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Abstract

Background: Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The
present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene
signature.

Methods: Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up.
Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed
by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene
Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort.

Results: A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be
an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p,0.001) and in
TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both
in our cohort (p = ,0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes
(n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways
and mesenchymal subtype in the high risk group.

Conclusion: We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis
revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications
in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for
alternate adjuvant therapies.
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Introduction

Glioblastoma (GBM) is the most common and biologically

aggressive brain tumor in adults. Despite standard therapeutic

protocols, which include maximal surgical resection followed by

radiation and chemotherapy with temozolomide, the prognosis of

patients with GBM remains dismal, with median survival rates

ranging from 12–17 months [1]. Some clinical variables such as

patient age, preoperative Karnofsky performance score (KPS), and

extent of resection, have been shown to be predictive of survival

[1–3].These tumors demonstrate a marked heterogeneity in

clinical behavior and recently, a lot of research is directed towards

understanding the molecular and genetic basis for the pathogenesis

and behaviorof GBM. There is also a need to identify robust

prognostic indicators for efficient management of GBM. In this

regard, genetic, epigenetic alterations, and expression of some
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genes have been correlated with poor or better prognosis in some

of the recent studies [4,5]. Among molecular biomarkers, the

status of MGMT promoter methylation has been one of the most

studied prognostic biomarkers of GBM [6].

Recent research is directed towards identification of gene

signatures, comprising of multiple genes with varied functions,

which can more accurately predict the behaviour of these tumors,

facilitated by the availability of high throughput technologies to

study a larger number of genes. Some studies have reported gene

signatures which can be useful to classify various grades of glioma,

classify subgroups in GBM or to identify prognostic subgroups in

glioma[7–9]. Microarray based gene expression profiling of GBMs

and gene specific studies with clinical correlation have identified

few genes as molecular predictors of survival outcome [10–13].

Colman et al., reported a 9 gene signature, derived by analyzing

the data from four previously published data sets, which predicted

patient survival outcome. They also suggested association of the

signature with markers of glioma stem like cells, namely nestin and

CD133 [10].However, due to the heterogeneity of these tumors,

more robust prognostic gene signature panels are essential to

improve the management of GBM. In view of this necessity, we

have undertaken the present study, utilizing a cohort of patients of

newly diagnosed GBM who were followed up prospectively. We

have identified a 14 gene expression signature panel with a power

to predict patient survival. Furthermore, this gene signature panel

has been validated in an independent cohort of patients whose

data is available through TCGA consortium data base.

Methods

Patient Population
This prospective study included a total number of 154 patients

with histologically proven GBM who underwent surgical treat-

ment at National Institute of Mental Health and Neurosciences

and Sri SatyaSai Institute of Higher Medical Sciences, Bangalore,

India between July 2006 and September 2009. This study has

been approved by the ethics committee of NIMHANS (NIM-

HANS/IEC/No. RPA/060/05 dated 29.10.2005) and SSSIHMS

(IEC No RPA/001/2005 dated 20.10.05) and patient’s written

consent was obtained. All the patients were adults (age.18 yrs of

age) with newly diagnosed GBM. Patients with previous surgery/

recurrence were excluded from the study. All patients underwent

total/near total excision of the tumor. Patients with post operative

Karnofsky’s Performance Score (KPS) $70 were included in the

study. Histological specimens were centrally reviewed and

confirmed as GBM by the neuropathologist. All patients were

treated subsequently with standard adjuvant therapy which

included radiotherapy (total dose of 59.4 Gy, given in 33 fractions)

with concomitant temozolomide (100 mg/day for 45 days),

followed by five cycles of temozolomide at a dose of 150 mg/sq.

m body surface area. Patients were followed up at regular intervals

and their clinical status was documented. Overall survival was

defined as the duration between surgery and death of the patient

due to the disease. Of these 154 patients, gene expression data

were available for 123 patients which were considered for further

analysis.

Tumor Samples
Tumor tissues were freshly collected from the neurosurgical

operation theaters, bisected, and one half was fixed in 10%

buffered neutral formalin, processed for paraffin sections, and was

used for histopathology. The other half was placed in RNAlater

(Ambion, Inc.) stored at 270uC and used for RNA isolation.

RNA Isolation and RT-qPCR
Total RNA was extracted from frozen tissues by using TRI

Reagent (Sigma, USA). The RNA samples were quantified by

measuring the absorbance using a spectrophotometer and

visualized on a MOPS-Formaldehyde gel for quality assurance.

The relative quantitation of expression levels of selected genes was

carried out using a two step strategy: in the first step, cDNA was

generated from RNA derived from different tissue samples using

cDNA Archive kit (ABI PRISM); subsequently real-time quanti-

tative PCR was carried out in ABI PRISM 7900 (Applied

Biosystems) sequence detection system with the cDNA as the

template using gene specific primer sets and Dynamo kit

containing SYBR green dye (Finnzyme, Finland). All measure-

ments were made in triplicate. The genes GARS (glycyl-

tRNAsynthetase), AGPAT1 (1-acylglycerol-3-phosphate O-acyl-

transferase 1), ATP5G1 (ATP synthase, H+ transporting, mito-

chondrial F0 complex, subunit C1 (subunit 9)) and RPL35A

(ribosomal protein L35a) were used as internal controls as their

expression levels were found to be unaltered in our previous array

experiments. Normal brain tissue samples from epilepsy patients

were used as control. Delta delta CT method was used for the

calculation of ratios of gene expression. Sequences of RT-PCR

primers used are given in supplementary table S1.

