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Abstract

Background: Glaucoma is characterized by progressive loss of the visual field and death of retinal ganglion cells
(RGCs), a process that is mediated, in part, by axonal injury. However, the molecular pathomechanisms linking RGC
death and axonal injury remain largely unknown. Here, we examined these mechanisms with a cap analysis of gene
expression (CAGE), which allows the comprehensive quantification of transcription initiation across the entire
genome. We aimed to identify changes in gene expression patterns and to predict the resulting alterations in the
protein network in the early phases of axonal injury in mice.

Results: We performed optic nerve crush (ONC) in mice to model axonal injury. Two days after ONC, the retinas
were isolated, RNA was extracted, and a CAGE library was constructed and sequenced. CAGE data for ONC eyes
and sham-treated eyes was compared, revealing 180 differentially expressed genes. Among them, the Bcat1 gene,
involved in the catabolism of branched-chain amino acid transaminase, showed the largest change in expression
(log2 fold-change = 6.70). In some differentially expressed genes, alternative transcription start sites were observed
in the ONC eyes, highlighting the dynamism of transcription initiation in a state of disease. In silico pathway analysis
predicted that ATF4 was the most significant upstream regulator orchestrating pathological processes after ONC. Its
downstream candidate targets included Ddit3, which is known to induce cell death under endoplasmic reticulum
stress. In addition, a regulatory network comprising IFNG, P38 MAPK, and TP53 was predicted to be involved in the
induction of cell death.

Conclusion: Through CAGE, we have identified differentially expressed genes that may account for the link
between axonal injury and RGC death. Furthermore, an in silico pathway analysis provided a global view of
alterations in the networks of key regulators of biological pathways that presumably take place in ONC. We thus
believe that our study serves as a valuable resource to understand the molecular processes that define axonal
injury-driven RGC death.
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Background
Glaucoma, one of the leading causes of blindness worldwide
[1], is accompanied by unique progressive morphological
changes in the optic nerve head, termed “glaucomatous
optic neuropathy”. These changes are associated with
characteristic patterns of visual field defects [2]. The contri-
bution of elevated intraocular pressure (IOP) to glaucoma
development and progression is well established, and cur-
rently available treatments have focused almost entirely on
lowering IOP [3]. However, reported data have clearly dem-
onstrated that even a substantial reduction in IOP cannot
halt disease progression in many cases, which has led to in-
creased attention to IOP-independent risk factors for
glaucoma [4]. The understanding that glaucoma is a multi-
factorial disease has been solidified by strong clinical evi-
dence suggesting that high myopia [5], age [6], reduced
ocular blood flow [6], and axonal injury [7] may exacerbate
glaucoma independently of IOP. Thus, in order to improve
the management of glaucoma and mitigate the associated
risk of blindness, it is important to improve our understand-
ing of the pathologies that lead to deterioration in vision
independently of IOP.
Axonal injury, possibly related to structural changes in the

lamina cribrosa, has been proposed as an IOP-independent
factor contributing to glaucoma [8-12]. Histopathological
analysis has shown that mechanical stress on the axon bun-
dles at the optic nerve head may occur in patients with
glaucoma [13]. While such structural changes may be the
consequence of age-related degenerative processes [14-17],
factors such as ischemia [18,19], inflammation [20,21],
and oxidative stress [22,23] may also contribute. Moreover,
axonal injury has been suggested to precede visual field
defects in glaucoma patients [24]. However, little is known
about the molecular events that link the injury to the axonal
bundles and the death of RGCs (the proximal cause of
glaucoma).
One of the most effective approaches to understand the

