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Cysteine-Altering NOTCH3 Variants Are a Risk 
Factor for Stroke in the Elderly Population
Remco J. Hack , MD; Julie W. Rutten, MD, PhD; Thomas N. Person, MSc; Jiang Li , MD, PhD; Ayesha Khan, MD;  
Christoph J. Griessenauer , MD; Regeneron Genetics Center; Vida Abedi, PhD, MSc;  
Saskia A.J. Lesnik Oberstein , MD, PhD*; Ramin Zand , MD, MPH*

BACKGROUND AND PURPOSE: Cysteine altering NOTCH3 variants, which have previously been exclusively associated 
with the rare hereditary small vessel disease cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy, have a population frequency of 1:300 worldwide. Using a large population database, and taking 
genotype as a starting point, we aimed to determine whether individuals harboring a NOTCH3 cysteine altering variant 
have a higher load of small vessel disease markers on brain magnetic resonance imaging than controls, as well as a higher 
risk of stroke and cognitive impairment.

METHODS: A cross-sectional study using integrated clinical, neuroimaging, and whole-exome sequencing data of 92 456 
participants from the Geisinger DiscovEHR initiative cohort. The case group consisted of individuals harboring a NOTCH3 
cysteine altering variant (n=118). The control group consisted of randomly selected age- and sex-matched individuals 
who did not have any nonsynonymous variants in NOTCH3 (n=184). Medical records including brain magnetic resonance 
imagings were evaluated for clinical and neuroimaging findings associated with small vessel disease. Group comparisons 
were done using Fisher exact test and ordinal logistic regression models. Risk of stroke was assessed using Cox regression.

RESULTS: Of the 118 cases, 39.0% were men, mean age 58.1±16.9 years; 12.6% had a history of stroke, compared with 
4.9% of controls. The risk of stroke was significantly increased after age 65 years (hazard ratio, 6.0 [95% CI, 1.4–26.3]). 
Dementia, mild cognitive impairment, migraine with aura and depression were equally prevalent in cases and controls. Twenty-
nine cases (25%) and 45 controls (24%) had an available brain magnetic resonance imaging. After age 65 years, cases had 
a higher white matter lesion burden and more lacunes. A severe small vessel disease phenotype compatible with cerebral 
autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy was rarely seen.

CONCLUSIONS: Cysteine altering NOTCH3 variants are an important contributor to the risk of stroke, lacunes, and white matter 
hyperintensities in the elderly population.
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Cerebral small vessel disease (SVD) is the cause 
of about a quarter of ischemic strokes world-
wide and is the most common cause of vascular 

dementia.1 SVD is most commonly sporadic, asso-
ciated with aging and hypertension, but a minority 
of SVD is monogenic of which cerebral autosomal 

dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL) is the most common 
and well studied.2,3
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CADASIL is caused by distinctive NOTCH3 missense 
variants, namely variants leading to a cysteine alteration in 
one of the 34 epidermal growth factor-like repeat (EGFr) 
domains of the NOTCH3 protein.4,5 These NOTCH3 mis-
sense variants (NOTCH3cys) result in aggregation of the 
ectodomain of mutant NOTCH3 protein in the tunica 
media of small arteries,6 which is associated with cere-
brovascular dysfunction and cerebral hypoperfusion.7–9 
T2-weighted brain MR images consistently show white 
matter hyperintensities (WMHs) usually by the age of 35 
years,10,11 often involving the anterior temporal lobes and 
external capsules.10,12 In later disease stages, confluent 
WMHs are superimposed by multiple lacunes and fre-
quently subcortical microbleeds.13 Typically, patients with 
CADASIL have recurrent ischemic strokes from a mean 
age of 50 years and vascular cognitive impairment lead-
ing to dementia.14,15 Migraine with aura is seen in roughly 
half of the patients,16,17 and about one-third of patients 
have mood disorders.18