A total number of 175 genes (Supplementary Table S2)

were selected for expression analysis and subsequent survival

correlation. Amongst these 175 genes, 112 genes were selected

based on their differential expression pattern in glioma as revealed

by our previous microarray data [14–16]. These include genes that

are differentially expressed in astrocytoma samples as compared to

control normal brain tissues as well as for varying expression

among GBMs. The remaining genes were selected from the

literature as differentially regulated with prognostic value [17].

During this study, we validated the expression of selected 175

genes by real-time qPCR in an independent cohort of 123 GBM

samples, which were prospectively selected and underwent

uniform treatment as a part of this study. Since the values derived

from real-time qPCR method are more accurate and reliable as

compared to microarray derived expression values, we have used

expression data for 175 genes from 123 GBM samples for the

survival prediction.

Immunohistochemistry
Analysis of protein expression was carried out by IHC for

EGFR, CHI3L1/YKL-40, SOD2 and CALCRL (n = 123 for each

marker). Antigen retrieval was done by heat treatment of the

deparaffinized sections in a microwave oven for 30 minutes at 600

W in citrate buffer (10 mmol/L; pH 6.0). After the initial

processing steps, sections were incubated overnight with primary

antibody at 4uC (anti- CH13L1/YKL-40; Rabbit polyclonal

antibody; 1:500 dilution), anti-EGFR (Biogenex; E-30; 1:50

dilution), anti- SOD2 (Sigma Life Science; HPA001814; 1:300

dilution) and anti- CALCRL (Novus Biologicals;NBP1-85643;

1:100 dilution). This was followed by incubation with secondary

antibody (Biogenex; QD440-XAK for EGFR and CH13L1 and

Thermo scientific [Ultravision Protein block] for SOD2 and

CALCRL). The reaction was visualized by using 3, 39-Diamino-

benzidine (Sigma-Aldrich) as a chromogenic substrate. GBM

tumors that showed elevated mRNA levels of EGFR, YKL-40,

SOD2 and CALCRL respectively by qRT-PCR experiments

served as positive controls. A negative control slide in which the

primary antibody was excluded was incorporated with each batch

of staining. A visual semiquantitative grading scale was applied to

assess the intensity of the immunoreactivity as follows: zero (0) if

the staining was absent, 1+ if it was weak, and 2+ if it was strong.

Fourteen Gene Prognostic Signature in Glioblastoma
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Only2+ staining intensity was considered for analysis. The

immunopositivity of EGFR, CHI3L1, SOD2 and CALCRL was

assessed in more than 1,000 cells from each tumor specimen. The

labeling index (LI) was expressed as a percentage of cells that

showed 2+ positive staining among the total number of cells that

were counted.

Statistical Analysis and External Validation
One hundred and fifty four patients with GBM were

prospectively recruited during the study period; gene expression

data were available for 123 patients which were taken for further

analysis. This group did not reveal any significant difference as

compared to the whole cohort with respect to age, symptom

duration, maximum follow up and median survival as studied by

case bias analysis (Supplementary Table S3).

The mean age of the patient cohort was 46.5 years. The mean

follow up period was 16.3610.6 months (Median = 13 months;

range = 1–47 months). At the time of analysis, 82 patients had

expired due to the disease and 41 were alive. The median survival

of this patient cohort was 16 months (95%CI: 13.37–18.62

months; Kaplan Meier analysis).

The expression patterns of 175 genes were obtained by qRT-

PCR. The mRNA expression data of all the genes was used for the

analysis. For identification of gene signature, the entire dataset of

patients with complete information was considered. The expres-

sion levels of each gene in all the patients were expressed as log2

ratio for analysis. The missing values were imputed using a nearest

neighbor algorithm [18], which uses k-nearest neighbors in the

space of genes to impute missing expression values. We used 10

nearest neighbours imputation with minimum of 50% data for a

given gene and 20% for a given subject. We used the supervised

principal component method [19], available in the superpc package

of R [20] with a Cox regression model [21] for survival to compute

Wald scores for each gene. The genes were ranked based on their

Wald scores. Utilizing the complete data set, we determined the

optimal gene threshold by 40 fold cross-validation to select genes

to optimize the score in supervised principal components of the

selected gene expressions. The first supervised principal compo-

nent of genes that reached a certain threshold of the score was

computed and applied as a single explanatory variable in a Cox

survival model. The adequacy of selected supervised principal

component was tested by Likelihood ratio test for its significance.

The data/feature reduction was achieved by Computing Cox

regression scores (univariate) for all the 175 genes to form a

reduced data matrix comprising only those features whose

univariate coefficient exceeds a threshold value estimated by

cross-validation. During the cross validation of the data, the

program uses cross-validation method given by ‘‘pre-validation’’

approach of Tibshirani and Efron in supervised principal

components [22]. The threshold was fixed at 0.85 which was

obtained from the likelihood ratio value plot. With the selected

threshold, a total of 14 genes were selected during the cross

validation. The median rank and proportion of times appeared in

the cross validation is shown (Supplementary table S4).