molecular events that cause RGC death after axonal injury
is comprehensive gene expression analysis using animal
models. Most past studies that analyzed molecular events
after axonal injury to the optic nerve in animal models took
a targeted approach, in which one or, at most, a few mole-
cules were selected for characterization [25]. Conversely, re-
sults obtained through microarray analysis have provided a
list of many candidate genes that may be involved in the
death of RGCs, providing a global view of change in gene
transcription [26,27]. However, microarray analyses rely on
the hybridization of a set of known transcripts and are not
as comprehensive as sequencing-based techniques [28]. In
order to overcome this problem, we recently performed
RNA sequencing (RNA-seq) using a next-generation se-
quencer on the eyes of mice which had undergone optic
nerve crush (ONC) [29]. Profiling gene expression in these
eyes uncovered a number of differentially expressed genes
(DEGs) that may characterize ongoing biological processes
in the ONC. Nevertheless, this technique relies on the
comprehensive sequencing of random fragments of RNA
with little attention to transcription start sites (TSSs) [28].
From this perspective, cap analysis of gene expression
(CAGE) can be considered a complementary technique to
RNA-seq, as CAGE analysis depends on the construction
of full-length cDNA libraries and counting of the short tags
at the 5′ end of the transcripts [30,31]. In this way, the
distribution of TSSs and networks of gene transcription
can be studied comprehensively and quantitatively on a
genome-wide scale. CAGE analysis is more efficient than
conventional Rapid Amplification of cDNA End or EST
analysis, as high throughput is possible at a relatively low
cost [32]. The usefulness and power of this technique have
been widely recognized through its contribution to the
“Encyclopedia of DNA Elements” (ENCODE) project,
which elucidated the global distribution of promoter areas
in the human genome and the regulatory network of tran-
scription factors [33,34].
In this study, we applied CAGE analysis to retinal sam-

ples 2 days after ONC, in order to comprehensively study
changes in gene transcription at TSSs. Using CAGE data,
we attempted to determine dynamic changes in the regula-
tion of the transcriptional network mediating RGC death
after axonal injury.
Methods
Animals
Forty-six C57BL/6 mice (male, 12 weeks old; SLC,
Hamamatsu, Japan) were used in this study. The surgi-
cal procedures were performed under deep anesthesia,
which used intramuscular administration of a mixture
of ketamine (100 mg/kg) and xylazine (9 mg/kg). All
animals were maintained and handled in accordance
with the guidelines of the ARVO Statement for the Use
of Animals in Ophthalmic and Vision Research and the
guidelines from the Declaration of Helsinki. All experi-
mental procedures described in the present study were
approved by the Ethics Committee for Animal Experiments
at Tohoku University Graduate School of Medicine.
Induction of axonal injury
Axonal injury was induced by ONC as previously de-
scribed [25,35]. Briefly, the optic nerve was exposed, and
then crushed 2 mm posterior to the globe with fine for-
ceps for 10 seconds. We confirmed that retinal blood
circulation was normal with a fundus examination, and
then applied antibiotic ointment. We also performed
sham operations on a separate group of mice, in which
the procedure was similar but the optic nerve was not
crushed.
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RNA preparation
Total RNA was purified from each retinal sample as previ-
ously described [29]. Two days after surgery, the retinas
were extracted and immediately immersed in RNAlater
RNA Stabilization Reagent (Qiagen, Valencia, CA). The
retinas were then homogenized in Qiazol (Qiagen) with a
pestle homogenizer, and total RNA was extracted from the
homogenized mixture with a miRNeasy mini kit (Qiagen).
The resulting 46 individual samples (23 in each group) were
then assessed with a spectrophotometer to estimate their
total RNA concentration (NanoDrop 2000c, Thermo Scien-
tific). To prepare the RNA samples for CAGE, fixed quan-
tities of RNA were taken from six samples and combined
into a single sample, in order to minimize the influence of
individual variations in the mice [29]. The quality of these
six combined RNA samples was then assessed with an
Agilent 2100 Bioanalyzer (Agilent Technologies). The RNA
integrity number of each combined sample used for the
cDNA preparation is shown in Additional file 1.

