Infectious–Recovered (SIR) model [5]. In this paper,

we will study extinction times of the SIR model on various types of

networks.

Research on the time-scales of epidemic processes has typically

focused on the early phase of the outbreak [4,5], probably because

it is mathematically simpler. Calculating the time to extinction

simultaneously needs to account for the chance of the disease to

die out early, and the time it would take to burn out in the

population. These competing effects are hard to handle analyti-

cally, even with an approximate approach. In this paper, we study

extinction times computationally. For most (perhaps all) networks,

the extinction time as a function of the per-contact-transmission

probability l will have a maximum for an intermediate l-value.

This is a consequence of the mentioned competing effects of early

extinction (at small l) [7] and fast spreading speeds (at large l). We

will investigate many aspects of this maximum and how it relates

to the structure of the underlying networks.

Results

In this section, we present the results for our simulations. We use

three basic types of networks: Networks with a power-law degree

distribution generated by the configuration model (see the

Methods section). These have a probability of a vertex with

degree k proportional to k2c. We try different c-values–2, 2.5 and

3–both because empirical network data often show degree

exponents in that range, and the configuration model changes

dramatically between these values. When c= 2 (in the large N-

limit) the network is almost surely connected into one big

component; when c= 2.5, the largest component is about 0.62N,

and when c= 3, the largest component is approximately 0.19N

[8]. The configuration model has a vanishingly small fraction of

triangles (i.e. the transitivity [8] goes to zero as NR‘). Since many

triangles, as mentioned above, can affect disease spreading, we also

modify the configuration model network by adding triangles. We

repeatedly connect two distinct random neighbors of a random

vertex. In this process, the edge is added to vertices with a

probability proportional to their degrees–a process (‘‘preferential

attachment’’) that can create networks with power-law degree

distributions. On the other hand, in this setup (where no edges are

deleted or vertices added) this edge adding will eventually destroy

the power-law degree distribution [9]. This does not matter to us;

there is nothing in our analysis that depends on the specific form of

the degree distribution. In fact, we also use networks of the Erdős-

Rényi model with the much narrower Poisson degree distribution

(see the Methods section).

In our first analysis, we illustrate how the average extinction

time StT depends on the per-contact transmission probability l.

We run the SIR model on a realization of the configuration model

with 200 vertices and a power-law degree distribution with
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exponent –2.5 (for details, see the Methods section). In Fig. 1A we

see that StT peaks for intermediate l-values. For less contagious

diseases (small l), StT is low because the disease does not spread

very far before it dies. For highly contagious diseases (large l), the

disease burns out fast in the population. Around l= 0.42 the

average extinction time is the longest. One may believe that the

maximizing l, l̂l, goes to zero as N increases, just like the epidemic

threshold [10]. However, as we will show below, that does not

seem to be the case. The StT-peak does not coincide with any

feature of the average fraction of at-some-point infected vertices V
as a function of l (Fig. 1B). (V(l) is an indicator function for the

epidemic threshold.)

In the case l= 1, we can easily derive the time to extinction. In

this case, since the disease travels maximally one step at a time, a

vertex located a distance e from the seed i of the infection will be

infected after e time steps. The outbreak will thus be extinct at time

e(Gn,i)+d, where Gn is the component where the infection seed is

located. To get the estimated extinction time, we have to average

over all vertices as seeds and also weigh the average e(Gn,i) values

by the size of Gn (since the chance of the seed belonging to a

certain component is proportional to its size). The resulting metric,

size-weighted average eccentricity (SWAE), is discussed further in the

Methods section. For l close to zero, the outbreaks are small and

brief. We know that local network structures, such as degree

distribution [6] and clustering [4], are important factors for the

spreading speed. The maximal time to extinction happens for

intermediate l-values and is ultimately also dependent on other

aspects of the network structure than either of the limit cases. We

will explore the idea that the maximal time to extinction can be

predicted by a combination of a distance and component-size

metrics like SWAE. We test eight such measures (described in

detail in the Methods section) to see which one that best predicts

the maximal time to extinction.

As an example of the correlation between extinction times and

measures combining distances and component sizes, we show (in

Fig. 2) scatter plots of the maximal extinction time as a function of

SWAE for all our model topologies. We see that SWAE does a

fairly good job–better than the size of the network–to predict the

maximal outbreak time. The effect of the clustering is small

(comparing Fig. 2A and B)–it just lifts the point cloud a bit. In the

Erdős-Rényi model case, the spread of the points is larger.

Furthermore, the points from different network sizes overlap less.