In order to compute prognostic score, the weightage corre-

sponding to each gene was calculated by fitting multivariate Cox

proportional hazards model. A weighted prognostic gene score

(WG sore) was calculated using the following formula:

WG score =g (Cox regression coefficient X log2 ratio
of each gene).

The efficiency of the linear weighted score was also evaluated by

calculating Area Under Receiver Operating Characteristic (ROC)

curve with the time dependent censored survival data using

Kaplan-Meier and spanning method [23]. Internal validation of

WG score was done by randomly selecting 50% of the cases out

from the total cohort. Further, a bootstrap internal validation was

carried out to test the validity of weighted prognostic score. The

power of the test was calculated by simulating 1000 bootstrap

simulations. Statistical analysis was performed using SPSS version

15.0 and R software version 2.10.0 [20].

External Validation with TCGA Data
The gene expression data (Agilent microarray platform) and

clinical data from TCGA study [24] were accessed with prior

permission and utilized to validate the impact of WG score on

survival. The patients with proven GBM, with KPS.70 and lived

at least for 30 days and received radiotherapy and some form of

chemotherapy were chosen to form an external cohort for

validation of the WG score derived from the present study. A

total number of 130 patients who satisfied these criteria were

considered for analysis. The mean age of the patients was 53.4 yrs

(range: 17–82 yrs). The duration of follow up ranged from 1.3 to

110.3 months (mean = 21.9621.97 months; median = 14.5

months). The gene expression levels of the selected genes which

comprise the WG score were utilized to calculate the WG Score

for each patient in the TCGA cohort. The WG score was

standardized by the Z method so that comparison between various

cohorts and techniques could be performed.

Network Analysis
The Agilent expression data for 130 patients was downloaded

from TCGA database. The patients were divided into low risk and

high risk patients based on SWG score. MeV software was used to

perform the T-test. Genes with P value #0.05, after FDR

correction were considered as significantly different. Genes having

more than two fold difference between low risk and high risk were

used for Gene Ontology (GO) and pathway analysis were carried

out using DAVID bioinformatics resources and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathways annotation and

enrichment analysis respectively [25–27].

Gene Expression Subtype Analysis
Gene expression subtype information, which was available for

108 patients out of 130 GBMs in the TCGA cohort was used for

their correlation with survival. Patients from low risk and high risk

groups were divided into gene expression subtypes and Mann

Whitney test was carried out to find out significant association with

the patient risk.

Results

Identification of a 14 Gene Prognostic Signature and
Computation of Weighted Prognostic Gene (WG) Score

A schematic diagram describing the entire workflow as to how

the 14 gene signature was identified, tested and validated is shown

in Figure 1. The mRNA expression data of 175 genes was

correlated with patient survival using a supervised principal

component (SPC) method from the superpc software package in R

with a Cox regression model. Genes were ranked by their

univariate scores. The first principal component of the genes that

reached a certain threshold of the univariate score was computed.

An optimal threshold of 0.85 was selected based on likelihood ratio

plot (Supplementary Figure S1A and B) to select the genes.

On running a three component SPC model, the first supervised

principal component was found to be significant (p = 0.0024),

while the other 2 components were not. Genes were selected by

the training and internal cross validation performed with the

complete data set which finally yielded a group of 14 genes. This

Fourteen Gene Prognostic Signature in Glioblastoma
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group of 14 genes provided a good approximation of the

supervised principal component (Table 1).

A weighted prognostic gene score (WG sore) (described in

methods section) was calculated as a sum of Cox regression

coefficients multiplied by the log2 ratio of each gene from the 14

gene signature. The WG score in the cohort ranged from 24.590

to 20.600, with the mean value of 22.414. The weighted

prognostic gene score was found to significantly correlate with

patient survival as a continuous variable (HR = 2.65; B = 0.975;

p,0.001; Cox regression univariate analysis) (Table 2).

Internal Validation of WG Score for Robustness
The robustness of WG score in predicting patient survival was

assessed by multiple approaches. The fitness of the WG score,

evaluated by calculating Area under ROC Curve (AUC) with the

time dependent censored survival data using Kaplan-Meier and

span method, revealed that the area under the curve was 0.771 for

WG score based on 14 genes (Supplementary Figure S1C)

implying a higher predictive value of patients survival by the WG

score. Secondly, the predictive value of WG score was analyzed in

a subset of sixty two cases selected by random subset sampling.

The WG score as a continuous variable was significant in

predicting survival in this subset (p,0.0001). Patients were divided

into two groups by mid-score, because of the expected differential

proportion of patients in low risk and high risk groups. The mid

score is the value which divides the range of WG score into equal

parts. The,mid-score and $ mid-score groups also had

significant difference between their median survival (p = 0.0002)

(data not shown). Thirdly, a bootstrap internal validation was

carried out to test the validity of the genes and WG score. The

percentage of significant (P,0.05) prediction of survival duration

by WG score was calculated from 1000 bootstrap samples of

different sizes (n). The percentage significance was 69% for n = 10,

86% for n = 20, and 94% for n = 30 (Supplementary Figure
S1D). This underscores the reproducibility of the WG score

prediction even in smaller subsets of patients. We also assessed

similar gene scores based on the linear regression on first principal

component (refer Supplementary Figure S1D, linear14
curve) and the score based on minimal genes (5 genes; refer
Supplementary Figure S1D coxph5 curve) selected by

stepwise multivariate Cox survival model (data not shown). We

noted that the 14 gene multivariate Cox survival model based WG

score was better compared to scores derived from other methods

(Supplementary Figure S1D).