CAGE library preparation and sequencing
A CAGE cDNA library was prepared as previously de-
scribed [36,37], with minor adaptations for the Illumina
sequencer platform [38]. Five μg of RNA from each ret-
inal sample were used to synthesize single-strand cDNA.
The cDNA was then reverse-transcribed with a random
primer N6 primer (5′-TCTNNNNNN-3′). The resulting
cDNA/RNA hybrids were oxidized with NaIO4 in order
to open the diol at the 5′ end on the cap structure, and
the diol group at the 3′ end of each RNA strand. The
derived oxidized dialdehyde of the cap site and 3′ ends
of the RNA strands were biotinylated with biotin (long
arm) hydrazide (Vector Laboratories) and treated with
RNaseONE (Promega) in order to remove the 3′ end of
each RNA strand and the biotinylated cap when cDNA
failed to reach the 5′ ends. The biotinylated 5′ end of
each RNA strand was selectively trapped with magnetic
streptavidin beads (Dynabeads MyOne Streptavidin C1
beads, Life Technologies). The captured cDNA was then
released from the beads with RNaseONE treatment, and
the single-strand cDNA was purified with Agencourt
AMPure XP (Beckman Coulter) according to the manu-
facturer’s instructions. A 5′ linker with a barcoded
sequence was ligated to the 5′ end of the cDNA. The
cDNA was purified with Agencourt AMPure XP, and
then a 3′ linker containing an Illumina adapter sequence
was ligated to it. The cDNA was again purified with
Agencourt AMPure XP, followed by treatment with
Shrimp Alkaline Phosphatase (Affymetrics) and USER
(NEB) to restrict the upper strand of the 3′ linker. Second-
strand cDNA was synthesized with a second primer consist-
ing of another Illumina adapter sequence. After Exonuclease
I (NEB) treatment, the resulting second-strand cDNA
was purified with Agencourt AMPure XP. The cDNA
concentration of the final product was determined with a
Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies).
Cluster generation of the cDNA was performed with a

cBot fluidics device and the Illumina cBot software. One
lane of the flow cell was used for sequencing with four-
color DNA Sequencing-By-Synthesis (SBS) technology
using the Illumina HiSeq 2000 (Illumina, San Diego,
CA). The sequencing run and the base call analysis were
performed according to the manufacturer's protocol with
a TruSeq SBS kit v3-HS (Illumina). After the sequencing,
raw sequence data were generated by Illumina RTA
1.12.4.2 and CASAVA-1.8.2. The sequence data were re-
corded as FASTQ files. All CAGE sequence data are
available under the accession number DRA002410.

CAGE data processing and differential expression analysis
For processing and analysis of sequenced CAGE data,
we used an integrated platform provided by the Data
Analysis Center of the Cell Innovation Program (http://
cell-innovation.nig.ac.jp). The overall workflow is shown
in Additional file 2. Primary data processing of the se-
quenced data was performed with the nAnT-iCAGE
pipeline [36]. Read alignment and sequence mapping
were performed with BWA software [39]. All sequence
reads were mapped to the reference genome (NCBI37/
mm9). The mapped data were recorded in the SAM for-
mat file, and converted to BAM files with SAMtools
[40]. The mapping quality was assessed with SAMStat
software [41]. All the processed data in the BAM files
were imported to a RECLU pipeline [42]. The RECLU is
a method of implementing clustering, differential ex-
pression analyses, and motif discovery analyses. The
core steps of the RECLU pipeline include clustering of
individual TSSs with a modified version of the Paraclu
algorithm, merging overlapping peaks in different repli-
cates and applying an irreproducible discovery analysis
(IDR) to select reproducible peaks [42-44]. In order to
apply the Paraclu methods to CAGE datasets, the
mapped reads were converted into the CAGE-defined
transcriptional start sites format. The mapped reads at
each site were counted with SAMtools. In the modified
Paraclu program, a normalized tag per million (TPM)
per base threshold was used and clusters with < 0.1
TPM per base were omitted [42]. Both the original and
modified Paraclu programs define clusters as maximal
scoring segments, found by varying a density parameter
(d) [43,45]. In this study, the stability of each cluster, de-
fined as max d/min d, was calculated with the modified
Paraclu program. If a particular segment had maximal
scoring over a large range of values for d, we considered
it to be a stable cluster [42]. The IDR is a reproducibility
criterion analogous to the false discovery rate (FDR)
[44]. We only selected clusters with an IDR < 0.1. Differ-
ential gene expression analysis was performed with the

http://cell-innovation.nig.ac.jp
http://cell-innovation.nig.ac.jp
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Bioconductor package ‘edgeR’ [46]. DEGs were defined as
having an FDR adjusted P-value < 0.05 along with absolute
fold-change > 1.5. The AMD [47], GLAM2 [48], Weeder
[49], and DREME [50] programs were used to identify
motifs [42], and the Tomtom program [51] was used to
compare standard motif representations in the JASPAR
core database [52].