In general, the results for the Erdős-Rényi model fluctuate much

less (as anticipated, see Ref. [11]), than the scale-free networks. For

the Erdős-Rényi model, the largest-component average distance (LCAD)

is a better predictor than SWAE (we discuss this further below).

To summarize this type of scatterplots, we perform a linear

regression analysis and calculate the coefficient of determination

R2 as a goodness-of-fit measure. The better the fit is, the higher is

the explanatory power in the cluster-size vs. distance metric. In

Fig. 3, we show the results for our three types of networks as

functions of the numbers of vertices. For almost all the networks

with a power-law degree distribution SWAE, size-weighted average

distance (SWAD) and size-weighted diameter (SWD) shows the

strongest correlation. The exception is c= 3 with added triangles

where LCAD has higher R2-values than SWD. Among the three

size-weighted measures (where the contribution from a component

is weighted by its size), SWAD is doing best as a predictor,

followed by SWAE and SWD. As mentioned, at l= 1, you just

have to add d to SWAE to get the exact average maximal

extinction time. The maximizing l-value is on the other hand far

from unity. This means that other pathways than the shortest

comes into play and their distances seems to be captured better by

SWAD. This feels natural since SWAD incorporates more

information (N – 1 shortest paths per vertex instead of just one

for SWAE), but it is hard to give some more deductive argument,

let alone an analytical one. Some of the curves in Fig. 3C–F are

decaying with N. For c= 2.5 and 3 networks, both the harmonic

mean distance (HMD) and the largest component size (LCS) are

decaying. The HMC puts a larger weight on smaller distances and

depends more strongly on the number of small components. At the

same time, evidently, the average maximal time to extinction

depends more on the largest component (as measured by LCAD),

which explain the poor performance of HMC. The largest-

component based measures have the steepest rise for all the plots.

For the c= 2 figures, they will eventually reach the size-weighted

measures (since these networks have only one component in the

large-N limit and fewer components, on average, for finite sizes);

for c= 2.5 and 3 it is not yet clear. The goodness of fit curves for

the Erdős-Rényi model, Fig. 3G, looks rather different. The degree

distribution does apparently influence the outcome considerably.

The most predictive measures are the two average distances

Figure 1. The maximum of the time to extinction. Panel A shows the average time to extinction as a function of the per-contact transmission
probability. Panel B shows the average fraction of vertices at some point affected by the outbreak. For an intermediate value l̂l the outbreak lives
longer than for other l (A). These figures are made for one realization of the configuration model with power-law degree distribution with parameter
values N = 200 and c= 2.5. We sampled 501 equidistant values of l, averaged over 106 runs of the disease simulation. The curves were smoothed to
remove small fluctuations (the general curvature on a scale larger than l<0.001 is unaltered).
doi:10.1371/journal.pone.0084429.g001
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(LCAD and SWAD). We chose the parameter values so that it

usually will exist at least one component of considerable size, but

rarely all vertices would be connected into one component.

Apparently, the largest component is still more influential than the

others. One reason for this could be that it has a higher average

degree than the rest of the network and these extra possibilities of

infection that comes with the extra edges make outbreaks able to

spread in the largest, but not the other components. Just as for the

networks with more heterogeneous degree distributions (regardless

if we consider an SW or AD measure), the diameter based

measures give lower predictability than the average eccentricity

ones, while the average distance measures show the highest R2-

values. Assuming a connected network (or a network with a

converged component-size distribution), the average distances in

the components of the Erdős-Rényi model scales like log N, and in

scale-free networks like log log N for c,2, like log N/log log N for

c= 2, and like log N for c.2 [12]. We can assume StT has the

same scaling behavior.

We finish our analysis by a shifting our angle a bit and consider

the epidemic threshold lc. If l,lc, then V= 0 in the NR‘ limit. If

l.lc, then V.0 (i.e., the disease can spread in the population).

Networks with a power-law degree distribution and c#3 are

known to give the SIR model an epidemic threshold lc = 0. In the

canonical models of statistical physics, many quantities simulta-

neously show peaks or singularities at a phase transition point.

Therefore, one could anticipate that the l-value giving the

maximal time to extinction, l̂l, would tend to zero as the system

size increases. What we observe for the scale-free networks

(Fig. 4A) are some weak trends in both directions. One would need

to run simulations for larger system sizes to make a conclusive

statement. The trends for the clustered configuration-model

networks are the same (Fig. 4B), but the values are 0.1–0.2 lower.

For the Erdős-Rényi model networks, the trend is clear and

decreasing. The epidemic threshold in this case is ill-defined since

the Erdős-Rényi model, at the critical point (the parameter values

we use), has no giant component (the property that the largest

component scales like N).