Multivariate Regression Analysis Indicates WG Score is an
Independent Predictor of Patient Survival

Cox multivariate analysis was carried out using WG score, age

and pre and post operative KPS as covariates. Pre operative KPS

(p = 0.265) and post operative KPS (p = 0.549) did not significantly

influence patient survival in the present cohort and hence not

included for multivariate analysis. Age and WG score were both

found to be significantly influencing the outcome on univariate

analysis (Table 2). Multivariable analysis revealed that only WG

Figure 1. Schematic diagram describing the entire workflow as to how the 14 gene signature was identified, tested and validated is
shown.
doi:10.1371/journal.pone.0062042.g001
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score was found to significantly predict outcome (HR = 2.507;

B = 0.919; p,0.001; Table 2). Hence, the WG score derived

using 14 gene prognostic signature in this study is an independent

predictor of survival outcome in this cohort of patients of GBM.

This result also indicates that a higher WG score predicts poorer

prognosis in patients with GBM.

Independent Validation of 14 Gene Prognostic Signature
using TCGA Data

One hundred and thirty GBM patients from TCGA study who

satisfied our criteria (see methods for details) were used for

validation. It was observed that the expression patterns of all these

14 genes were similar both in our patient data set and the TCGA

data set (Figure 2 and Supplementary Table S5). The WG

score calculated for TCGA data set ranged from 22.25 to 20.09

(Mean 6 SD = 21.06960.428). Univariate survival analysis

identified both age and WG score as significant predictors of

survival (Table 2). An increasing age as well as an increasing WG

score predicted poorer outcome. Further, multivariate Cox

proportional hazard model identified both age and WG score as

independent predictors of survival (Table 2). Significantly, WG

score demonstrated a higher hazard ratio than age in influencing

the survival. We were also curious to carry out multivariate

analysis with previously reported gene signatures: 4 gene signature

[13] and 9 gene signature [10]. In univariate analysis, both the 14

gene and 9 gene signatures predicted survival significantly while

the 4 gene signature reached nearing significance (Supplemen-
tary table S6). In a pairwise multivariate analysis which included

4 gene and 14 gene signatures, both signatures predicted survival

significantly (Supplementary table S6). However, in another

pairwise multivariate analysis which included 9 gene and 14 gene

signatures, only 9 gene signature remained significant (Supple-
mentary table S6).

Risk Stratification by WG Score
Next we attempted to stratify the patients based on WG score to

predict their survival. We found the range of WG score for the

present study vs. TCGA cohort was different (Supplementary
Figure S2) as different platforms (qRT-PCR and microarray

respectively) were used in these two different data sets. Hence

Table 1. Details about the genes that form part of the 14 gene prognostic signature.

Sl No Gene symbol Gene name

Regression
co-efficient
(Cox PH score) Low risk High risk

Median Mean SD* Median Mean SD*

1 AGT angiotensinogen 0.03190 20.801 22.335 4.366 0.1767 20.290 2.319

2 EGFR epidermal growth factor receptor 20.05152 1.106 1.261 3.409 2.850 3.105 2.947

3 CHI3L1 chitinase 32like 1 0.00442 3.600 3.782 2.965 6.934 6.168 2.624

4 SOD2 superoxide dismutase 2,
mitochondrial

20.08050 0.839 0.919 1.669 2.827 2.443 2.07

5 CCL2 chemokine (C-C motif) ligand 2 0.13690 20.153 20.574 1.911 1.560 1.219 2.037

6 IGFBPL1 Insulin-like growth factor
binding protein-like 1

20.07953 2.413 2.586 3.168 20.017 20.236 2.576

7 MBP myelin basic protein 0.07308 26.881 26.791 2.851 25.010 24.964 3.077

8 CPE carboxypeptidase E 0.03070 21.591 22.224 2.462 21.101 21.241 1.258

9 OLFM1 olfactomedin 1 0.09206 24.885 24.837 2.446 23.387 23.736 1.769

10 MCF MCF.2 cell line derived
transforming sequence

20.20973 22.592 21.954 2.528 23.281 23.569 2.475

11 PACSIN1 protein kinase C and casein
kinase substrate in neurons 1

0.01182 26.411 26.648 2.219 26.085 26.071 2.586

12 CALCRL calcitonin receptor-like 20.08132 2.569 2.300 1.802 1.438 1.204 2.353

13 SNCA synuclein, alpha 0.17266 24.633 24.572 1.554 23.588 23.572 1.626

14 TOP2A topoisomerase (DNA) II alpha 20.12357 9.692 8.922 1.860 8.385 8.108 2.137

*SD - Standard deviation.
doi:10.1371/journal.pone.0062042.t001

Table 2. Univariate and multivariate analysis of impact of WG
score on patient survival.