Quantitative real-time PCR
Ten samples of purified RNA (n = 5 in each group) were
used in a quantitative real-time PCR (qRT-PCR) analysis.
Total RNA (200 ng per sample) from each sample was
reverse-transcribed into cDNA using SuperScript III (Invi-
trogen Life Technologies, Carlsbad, CA). QRT-PCR was
then performed with a 7500 Fast Real-Time PCR System
Figure 1 Stability and reproducibility of the biological replicates used for
in replicates 1 and 2 in both the sham (A) and ONC (C) groups. Stability is a sco
indicate high reproducibility and red dots indicate low reproducibility. The bar g
the sham (B) and ONC (D) groups. Green indicates TSS clusters with high repro
reproducibility between the replicates.
(Applied Biosystems, Foster City, CA) as previously de-
scribed [53]. For each 20 μl reaction the following were
used: 10 μl TaqMan Fast Universal PCR Master Mix (Ap-
plied Biosystems, Foster City, CA), 1 μl Taqman probe, 1 μl
template DNA, and 8 μl DEPC water. For a relative com-
parison of gene expression, we analyzed the results of the
qRT-PCR data with the comparative Ct method (2- ΔΔCT),
normalized to Gapdh, an endogenous control. All Taqman
probes used for these reactions are listed in Additional file 3.

Pathway analysis
In silico pathway analyses were performed with Ingenuity
Pathway Analysis (IPA, Ingenuity Systems, Redwood City,
CA) as previously described [29,54,55]. The DEG datasets
were uploaded to the IPA application and mapped to the
CAGE. The scatter plots show the correlation between expression values
re used for clustering reproducible TSSs in multiple replicates. Green dots
raphs represent a reproducibility evaluation for each pair of replicates in
ducibility between the replicates. Red indicates TSS clusters with low
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Ingenuity Pathways Knowledge Base (IPKB). Each gene
identifier was then mapped to its corresponding IPKB.
Duplication of genes in the DEG datasets was resolved by
selecting the gene with the maximum fold-change value
[56]. Networks of these genes were generated based on
their connectivity. The significance of the association be-
tween the datasets and biofunctions was measured as the
ratio of the number of genes from the dataset that mapped
to the pathway divided by the total number of genes in that
pathway. An upstream regulator analysis was performed to
compare DEGs in the datasets to those known to be regu-
lated by a given upstream regulator. Based on the concord-
ance between them, an activation score was assigned,
showing whether a potential transcriptional regulator was
in an “activated” (z-score ≥ 2), “inhibited” (z-score ≤ −2), or
uncertain state. The regulator effects analysis was also per-
formed with IPA, in order to discover relationships between
upstream regulators and downstream functions and dis-
eases. Only regulators and downstream functions and
diseases with P < 0.05 and |z- score| ≥ 2 were used in this
analysis. The regulator effects algorithm connects upstream
regulators, dataset molecules and downstream functions
or diseases affected in the dataset to generate a hypothesis
that can explain how the upstream regulators affect the
downstream target molecule expression and the impact of
the molecular expression on functions and diseases. The
consistency score, a measure of the causal consistency and
density of connection in a regulator effects network, was
also calculated with IPA.

Statistical analysis
Differential gene expression analysis of CAGE data was
performed with the R Bioconductor package ‘edgeR’
integrated in the RECLU pipeline, as described above. P-
values were adjusted for multiplicity with Benjamini-
Figure 2 Overall reduction in the RGC-specific transcriptome. The hor
[59]. Red: up-regulated, Blue: down-regulated. *No DEGs specific to bipolar
Hochberg correction with edgeR. Genes with adjusted
P-values < 0.05 and absolute fold-change > 1.5 were con-
sidered DEGs in the CAGE analysis.
QRT-PCR data were analyzed with the Welch’s t-test.

Statistical analysis of the qRT-PCR data was performed
with R software (version 3.1.0) [57]. The significance of
the pathway analysis was calculated with Fisher’s exact
test in the IPA application. If the P-values for qRT-PCR
and IPA were less than 0.05, the results were considered
statistically significant.