Discussion

We have investigated a characteristic time of the SIR disease-

spreading model; namely the time to extinction. Given a static

contact network, this quantity has a maximum for intermediate

values of the per-contact transmission probability. The reason is

that for low transmission probabilities, the chance for the disease

to die out early is higher; for high transmission probabilities, the

speed of the infection front is faster. The maximal time to

extinction is an interesting quantity, complementing the often-

studied final outbreak size. A long time-to-extinction gives the

society longer time to mobilize counter measures.

In the extreme case of 100% transmission probability, we can

directly express the time to extinction as the sum of the disease

duration and the size-weighted average eccentricity–a measure

combining distances and component sizes. For lower transmission

probabilities, the situation is more complicated, but we show that a

combination of component sizes and distances could predict the

maximal time to extinction rather accurately. Of the various

measures combining component sizes and distances are those

using average distances performing consistently better. This is a bit

surprising since the extinction of the outbreak is an extreme event,

and that would presumably be more correlated to extreme

distances such as eccentricity. Indeed, in the limit of high

transmission probabilities, the extinction time would be exactly

proportional to the average eccentricity weighted by the size of the

components. Our different measures use different ways of dealing

with the component sizes–they either weigh results by the size of

the components or use only the largest component. For networks

with heterogeneous degree distributions, the size-weighted mea-

sures perform better; for the Erdős-Rényi model networks, the

largest-component based measures perform better. One explana-

tion could be that for the Erdős-Rényi model networks, the

average degrees in the non-largest components are so low that they

are under the epidemic threshold, and thus would not contribute

much to the extinction times. Another conclusion we make is that

Figure 2. Scatter plots of the maximal time to extinction as
function of SWAE. A shows the results for the configuration model; B
displays the result for the configuration model with added clustering; C
shows the outcome for the Erdős-Rényi model. One dot gives the value
for one realization of the network models (they have transparency to
visualize the overlap of points). There are 1000 points per size. Error
bars in StT would have been smaller than the symbol size.
doi:10.1371/journal.pone.0084429.g002
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Figure 3. R2 values for the correlation between various distance metrics and maximal time to extinction as functions of number of
vertices. Panels A and B show curves based on the configuration model with exponent –2; C and D show similar plots for exponent –2.5; E and F are
corresponding plots for exponent –3; G shows the coefficients of determination for the Erdős-Rényi model. The abbreviations are explained in the
Methods section. All data points are averaged over 1000 networks. Error bars would have been smaller than the symbol size.
doi:10.1371/journal.pone.0084429.g003
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the maximum of the extinction time is unrelated to the epidemic

threshold. This means that the effect of fast burnouts (lowering the

extinction times) only becomes an important factor well inside the

parameter region of epidemic spreading.

When it comes to real epidemics, this research probably applies

best to pathogens spreading via sexual contacts [13] because the

contacts are rather well defined and their network structure (with

heterogeneous degree distributions) have a strong influence on

sexually transmittable epidemics.

We hope this work can inspire more research in the long-time

behavior of epidemic models. It would be natural to extend this

work to temporal networks [14] or models with coevolving

awareness of the outbreak [15].

Methods

Disease simulation
We use an individual-based SIR model. Each individual belongs

to one of three states Susceptible (S), Infectious (I) or Recovered

(R). The N individuals are connected into a network G = (V,E)

where V is the set of individuals (or vertices) and E is the set of

connected pairs (edges) of vertices. Time proceeds in discrete time

steps. If i is a Susceptible individual, then at every time step, an

edge to an Infectious neighbor represents a potential infection

event. At such an event, i becomes Infectious the next time step

with a probability l. The simulation starts with all vertices being S,

except a random individual turning I at time t = 0. An Infectious

individual turns Recovered d time steps after it became Infectious.

In this work we use d= 4 (we briefly test d= 3, 5, 10 and get the

same conclusions). Recovered vertices stay Recovered for the rest

of the simulation. The simulation ends when none of the

individuals is Infectious. The output we measure from a run is

the time to extinction t and the fraction of individuals at some

time infected.

Measuring the maximal time to extinction
Given a graph G, the expectation value of t, StT, is a unimodal

function of l. To find its maximum, we use the ‘‘bounded’’

method of the ‘‘optimize.minimize_scalar’’ function of the Python

2.7.8 package SciPy (http://www.scipy.org/). This function uses a

hybrid between golden ratio search and Brent’s method to locate

the maximum in fewest possible measurements of StT(G,l)
(typically around eight measurements are needed for the sizes in

this paper). To calculate StT(G,l), we iterate at least 100 (in

practice 105–106 times) until the standard error of StT is less than

0.1% of StT.