Factor HR B (co-efficient) P value

Present data set- survival analysis

I. Univariate analysis

Age 1.025 0.025 0.006

WG score 2.65 0.975 ,0.001

II. Multivariate analysis

Age 1.016 0.016 0.092

WG score 2.507 0.919 ,0.001

TCGA data set- survival analysis

I. Univariate analysis:

Age 1.028 0.027 ,0.001

WG score 1.914 0.649 0.002

II. Multivariate analysis:

Age 1.025 0.024 0.001

WG score 1.585 0.460 0.034

doi:10.1371/journal.pone.0062042.t002
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there was a need to standardize the WG score that is applicable to

data obtained using various methods. Therefore, we standardized

the WG score of our patient cohort and TCGA cohort by the Z

statistic method. This method involves substituting all raw

expression values in each data set by their respective Z-scores,

which was calculated by (X 2 m)/s, where X stands for expression

data of each gene in each of the sample; m stands for mean of

expression of each gene among all the samples; and s stands for

standard deviation. This yielded a standardized WG score (SWG

score). The SWG score of the present study cohort ranged from

22.795 to 2.330, while the SWG score of the TCGA cohort

ranged from 22.770 to 2.276. The mid value of the SWG score for

the present study cohort was calculated to be 20.2327, which was

utilized as cut off for risk stratification (SWG rounded off to

20.233) in both the cohorts. All patients with SWG score of

#20.233 were classified as low risk group, while those with SWG

score.20.233 were classified as high risk group.

It was noted that the median survival of patients in low risk

group was significantly higher than that of the high risk group both

in the present and in the TCGA data sets by the Kaplan Meier

method (Supplementary Table S7; Figure 3A and C). To get

a visual appreciation, a comparison of SWG score with patient

survival status among GBM patients between low and high risk

groups of the present data set and the TCGA data set are shown in

figure 4A and B. The presence of more red dots (dead patients)

in the high risk group in both the data sets is evident. The survival

rates of the low risk and high risk groups revealed that the low risk

group had better survival rates throughout the study period in

both the present study as well as TCGA cohort compared to the

high risk group (Figure 3B and D). A multivariate analysis

demonstrated that the stratification of patient cohort into low and

high risk remained significant in both the present study cohort and

the TCGA cohort, after correcting for the influence of patient’s

age (Table 3).

Identification of a Patient Cohort with very Low Risk
using SWG Score

Patients with low risk were further divided based on the

standardized weighted gene (SWG) score. The 30th percentile of

the range of SWG score of the present study cohort was taken as

the cut off, namely a value of 21.258. All patients with a SWG

score of # 21.258 were grouped as very low risk, while those with

a SWG score between 21.258 and 20.233 were grouped as low

risk. It was noted that the very low risk group in our cohort had a

very long survival (median survival not reached; mean surviv-

al = 36.7 months) while compared to the low risk group (median

survival = 23 months) (p = 0.054). Similarly, it was noted that the

very low risk group in TCGA had a significantly higher median

survival compared to low risk group (35.9 vs 14.4 months

respectively) (p = 0.023) (Figure 5A, B and C).

Nature of Genes Involved in SWG Score Computation
Several interesting observations were noted when we had a

closer look at the 14 genes that formed the signature. It was

Figure 2. Scatter plots of 14 genes from the present study and TCGA study. Normal and GBM values are derived from RT-qPCR data for the
present study. Log2-transformed gene expression ratios obtained from real-time RT-qPCR analysis of RNA derived from tumor tissue samples (as
indicated) are plotted. For TCGA study derived data, the values are derived from microarray study performed using Agilent platform, downloaded
from the TCGA data portal.
doi:10.1371/journal.pone.0062042.g002
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interesting to note that among the 14 genes which comprised the

SWG score, some had known significant functions in the glioma

pathogenesis or malignant potential, while some were novel

(Table 1). Considering the expression of 14 genes, four genes

(IGFBPL1, MCF2, CALCRL, and TOP2A) were expressed at a

higher level in the low risk group compared to the high risk group,

probably having protective effect, while the remaining 10 genes

(SOD2, EGFR, AGT, CHI3L1, CCL2, MBP, CPE, OLFM1,

PACSIN1, and SNCA) were expressed at a higher level in the high

risk group than in the low risk group, probably having a role in

tumor aggressiveness (Table 1). Similar results were obtained in

the TCGA cohort as well (Supplementary Table S8).