Results
Validation of the CAGE data
Previously, we obtained experimental data indicating
that RGC death starts approximately 3 days after ONC
in mice [25]. As our primary interest was to use the
CAGE data to search for therapeutic targets for RGC
preservation, we examined changes in the retina on
2 days after ONC (Day 2), in order to observe the mo-
lecular events preceding the actual death of the cells.
Total RNA was extracted from 3 independent retinal
samples, each of which was derived from 6 retinas
extracted from 6 different mice. CAGE was then per-
formed on these 3 samples. The analysis workflow for
the data derived from CAGE is well established [42]. An
outline of the process is shown in Additional file 2.
Before beginning the analysis of the CAGE data, we evalu-

ated its integrity (Additional file 1). We found that, in all
samples, at least 89.8% of the sequence data mapped to the
reference genome (NCBI37/mm9), assuring that the overall
quality of the CAGE data was high. Furthermore, the
MAPQ value, which represents the mapping quality of each
sample, was more than 30 in at least 75.3% of the mapped
data. Finally, we tested the gross consistency of the data
among biological samples by comparing pairs of expression
izontal histogram shows the number of DEGs in each retinal cell type
cells were detected in this study.



Figure 3 Validation of selected DEGs with qRT-PCR. Transcriptional changes in six selected DEGs were validated with qRT-PCR (A-F). The
graphs show the level of mRNA expression in the ONC group relative to the sham group. The average expression for sham group was normalized
as a 1.0-fold change. Values are mean ± SD (n = 5 in each group, **P < 0.01).
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data derived from each treatment group using the modified
Paraclu and the IDR program in the RECLU pipeline. The
IDR analysis was used to quantitatively measure consistency
between biological replicates and to select reproducible
signals. These analyses revealed that the expression patterns
in sets of data derived from independent samples taken
from the same group were highly similar (Figure 1), assuring
the high integrity of the CAGE datasets. Taken together, the
quality of the data thus met the reliability requirements for
downstream processing [41,58].
Comparative analysis of DEGs
After assessing the quality of the CAGE data and defining
the TSSs of our data, we used the edgeR package to perform
a differential expression analysis of the transcripts at each
TSS in the eyes subjected to ONC and the eyes that received
a sham procedure. Consequently, we identified 400 differen-
tially expressed TSSs, which included 180 annotated
(Additional file 4) and 220 unannotated TSS clusters
(Additional file 5). We further divided the 180 annotated
DEGs into 6 groups of genes based on their retinal cell



Table 1 Top 10 up- and down-regulated genes in each peak type after ONC

Gene Gene accession Log2 fold-change Adjusted P-value

Up-regulated at top peaks

Bcat1 NM_007532 6.70 7.80E-04

Sprr1a NM_009264 4.66 1.80E-23

Mmp12 NM_008605 4.36 1.70E-39

Adcyap1 NM_009625 4.27 7.10E-08

Zfp275 NM_001160229 3.88 3.50E-02

Ecel1 NM_001277925 3.60 2.00E-07

Crabp2 NM_007759 3.56 2.60E-10

Arhgef2 NM_001198911 3.53 2.40E-02

Gal NM_010253 3.49 7.60E-07

Asns NM_012055 3.44 3.50E-06

Up-regulated at bottom peaks

Sprr1a NM_009264 4.76 3.90E-31

Mmp12 NM_008605 4.14 1.80E-51

Ecel1 NM_001277925 3.74 1.60E-20

Crabp2 NM_007759 3.55 2.40E-11

Gal NM_010253 3.49 1.80E-18

Cox6a2 NM_009943 3.25 2.50E-11

Thoc7 NM_001013578 3.21 9.10E-03

Zfand2b NM_026846 3.20 2.00E-04

Tnfrsf12a NM_001161746 2.95 6.60E-06

Arhgef2 NM_001198911 2.92 3.00E-09

Down-regulated at top peaks

Gng4 NM_010317 −6.39 7.50E-03

Ak4 NM_009647 −3.45 2.50E-02

Ndufa13 NM_023312 −3.02 3.10E-02

Tusc5 NM_177709 −2.40 1.70E-04

Nrgn NM_022029 −2.20 8.00E-03

Fxyd7 NM_022007 −2.15 7.50E-12

Ctxn3 NM_001134697 −2.09 4.60E-03

Tppp3 NM_026481 −1.58 3.00E-02

Pvalb NM_013645 −1.53 1.80E-05

Sncg NM_011430 −1.46 4.60E-03

Down-regulated at bottom peaks

Scarna9 NR_028568 −2.66 3.10E-02

Tusc5 NM_177709 −2.43 9.10E-06

Cnn3 NM_028044 −2.41 8.60E-03

Fxyd7 NM_022007 −1.62 4.50E-13

Ctxn3 NM_001134697 −1.58 1.80E-04

Rasgrp2 NM_011242 −1.47 2.20E-07

Tmsb10 NM_001039392 −1.44 4.50E-05
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Table 1 Top 10 up- and down-regulated genes in each peak type after ONC (Continued)