To date, >280 unique NOTCH3cys variants have been 
described in CADASIL pedigrees worldwide. Patients 
with CADASIL with NOTCH3cys variants in epider-
mal growth factor-like repeat (EGFr) domains 7 to 34 
have recently been described to have a later onset of 
stroke and reduced survival compared with patients with 
NOTCH3cys variants in EGFr domains 1 to 6.19 Although 
CADASIL has been assumed to be rare, it was recently 
shown that NOTCH3cys variants in EGFr domains 7 to 
34, identical to those found in CADASIL pedigrees, have 
an unexpectedly high population frequency (1:300).19,20 
A recent study in a population cohort (UK Biobank) 
revealed that NOTCH3cys variants in EGFr domains 7 to 
34 ascertained in the population are associated with a 

much milder SVD phenotype than CADASIL, and can 
even be nonpenetrant, with a normal brain magnetic res-
onance imaging (MRI) up to the eighth decade.21 In UK 
Biobank, there was no increased risk of stroke associated 
with these variants compared with controls. However, 
UK Biobank is known to have a healthy volunteer bias,22 
which may give an underestimation of the stroke risk 
associated with NOTCH3cys variants in EGFr domains 7 
to 34 in the population. Therefore, we queried Geisinger 
DiscovEHR, a biobank with whole-exome sequencing 
and phenotypic data of 92 456 patient-participants in an 
integrated health system. We used an inverse approach, 
identifying all individuals with a NOTCH3cys genotype and 
subsequently assessing stroke frequency and other clini-
cal and neuroimaging features associated with SVD.

METHODS
Data Availability Statement
The data that support the findings of this study are available 
from the corresponding authors (lesnik@lumc.nl or rzand@
geisinger.edu) upon reasonable request.

Geisinger DiscovEHR Initiative Cohort
As part of the MyCode initiative, individuals agreed to provide 
blood and DNA samples for research, including genomic analyses 
as part of the Regeneron-Geisinger DiscovEHR collaboration. 
MyCode genetic data are linked to data in the Geisinger elec-
tronic health records under a protocol approved by the Geisinger 
Institutional Review Board. Recruitment occurs in primary care 
and specialty clinics throughout Geisinger Health System without 
regard to underlying diseases. The mean age of the participants 
is 57.4±18.1 years (range, 2–89), and 57.9% are women. The 
majority of participants (97.5%) are White of European descent. 
The consent rate has been >85%. The details of enrollment, sam-
ple collection, and processing have been previously published.23,24

Identification of Cases With a NOTCH3cys Variant 
and Controls in DiscovEHR
All variants located in exons 2 to 24 of the NOTCH3 gene (ie, 
the exons encoding the 34 EGFr domains of the NOTCH3 
protein) were called through the Genome Analysis Toolkit 
best practices pipeline and filtered with a genotyping quality 
of 30, a minimum depth of 10, a minimum allele balance of 
20, and a minimum quality by depth of 5.25,26 The cases were 
defined as those individuals in whom a missense variant was 
detected, leading to a cysteine amino acid alteration in one 
of the 34 EGFr domains of the NOTCH3 protein (amino acid 
position 40—1373; http://www.uniprot.org). The control group 
consisted of 184 randomly selected individuals without any 
nonsynonymous variants in NOTCH3 exons 2 to 24, who were 
age- and sex-matched with the cases. The study was approved 
by the Geisinger Institutional Review Board, and informed con-
sent was waived. The final data de-identification and electronic 
health records linkage were managed through the Geisinger 
Phenomic Analytics and Clinical Data Core, which is indepen-
dent of the study team.

Nonstandard Abbreviations and Acronyms

CADASIL	� cerebral autosomal 
dominant arteriopathy with 
subcortical infarcts and 
leukoencephalopathy

DWM	 deep white matter
EGFr	 epidermal growth factor-

like repeat
ICD-10	� International Statistical 

Classification of Diseases 
and Related Health Prob-
lems Tenth Revision

MRI	 magnetic resonance imaging
NOTCH3 cys variants	 cysteine altering missense 

NOTCH3 variants
PVWM 	  periventricular white matter
SVD	 cerebral small vessel disease
TIA	 transient ischemic attack
WMH	 white matter hyperintensity