Analysis of Protein Expression
The protein expression of four of the genes, namely EGFR,

CHI3L1, SOD2 and CALCRL was performed on 123 cases (from

our cohort) to correlate with transcript levels. Spearman’s

correlation analysis revealed that the protein levels (labeling index

by IHC) correlated significantly with mRNA levels for all the four

genes, namely EGFR (p,0.001; correlation co-effi-

cient = 0.488),CHI3L1 (p,0.001; correlation co efficient = 0.601),

SOD 2 (p,0.001;correlation co-efficient = 0.730) and CALCRL

(p,0.001;correlation co-efficient = 0.757). It is evident that while

CALCRL, a protective gene, is found to be significantly expressed

higher in low risk group compared to high risk group (Figure 6 A
and B), the risky genes were found to be expressed significantly

higher in high risk group compared to low risk group (Figure 6 A

Figure 3. Risk stratification of GBM patients. Survival by risk stratification of patients from present study group (A and B) and TCGA cohort (C
and D).Kaplan-Meier graph showing overall survival of GBM patients for the present cohort (A) and TCGA cohort (C) according to standardized WG
score. Comparison of overall survival rates of low risk group vs. high risk group throughout the study period of present study group (B) and TCGA
cohort (D).
doi:10.1371/journal.pone.0062042.g003
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and B) except EGFR, which showed nearing significance

(p = 0.0513.

Pathway Analysis Reveals Active Inflammatory Response
Pathway in High Risk Group

We hypothesized that the 14 genes, which formed the signature,

might modulate global gene expression with the resultant

perturbation of key signaling pathways differently between low

risk and high risk patients which could possibly explain the

difference in the survival between these two groups. Gene

expression profiles from Agilent data set from TCGA for low risk

and high risk groups were compared by statistical analysis. There

were 76 genes identified which are significantly differentially

regulated (73 genes upregulated and 3 genes were down regulated

in high risk compared to low risk) with more than two fold

difference between these two groups (Supplementary Table
S9). These 76 genes were used as input for the GO and pathway

analyses.

GO analysis revealed that these 76 genes were enriched in 16

biological processes (p,0.05), most of which were related to

inflammatory and immune response (Table 4). Further, KEGG

(Kyoto Encyclopedia of Genes and Genomes) pathway analysis

identified these differentially expressed genes annotated into three

different pathways namely Cytokine-cytokine receptor interaction

(hsa04060;11/76 genes; OSM, CXCL1, TSLP, CCL2, CXCL14,

IL8, CCL20, CXCR4, CXCL3, IL18 and FAS; p = 3.14E-05),

NOD-like receptor signaling pathway (hsa04621;6/76 genes;

CXCL1, CCL2, IL8, IL18, CASP1 and BIRC3; p = 4.44E-04),

and Chemokine signaling pathway (hsa04062; 8/76; CXCL1,

CCL2, CXCL14, IL8, CCL20, CXCR4, CXCL3 and GNG4;

p = 0.0024 (Figure 7A). These results suggest that activation of

inflammatory and immune response processes might contribute to

the shorter survival of high risk patients.

Various molecular subtypes of GBM have been previously

described by Phillips et al. to predict tumor biology [28]. We

analyzed their distribution between the low and high risk group

stratification based on the 14 gene signature, to understand the

possible correlation of immune pathway with molecular sub-

groups. We found that high risk group had significantly higher

proportion of mesenchymal subtype while the low risk group had

significantly higher proportion of proneural subtype (Figure 7B).

Subsequently, we checked whether protective and risky genes are

up regulated in proneural and mesenchymal sub groups respec-

tively. We found that all four protective genes (IGFBPL1, MCF2,

CALCRL, and TOP2A) are up regulated significantly in

proneural group compared to mesenchymal group (Supplemen-
tary table S10). Among the 10 risky genes, seven genes (SOD2,

EGFR, CHI3L1, CCL2, MBP, CPE, and SNCA) were found to

be up regulated with three genes showing significant association in

mesenchymal group compared to proneural group (Supplemen-
tary table S10). This result suggests that the presence of

activated inflammatory/immune response pathway in the high risk

group may be related to enriched mesenchymal subtype.

Discussion

GBM is characterized by its heterogeneity at its cellular,

molecular, and genetic levels, which render them one of the most

complex groups of tumors being studied. As the genetic basis of

origin and progression of these treatment resistant tumors becomes

amply clear by multiple studies, newer molecules, and areas of

targets for therapy and prognostication are continuously being

sought after. Recent research has been focused on identification of

gene signatures which can predict prognosis in glioma [10,29,30].

Various statistical methods including unsupervised analysis

[29,31], integrated genomic analysis [30], and systems biology

approach [32] have been employed in these studies. Most of the

studies which included malignant glioma or GBM contained

retrospective patient cohort from various trials or centers and

hence had not been treated with uniform therapy [17,33,34].

Since the survival of GBM patients also depends on the type of

Figure 4. Comparison between patient’s survival and WG risk score. Comparison of patient survival status with WG scores for the present
study group (A) and the TCGA cohort (B). Patients who are alive or dead are indicated by blue or red dots respectively.
doi:10.1371/journal.pone.0062042.g004

Table 3. Multivariate analysis of risk stratification by SWG
score.

Factor HR B Coefficient P value

I - Present data set

Age 1.018 0.018 0.051

SWG score (high vs low) 2.595 0.953 ,0.001

II - TCGA data set

Age 1.023 0.023 0.002

SWG score (high vs low) 1.710 0.536 0.017

doi:10.1371/journal.pone.0062042.t003
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adjuvant therapy, non uniform therapy can have possible

confounding effects on the analysis [1,3].