Bcl2 NM_009741 −1.43 6.80E-03

1500009C09Rik NR_037698 −1.41 4.30E-05

Oasl1 NM_145209 −1.34 4.30E-05

Differences were considered significant with an adjusted P-value < 0.05 and |fold-change| > 1.5.
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type, i.e., RGCs, microglia, photoreceptors, amacrine cells,
horizontal cells, and bipolar cells, using published micro-
array gene expression data [59]. According to the micro-
array database, 55 of 180 DEGs were expressed more
specifically in one of the first 5 of these retinal cell types
(Additional file 6). However, no DEGs specific to bipolar
cells were detected in this study. We found that 88.9% of
the genes that were relatively specific to RGCs were down-
regulated in the ONC retinas, which was in sharp contrast
with other cell types studied (Figure 2). This pattern of
expression is, in fact, in good agreement with the expected
reduction of transcription in severely injured RGCs [60,61],
further validating the biological accuracy of the CAGE data.
Next, we determined if there were specific correlations

between the level of transcripts at a given TSS and the
level of transcripts detectable by qRT-PCR. The expres-
sion of six randomly selected highly significant DEGs
(Bcat1, Cox6a2, Crabp2, Fxyd7, Gng4 and Tppp3) was
quantified by choosing the primer pair downstream of
the TSS of interest. Conventional qRT-PCR showed a
significant difference in expression in the six genes in
the sham-treated and ONC samples (Figure 3). This
was consistent with the differential expression patterns
observed in the CAGE data.
The type of TSS could also be further classified based

on the distribution of the mapped tags forming two dif-
ferent types of clusters with sharp TATA-box-associated
promoters (top peaks) and broad CpG-associated pro-
moters (bottom peaks) ([62]) (Additional file 7). The 10
most significantly up- or down-regulated DEGs at the
top and bottom peaks are shown in Table 1. We found
that 45% of the top 10 up-regulated DEGs and 55% of
the top 10 down-regulated DEGs at either or both peaks
after ONC were also up-regulated in the RNAseq data
derived from the same model [29]. Meanwhile, 75% of
the up-regulated DEGs and 45% of the down-regulated
Table 2 Top 5 molecular and cellular biological pathways sign

Category P-va

Cell death and survival 1.99E

Cellular development 1.51E

Cellular growth and proliferation 1.51E

Cell-to-cell signaling and interaction 2.11E

Cellular function and maintenance 2.18E

Significances were calculated with Fisher’s exact test.
Differences were considered significant at the P < 0.05 level.
DEGs were also identified as DEGs in the microarray
data derived from mouse retinas 3 days after ONC, one
day later than the current study [27].
In some DEGs, we found evidence of the emergence

of alternative promoters after ONC. For example, in the
sham-treated eyes, transcription of Tnfrsf12a was almost
exclusively dependent on the TSS of exon 1 of the refer-
ence transcript (NM_013749). However, in the retinal
samples from the ONC eyes, a cryptic promoter embed-
ded around exon 2 emerged as an equally dominant TSS
(Additional file 8). We also performed a promoter data-
base search with ZENBU [63], which contains FAN-
TOM5 (Functional Annotation of Mammalian Genome
5) datasets [64]. According to ZENBU, the use of this
Tnfrsf12a promoter has been already recognized in hep-
atocyte and Schwann cells.
Furthermore, we discovered that 34 of the 220 unanno-

tated TSS clusters differentially expressed 2 days after ONC
did not have any CAGE peaks in ZENBU (Additional file 5).
These 34 TSS clusters may therefore include novel pro-
moters and/or novel long non-coding RNAs specifically
affected by axonal injury. We investigated the tissue specifi-
city of the remaining 186 unannotated TSSs registered in
ZENBU. However the database did not contain specific
expression profile data for the retina, but only for the whole
eye. According to ZENBU, 6 of the 186 unannotated TSSs
were specifically expressed in the murine eye (Additional
file 5).