http://www.uniprot.org
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Assessment of Clinical and Neuroimaging SVD 
Features in DiscovEHR
Medical records were probed using International Statistical 
Classification of Diseases and Related Health Problems Tenth 
Revision (ICD-10 codes) by a team of investigators with expertise 
in vascular neurology and neuroimaging, blinded for NOTCH3 
variant status, age, and sex. ICD-10 codes corresponding with 
the following diagnoses and cardiovascular risk factors were 
recorded: stroke, transient ischemic attack (TIA), mild cogni-
tive impairment, dementia, depression, migraine with and with-
out aura, past or current smoking, hypertension, use of statin 
medications for hyperlipidemia, diabetes type 1 and 2, coronary 
artery disease, and peripheral vascular disease. Medication list, 
positive family history of at least one first-degree relative with 
stroke, and other relevant medical history, such as a diagnosis 
of multiple sclerosis, were also recorded. To confirm the ICD-
10 code for stroke and TIA, complete medical records were 
reviewed. Stroke was defined as rapidly evolving focal symp-
toms lasting ≥24 hours with no apparent cause other than of 
vascular origin. TIA was defined as a transient episode lasting 
<24 hours of neurological dysfunction caused by focal brain or 
retinal ischemia, without infarction on brain imaging.

For all cases and controls in whom a brain MRI with at least 
T1, T2, and T2-weighted fluid-attenuated inversion recovery 
sequences were available, images were scored by 2 physicians 
with experience in vascular neurology and neuroimaging (Dr 
Hack and M.A. Iqbal or Dr Khan), blinded for NOTCH3 variant 
status, age, sex, and medical history. A trained and board-certi-
fied physician (Dr Zand) in vascular neurology and neuroimag-
ing also reviewed the imaging and acted as a tiebreaker. Brain 
MRIs were scored according to the Standards for Reporting 
Vascular changes on Neuroimaging Guidelines.27 The following 
lesions were assessed: the number of lacunes of presumed 
vascular origin, number of cerebral of microbleeds, the bur-
den of WMH in the periventricular white matter (PVWM) and 
deep white matter (DWM) according to the simplified Fazekas 
scale,28 and the presence of WMH in the external capsules and 
anterior temporal lobes. Global cortical atrophy was assessed 
using the Pasquier scale.29

Statistical Analysis
Normally distributed continuous variables were summarized as 
mean±SD and compared between cases and controls using 
the unpaired 2-sample t test. Statistical comparisons on binary 
categorical variables between cases and controls were per-
formed using the Fisher exact test. Ordinal logistic regression 
models were used to compare ordinal categorical variables 
between cases and controls. Log-rank test was used to com-
pare the time to first stroke between cases and controls. Cox 
regression was used to correct for sex and cardiovascular risk 
factors (ie, hypertension, statin use, diabetes type 1 or 2, past 
or current smoking). The assumption of proportional hazards 
was assessed by inspecting Schoenfield residuals and log 
minus log plots. In our Cox regression model, the assumption 
of proportional hazards was violated because of changes in 
the hazard ratios around the age of 65 years. Therefore, the 
survival analysis was divided into 2 time intervals, that is, <65 
years and ≥65 years. SPSS 26.0 (Chicago, IL) was used for all 
statistical analyses.

RESULTS
NOTCH3cys Variants in DiscovEHR
There were 131 cases with a NOTCH3cys variant, which 
corresponds to a frequency of 1:706. In 130 cases, 
the NOTCH3cys variant was located in one of the EGFr 
domains 7 to 34; one individual had a NOTCH3cys vari-
ant in EGFr domain 5 (Table I in the Data Supplement). 
There were 25 unique NOTCH3cys variants, of which 
some were frequent and some only occurred once. The 
most frequent variant was p.Arg1231Cys (EGFr domain 
31) found in 84 individuals. This variant, as well as 9 of 
the other 24 unique NOTCH3cys variants in DiscovEHR, 
have been previously reported in CADASIL pedigrees.