The strengths of the present study include a homogenous group

of patients of GBM, prospectively recruited based on strict

inclusion criteria and treated with standard adjuvant therapy. This

cohort was a fit model to evaluate the prognostic impact of genes

on survival in a homogenous histological group namely GBM. In

the present study, clinical factors like KPS did not correlate with

the survival. Age was the only clinical factor which correlated with

survival and hence the WG score generated from the expression of

genes was evaluated for its impact on survival adjusting for the

significance of age on survival.

We identified a 14 gene prognostic signature by supervised

principal component analysis, which significantly correlated with

survival independent of the effects of age. Since our cohort had

patients with GBM, who underwent standardized treatment

protocol and selected with other stringent criteria, we attempted

to evaluate the utility of the 14 gene prognostic signature in other

cohorts where the patients did not receive uniform therapy. Such a

cohort was available from the publicly available TCGA consor-

tium. We demonstrated that the 14 gene signature significantly

correlated with survival in the TCGA data also. Furthermore, we

were also able to divide the low risk group further to identify a very

low risk group based on 30th percentile, which had a significantly

better survival.

The scrutiny of functional significance of the 14 genes suggested

a differential pattern of gene expression between the low and high

risk groups. Investigation of known functions of many of these

genes justified the association between their expression and patient

survival. Among the genes overexpressed in low risk group,

Insulin-like growth factor binding protein-like 1 (IGFBPL1) was

originally identified as a novel putative tumor suppressor protein

which was later found to be a hypermethylated gene in primary

breast cancers that was associated with disease free survival [35].

MCF-2 encodes a guanine nucleotide exchange factor (GEF) that

activates the rho family of GTPases. Interestingly, a variant of this

gene with a deletion of 10 amino acids at exon10/11 with a

deficient GEF activity that was found overexpressed in normal

brain is downregulated in GBMs [36]. TOP2A, which encodes

topoisomerase II alpha is associated with cellular proliferation but

the overexpression is associated with better response upon

treatment with TOP2A inhibitors [37]. We have recently

demonstrated that temozolomide is a TOP2A inhibitor thus

explaining the phenomenon of TOP2A overexpressing tumors

being more sensitive to temozolomide chemotherapy with

resultant longer survival of patients. Further, down regulation of

Figure 5. Risk stratification of low risk GBM patients. Survival by risk stratification of patients from present study group (A) and TCGA cohort
(B). Kaplan-Meier graph showing overall survival of glioblastoma patients that belong to low risk (as identified Figure 1) into very low risk and low risk
for the present cohort (A) and TCGA cohort (C) according to standardized WG score. Please note that the low risk group (as identified from Figure 1)
was further divided into low risk and very low risk by 30th percentile value of the SWG score, which identified a small cohort of patients with very long
median survival.
doi:10.1371/journal.pone.0062042.g005
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TOP2A using RNA interference in glioma cells resulted in

temozolomide chemosresistance [38]. Unlike these three genes,

CALCRL (Calcitonin receptor-like), has been shown to activate

angiogenesis and was found to be expressed in endothelial cells of

microvascular proliferations and in the neighbouring tumor cells

of glial tumors [39,40].

Figure 6. Immunohistochemical analysis of selected genes. Immunohistochemical staining pattern of the proteins of CALCRL that was
expressed at a higher level in the low risk groups and CHI3L1, SOD2 and EGFR that were expressed at a higher level in the high risk groups of
glioblastoma. A) Labeling index of these four proteins between low risk and high risk patients is shown. B) CALCRL (A, B) CHI3L1 (C, D) and SOD2(E, F)
show cytoplasmic staining; EGFR (G, H) shows membrane staining of tumor cells. All original magnifications are 6160.
doi:10.1371/journal.pone.0062042.g006
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Among the genes overexpressed in high risk group, EGFR has

known oncogenic functions such as cell migration, survival,

angiogenesis, and tumorigenesis [41]. Similarly, YKL-40, a

member of mammalian chitinase-like proteins has been found to

be associated with poor prognosis in many cancers including

glioma [42]. CCL2/MCP1 has been shown to be protumorigenic

and a target for therapy in glioma and other cancers [43]. MBP

has been shown to induce cellular proliferation, inhibit apoptosis,

and found to be associated with advanced stages of cancer and

poor prognosis [44]. SNCA (Synuclein, alpha), an abundantly

expressed protein in brain with a possible involvement in

presynaptic signaling and membrane trafficking, has been shown

to inhibit apoptosis by inhibiting caspase 3 thus justifying its

identification as a poor prognostic indicator [45]. There is no

information available regarding the other genes; CPE, OLFM1,

and PACSIN1 with respect to their function (s) in tumor biology,

whose expression is higher in high risk group, GO and KEGG

pathway analyses revealed significant enrichment of cytokine-

cytokine receptor interaction and chemokine signaling pathway

which are related to inflammatory and immune response

pathways. While acute inflammation is related to innate and

humoral immunity, leading to immune surveillance with the

resultant anti-tumor effect, chronic inflammation has pro-tumor-

igenic effect supporting tumor initiation and progression [46,47].