Network generation
We base our network generation on the configuration model

[16]. In other words, we draw N numbers, k1, …, kN, from a

probability distribution p(k). In our case, we use the discrete

distribution with probability mass function

p(k)~
ck{a for 1ƒkƒN

0 otherwise

�
: ð1Þ

Here c is a normalization constant. This is an emergent power-

law distribution. The purpose with the upper bound (k#N) is to

avoid extremely high degrees (which would consume much

memory in the simulations). The results in the large-N limit and

the qualitative observations are the same as for the more common

(especially in theoretical calculations) formulation without the

upper bound. Note that the generated graphs are multigraphs

where both multiple edges and self-edges are allowed.

Let M be the number of added edges in the configuration model

as described above. We test the effect of triangles by adding such

to the configuration model networks. We randomly pick two

distinct neighbors of a random vertex and add an edge (whether or

not there is a link between these two vertices before). This is

repeated until gM triangles are added. In this paper we use

g= 0.6.

Furthermore, we use the Erdős-Rényi model [17]. In this model

one start from N disconnected vertices and add M edges between

random pairs of distinct vertices that are not already connected.

We use M = N to get networks that are somewhat fragmented, but

still having large components. Erdős-Rényi model, unlike the

Figure 4. The averages of l-values maximizing the time to
extinction, as functions of the system size. Panel A shows data for
the configuration model; B is for the configuration model with added
triangles; C is for the Erdős-Rényi model. All points are averaged over
1000 network realizations.
doi:10.1371/journal.pone.0084429.g004
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configuration model, creates simple graphs (without self-edges or

multiple edges).

Distance and component-size metrics
(For a good general introduction to distance measures in graphs,

see Ref. [18].) Let G1, G2, …, GC, be a decomposition of G into C

components–disconnected subgraphs that are maximal (in the sense

there one cannot connect a vertex to a component by adding an

edge to it) and connected (so that there is a path between any pair

of vertices of the same component). Let d(i,j,Gn) be the distance

(number of edges in a shortest path) between i and j in component

Gn. Then we can define the following eight distance and

component-size measures:

Size-weighted diameter

SWD(G)~
1

N(G)

XC

i~1
N(Gi)maxj,kd j,k,Gið Þ ð2Þ

where N(G) is the number of vertices in G. This is the expected

distance if you pick a random vertex and measure the average

diameter (largest distance between any pair of vertices) of its

component.

Size-weighted average eccentricity

SWAE(G)~
1

N(G)

XC

i~1

X
j[Gi

maxkd j,k,Gið Þ ð3Þ

The eccentricity of a vertex is the distance to the most distant

vertex in the same component. SWAE is the expected eccentricity

of a random vertex.

Size-weighted average distance

SWAD(G)~
2

N(G)

XC

i~1

1

N(Gi){1

X
jvk[Gi

d j,k,Gið Þ ð4Þ

This is the expected value of the average distance between two

vertices in the component of a randomly chosen vertex.

Harmonic mean distance

HMD(G)~
2

N(G) N(G){1½ �
X

jvk[G

1

d(j,k,G)

" #{1

ð5Þ

This is another way to weigh together component sizes and

distances within the components. It is appealing in its simplicity (it

does not need an explicit enumeration of the component) [19]. On

the other hand, it lacks a motivation from processes on the graph.

Its reciprocal value 1/HMD(G) was introduced under the name

‘‘efficiency’’ in Ref. [20].

Largest component diameter

LCD(G)~maxi,j[G’d i,j,G’ð Þ ð6Þ

where G9 is the largest component of G. The largest component

determines many interesting properties such as the maximal

outbreak size. Real-world networks also tend to be connected into

one component (sometimes called ‘‘giant component’’ by analogy

to graph models).

Largest component average eccentricity

LCAE(G)~
1

N(G’)

X
i[G’

maxj[G’d i,j,G’ð Þ ð7Þ

This is the average distance from a vertex of the largest component

and its most distant vertex in the same component.

Largest component average distance

LCAD(G)~
2

N(G’) N(G’){1½ �
X

ivj[G’

d i,j,G’ð Þ ð8Þ

It is the same as LCAE but averaging the distance from i to all

other vertices rather than only the one furthest away.

Largest component size

LCS(G)~N(G’) ð9Þ

This is simply the size of the largest component (mostly for

comparison–it could clearly not predict epidemic time scales in

general).
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