Increased Frequency of Stroke but Not of 
Dementia or Migraine With Aura, in NOTCH3cys 
Cases
Medical records were available for 118 cases, with 
a mean age at last visit of 58.1±16.9 years (range, 
20.1–93.8 years); 39.0% were men (Table 1). Fifteen 
cases had a history of stroke, which was significantly 
more frequent than in controls (12.7% versus 4.9%; 

Table 1.  Small Vessel Disease Features, Vascular Risk  
Factors, and Family History in Cases With a NOTCH3cys  
Variant vs Controls

 
Cases 
(n=118)

Controls 
(n=184) P value

Age at last visit, mean (SD) 58.1 (16.9) 57.8 (16.8) 0.87

Men, n (%) 46 (39.0) 70 (38.0) 0.90

Clinical symptoms

  Stroke, n (%) 15 (12.7) 9 (4.9) 0.02

  TIA, n (%) 4 (3.4) 7 (3.8) >0.99

  Mild cognitive impairment, n (%) 1 (0.8) 3 (1.6) >0.99

  Dementia, n (%) 7 (5.9) 10 (5.4) >0.99

  Depression, n (%) 47 (39.5) 76 (41.3) 0.81

  Migraine with aura, n (%) 5 (4.2) 11 (6.0) 0.61

  Migraine without aura, n (%) 17 (14.3) 40 (21.7) 0.13

Cardiovascular risk factors

  Hypertension, n (%) 57 (48.3) 97 (52.7) 0.48

  Statin use, n (%) 40 (33.9) 75 (40.8) 0.27

  Diabetes, n (%) 26 (22.0) 42 (22.8) 0.89

  Past or current smoker, n (%) 47 (39.8) 74 (40.2) >0.99

  Coronary artery disease, n (%) 15 (12.7) 49 (26.6) 0.004

  Peripheral vascular disease, n (%) 5 (4.2) 15 (8.2) 0.24

Family history

  Stroke, n (%) 25 (21.2%) 28 (15.2%) 0.22

  Dementia, n (%) 6 (5.1%) 9 (4.9%) >0.99

  Multiple sclerosis, n (%) 0 1 (0.5%) >0.99

TIA indicates transient ischemic attack.

https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.120.030343
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P=0.02). In time-to-event analysis, cases had a sig-
nificantly shorter stroke-free survival than controls 
(P=0.02; Figure 1). After correction for vascular risk 
factors and sex, cases had a significantly increased 
risk of stroke after the age of 65 years (hazard ratio, 
6.0 [95% CI, 1.4–26.3]; P=0.02), but before age 65 
years, the difference was not statistically significant 
(hazard ratio, 2.1 [95% CI, 0.7–6.3]; P=0.20). In cases, 
cardiovascular risk factors and sex were not indepen-
dently associated with an increased risk of stroke 
(all P>0.15). Dementia, mild cognitive impairment, 
migraine with aura and depression were equally prev-
alent between cases and controls (Table 1). Although 
there was no significant difference in traditional vas-
cular risk factors between cases and controls, coro-
nary artery disease was significantly more frequent in 
the control group (26.6% versus 12.7%; P=0.004). A 
positive family history for stroke or dementia was not 
more frequent in cases than in controls (Table 1). The 
case with a NOTCH3cys variant in EGFr domain 5 was 
71 years old during her last visit. Her past medical his-
tory only reported a possible TIA at an unknown age. 
There was no neuroimaging available of her.

Higher Burden of WMHs and More Lacunes in 
NOTCH3cys Cases
Brain MRI was available for 29 cases (24.6%) and 44 con-
trols (23.9%). Age at MRI did not differ between cases 
and controls. Cases had an overall higher WMH burden 
than controls, but this did not reach statistical significance 
(Table 2; Figure 2A and 2B). However, Fazekas DWM 3 
and Fazekas PVWM ≥1 was significantly more frequent in 
cases than in controls: 24.1% versus 4.5% (P=0.02) and 
82.8% versus 56.8% (P=0.02). Fazekas DWM 0 or PVWM 
0 was never seen in cases older than 55 years, and above 
age 70 years all cases had Fazekas DWM 2 or 3. Con-
versely, the majority of controls older than 70 years still had 
Fazekas DWM ≤1 or PVWM ≤1 (Figure 2C and 2D).