Activated oncogenes have been shown to induce various

chemokines and cytokines resulting in the recruitment of

inflammatory cells in the tumor milieu [48]. The recruited

inflammatory cells themselves secrete more chemokines and

cytokines resulting in the generation of cancer-related inflamma-

tion which supports tumor growth and progression [48]. In fact,

pathway analysis identified the enrichment of cytokine-cytokine

receptor interaction pathway and chemokine signaling pathway

specifically in the high risk group. An active inflammatory

environment produced by these two pathways can lead to reduced

apoptosis, increased proliferation, migration and subsequently

metastasis. Thus the specific activation of inflammatory and

immune response pathway in the high risk group of patients might

explain their shorter survival.

Although different gene expression subtypes in GBMs appears

to have similar patient survival, it has been shown recently that

there is an enrichment of immune response-related gene

expression in the mesenchymal subtype of adult GBM [30,49].

Further it has been demonstrated that there is a role for immune

response, particularly the microglia/macrophage response, in the

biology of mesenchymal subset of GBM with poor prognosis [49].

Hence it was of our interest to see whether the high risk group (as

identified by 14 gene expression signature) with activated

inflammatory/immune response pathways is enriched for mesen-

chymal subtype. Interestingly, we noted that the high risk group

which had enrichment of activated inflammatory/immune

response pathway also had higher occurrence of mesenchymal

subtypes in GBMs, raising an interesting possibility of an influence

of immune pathways in the mesenchymal subtype of GBM.

A number of gene expression profiling platforms like Affymetrix

[10,31], Agilent [24], cDNAarrays, RNA expression by real time

PCR have been used in various studies for the measurement of

gene expression in gliomas. Keeping in mind that the gene

expression values derived from various platforms may not be

directly comparable, we utilized the standardized values for

correlation and risk stratification. It was noted that stratification

into high and low risk groups developed based on the SWG score

predicted survival significantly in our set (obtained by real time

PCR) and TCGA cohort (obtained by Agilent microarrays). This

observation gains significance since the SWG score can be applied

to gene expression analysis by any platform after standardizing the

WG score.

Most of the previous studies which reported gene signatures

have demonstrated the requirement of large number of genes or

gene clusters for forming a gene signature [29,30]. For example,

Colman et al have reported a 38 gene and 9 gene prognostic

signature model based on the data from 4 previously reported

studies [10]. deTayrac et al reported a 4 gene signature which

predicted survival in malignant glioma [13]. In the present study,

Table 4. Gene Ontology terms significantly enriched (p,0.05) in the set of genes differentially expressed between high risk and
low ris .

Sl. No. Biological process GO term No. of genes P value

1 Inflammatory response GO:0006954 18 1.00E-10

2 Response to wounding GO:0009611 20 1.60E-09

3 Defense response GO:0006952 20 2.10E-08

4 Taxis GO:0042330 12 1.53E-07

5 Chemotaxis GO:0006935 12 1.53E-07

6 Immune response GO:0006955 18 9.25E-06

7 Locomotory behavior GO:0007626 12 4.39E-05

8 Behavior GO:0007610 14 1.79E-04

9 Regulation of response to external stimulus GO:0032101 9 6.43E-04

10 Leukocyte chemotaxis GO:0030595 6 6.81E-04

11 Cell chemotaxis GO:0060326 6 8.93E-04

12 Neutrophil chemotaxis GO:0030593 5 1.17E-03

13 Leukocyte migration GO:0050900 6 6.08E-03

14 Chemical homeostasis GO:0048878 12 1.97E-02

15 Homeostatic process GO:0042592 14 3.15E-02

16 Cell migration GO:0016477 9 3.67E-02

doi:10.1371/journal.pone.0062042.t004
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the derivation of the SWG score by a simple weightage based

formula and standardization to any platform obviates the need for

any complex computational algorithms or gene cluster approaches

in reproducing the analysis and utilizing the score in patient

stratification.

We compared the genes comprising the SWG score to

previously reported studies. Only a few studies have analyzed

the utility of gene signatures in GBM prognosis. It was interesting

to note that the genes comprising our gene signature were largely

unique and independent from the previously reported signatures

[32,33]. CHI3L1 was the only gene which figured in both our

signature and that reported by Colman et al [10]. Our set of genes

were unique and different from the four genes namely, CHAF1B,

PDLIM4, EDNRB, and HJURP, which were identified in the

study by de Tayrac et al [13].

The identification of gene signature with an ability to stratify the

GBM patients into low and high risk groups based on an easily

derivable SWG score would enable the administration of

individualized therapy. Patients with high risk can be managed

with more aggressive and multimodal adjuvant therapy. In

conclusion, we report a 14 gene signature whose expression

correlates with the patient survival out come in GBM which could

also be used to stratify patients into low and high risk groups.

Figure 7. Pathway analysis and gene expression subtype analysis. A) KEGG pathway enrichment analysis. Enrichment of cytokine-cytokine
receptor interaction and chemokine signaling pathways leads to activation of various pro-survival pathways like Jak-STAT pathway, MAPK signaling
pathway and NFkB pathway with the resultant pro-tumorigenic environment. B) TCGA patients (n = 108) were divided into gene expression sub types
– proneural, neural, mesenchymal and classical among low risk and high risk groups. Mann Whitney test was carried out to find out significance of
distribution of a given expression subtype within a risk group.
doi:10.1371/journal.pone.0062042.g007
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