There was no difference in the presence of WMH in 
the temporal poles or external capsules between cases 
and controls with Fazekas DWM ≥2: 16.6% versus 18.2% 
(P>0.99) and 58.3% versus 54.5% (P>0.99), respectively. 
Although overall there was no significant difference in the 
presence of lacunes between cases and controls: 27.6% 
versus 13.6% (P=0.22; Table 2), after age 65 years lacu-
nes were significantly more prevalent in cases than controls 
(53.8% versus 7.1%; P=0.01). There were no significant 

Figure 1. Stroke incidence in cases with a NOTCH3cys variant vs controls. 
Kaplan-Meier plot showing the proportion free of stroke in cases (n=118) and controls (n=184). Cases had a significantly shorter stroke-
free survival compared with controls (P=0.02). The table under the graph shows the number of cases and controls at risk and the number of 
individuals with a first stroke per 10-y interval.
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differences in the presence of cerebral microbleeds and 
global cortical atrophy between cases and controls (Table 2).

DISCUSSION
Using a genotype-first approach, we studied clini-
cal and neuroimaging SVD features in individuals with 
NOTCH3cys variants in the population, using the exome 
sequencing data from DiscovEHR. NOTCH3cys vari-
ants occurred at a frequency of 1:706 and were almost 
exclusively located in NOTCH3 EGFr domains 7 to 34. 
Individuals with a NOTCH3cys variant were at increased 
risk of stroke, WMHs, and lacunes after age 65 years, 
but a classical mid-adult onset CADASIL phenotype was 
not seen. Our findings are in line with accumulating evi-
dence that NOTCH3cys variants do not only cause the 
rare and severe hereditary SVD CADASIL but are much 
more commonly associated with a milder SVD pheno-
type, specifically when these variants are located in EGFr 
7 to 34.21,30–32 Given the high population frequency of 
NOTCH3cys variants (1:300 worldwide), the total number 

of individuals who are at higher risk of SVD and stroke as 
a result of a NOTCH3cys variant is significant. On a world 
population of ≈8 billion, there are an estimated 25 mil-
lion individuals with a NOTCH3cys variant. Based on our 
results, we would expect that the majority of the individu-
als with a NOTCH3cys variant will develop NOTCH3cys-
associated SVD after the age of 65 years. NOTCH3cys 
variants, therefore, are a new genetic risk factor which 
should be taken into account in SVD risk stratification 
and prevention.

Although SVD is associated with mild cognitive 
impairment and vascular dementia,1,33 we did not find 
an increased frequency of mild cognitive impairment 
and dementia in the individuals with a NOTCH3cys vari-
ant. However, the frequency of cognitive impairment 
may be an underestimation as this was evaluated using 
only ICD-10 codes, and the majority of patients did not 
have a formal neuropsychological evaluation. The role 
of NOTCH3cys variants in mild cognitive impairment and 
vascular dementia in the elderly population needs to be 
addressed in large prospective studies. Only 4.2% of 
individuals with a NOTCH3cys variant had migraine with 
aura, whereas this has been reported in 45% to 70% 
of patients with CADASIL.16,17 A possible explanation for 
this discrepancy could be that NOTCH3cys variants most 
commonly found in CADASIL, that is, those located in 
EGFr domains 1 to 6, predispose to a higher risk for 
migraine with aura than variants in EGFr domains 7 to 
34. This hypothesis is also supported by the low preva-
lence of migraine with aura observed in Asian CADASIL 
cohorts, in whom NOTCH3cys variants in EGFr domains 7 
to 34 are much more common.34,35

The individuals with a NOTCH3cys variant in Discov-
EHR did not have an increased frequency of WMH in the 
anterior temporal poles or external capsules compared 
with controls, although the presence of WMH in these 
areas is suggestive of CADASIL,10,12 which is explained 
by the relatively mild phenotype and low WMH burden of 
individuals with a NOTCH3cys variant in DiscovEHR.

In line with previous population studies, the vast 
majority of NOTCH3cys variants in DiscovEHR are 
located in one of NOTCH3 EGFr domains 7 to 34, with 
the p.Arg1231Cys variant occurring most frequently.19–21 
As such, it is becoming increasingly clear that there is 
an extreme variability in disease severity associated 
with NOTCH3cys EGFr 7 to 34 variants, implying a role 
for strong disease modifiers. Variants located in EGFr 
domains 1 to 6, on the other hand, seem to almost always 
lead to a severe mid-adult onset CADASIL phenotype, as 
they are frequent in CADASIL pedigrees and rare in the 
population. It was not possible to investigate the effect 
of specific variants on SVD phenotype in DiscovEHR 
because of the frequency and distribution of NOTCH3cys 
variants in this population.

Studies in CADASIL cohorts have shown that hyper-
tension and smoking are disease modifiers,18,36,37 but in 

Table 2.  Brain MRI Small Vessel Disease Markers in Cases 
With a NOTCH3cys Variant vs Controls

 Cases (n=29) Controls (n=44) P value

Age at MRI, mean (SD) 57.3 (19.1) 57.2 (16.4) 0.99

Men, n (%) 11 (37.9) 17 (38.6) >0.99

Fazekas score DWM, n (%)

   0 8 (27.6) 15 (34.1) 0.12

  1 9 (31.0) 18 (40.9)

  2 5 (17.2) 9 (20.5)

  3 7 (24.1) 2 (4.5)

Fazekas score PVWM, n (%)

  0 5 (17.2) 19 (43.2) 0.09

  1 17 (58.6) 15 (34.1)

  2 3 (10.3) 7 (15.9)

  3 4 (13.8) 3 (6.8)

Number of lacunes, n (%)

  0 21 (72.4) 38 (86.4) 0.11

  1 4 (13.8) 5 (11.4)

  2–4 3 (10.3) 1 (2.3)

  5 1 (3.4) 0

Number of microbleeds, n (%)

  0 19 (86.3) 33 (91.7) 0.49

  1–2 2 (9.1) 3 (8.3)

  >2 1 (4.5) 0

Global cortical atrophy scale, n (%)

  0 11 (37.9) 16 (36.4) 0.41

  1 9 (31.0) 22 (50.0)

  2 8 (27.6) 6 (13.6)

  3 1 (3.4) 0

DWM indicates deep white matter; MRI, magnetic resonance imaging; and 
PVWM, periventricular white matter.
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this population study, we found no additional effect of 
cardiovascular risk factors on stroke risk in individuals 
with a NOTCH3cys variant. This may be because of a sam-
ple size limitation, with insufficient power to detect small 
effects. Future studies with larger population cohorts are 
required to investigate the effect of cardiovascular risk 
factors on the NOTCH3cys-associated disease spectrum.

Our study has several limitations. Brain MRIs were 
of individuals who had an indication for neuroimag-
ing, leading to a selection bias in both cases and con-
trols. Furthermore, the prevalence of clinical symptoms 
was likely underestimated because of the retrospec-
tive nature of the study and the use of ICD-10 codes. 
However, complete medical records were reviewed 
to confirm the ICD-10 diagnosis for stroke and TIA. 
Stratification of stroke subtypes could not be reliably 
performed, as brain MRIs during the acute phase were 
generally not available. Finally, the fact that controls 
had a 2× higher frequency of coronary artery disease 
was unexpected, especially as vascular risk factor bur-
den was equal between cases and controls. A protec-
tive effect of NOTCH3cys variants on coronary artery 
disease has never been reported in CADASIL and is 
unlikely from a pathomechanistic perspective.38 A sam-
pling bias cannot be ruled out, but the fact that con-
trols had a higher frequency of coronary artery disease 

suggests that the effect of NOTCH3cys variants on 
stroke risk may be underestimated.

In conclusion, this study shows that highly distinctive 
NOTCH3cys variants, which have a frequency of 1:300 
worldwide, are an important contributor to the risk of 
stroke, lacunes, and WMHs in the elderly population.
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Figure 2. White matter hyperintensity lesion load in cases with a NOTCH3cys variant vs controls. 
Proportional bar charts showing (A) deep white matter (DWM) Fazekas scores and (B) periventricular white matter (PVWM) Fazekas scores, 
showing a higher WMH lesion load in cases vs controls. C and D, Scatterplots showing the age distribution per Fazekas score in cases vs 
controls. The cases with Fazekas DWM 3 did not have an alternative cause for their confluent deep white matter hyperintensities besides the 
NOTCH3cys variant. Of the 3 controls with Fazekas DWM 3 or PVWM 3, one had been treated with cranial radiotherapy and one had a high 
vascular risk factor burden. Horizontal black lines represent mean ages.
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