In silico pathway analysis of the DEGs
An in silico pathway analysis of the bioinformatics of the
180 DEGs revealed five potential biological processes
that occurred differentially in the retinas of the ONC
and sham-treated groups. Among these processes, 42
DEGs contributing to the “Cell Death and Survival”
pathway emerged as the most significant (Table 2). Since
ificantly altered after ONC

lue Number of molecules

-09 - 7.11E-03 42

-05 - 7.11E-03 24

-05 - 7.11E-03 32

-05 - 7.11E-03 30

-05 - 7.11E-03 32
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one of our main goals was to understand the molecular
network that mediates the death of RGCs in axonal
injury, we took a deeper look into the DEGs that
contributed to this pathway (Additional file 9). Based on
the information in Additional files 4 and 9, we generated
a file that lists the DEGs in the “Cell Death and Survival”
pathways, and indicates their involvement in the “Cell
death” and “Cell survival” pathways, as well as their gene
expression changes 2 days after ONC (Additional
file 10). We found that the endoplasmic reticulum (ER)
stress-related genes Atf3, Ddit3, Egr1 and Jun [65,66],
which belong to the cell death pathway, were up-
regulated 2 days after ONC (Additional file 10). Bbc3, a
Figure 4 Predicted protein interaction networks involved in axonal injury
predicted upstream regulators (white nodes) were ATF4, IFNG, TP53, P38MAPK,
displayed to illustrate the alteration in the interaction networks after ONC. Solid
lines represent an indirect relationship. The length of a line reflects the strength
of the nodes represent the different known biological roles of each of these mo
green indicates down-regulated genes, and white indicates genes that were no
*:targets that were duplicated in the dataset.
pro-apoptotic BH3-only gene [67] was also up-regulated
(Additional file 4). Additionally, Bcl2 [68], Park7 [69]
and Serpinf1 [70], which belong to the cell survival path-
way, had altered expression 2 days after ONC: Bcl2 was
down-regulated, whereas Park7 and Serpinf1 were up-
regulated (Additional file 10).
For the purpose of selecting therapeutic targets, it is

useful to understand the hierarchy of a defined molecular
network. Therefore, we performed an additional in silico
analysis to identify the key upstream regulators that govern
these networks [71]. This analysis revealed six important
upstream regulators, each predicted to act upon different
sets of target molecules, likely mediating different biological
. Prediction of upstream regulators was performed using IPA. The
ALDH2, and ACOX1. The targets of these upstream regulators are also
lines represent a direct interaction between two genes, whereas dotted
of reported evidence supporting the node-to-node relationship. The shapes
lecules, as shown in the lower right inset. Red indicates up-regulated genes,
t annotated in these CAGE results, but that formed part of the network.
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effects (Figure 4, Table 3). Additionally, the regulator effects
analysis predicted that a regulatory network comprising
IFNG, P38 MAPK, and TP53 was involved in cellular death
(Additional file 11).
An alternative way to search for key upstream tran-

scription factors defining the pathology of ONC eyes is
to explore the dominant binding motifs embedded near
the TSS. For this purpose, we took advantage of a previ-
ously established program [51] to predict the motifs to
which the transcription factor bound. Target motifs
were recovered for each of the four patterns of quantita-
tive change in transcription (Table 4 and Additional
file 12). This information predicted that 5 transcription
factors (SP1, PAX4, RREB1, Tal1/Gata1 complex and
NFATC2) interacted with the recovered motifs and
exerted biological effects contributory to the process of
axonal injury.

Discussion
In this study, CAGE analysis was performed on retinal
RNA samples collected 2 days after the ONC procedure,
to comprehensively and quantitatively compare TSSs
scattered throughout the genome and elucidate the mo-
lecular pathomechanisms underlying the RGC death
induced by axonal injury. Through the use of a unique
analysis pipeline, our study identified a list of DEGs with
high value.
On a global level, we observed that transcription of DEGs

in the RGCs was generally depressed. This pattern of
expression change was unique to DEGs in the RGCs, as
DEGs in the other cell types (microglia, photoreceptors,
and amacrine cells) showed the opposite trend. In fact, we
were rather surprised to see up-regulation of genes specific
to photoreceptors and amacrine cells. We suspect that in-
flammatory soluble factor production may have exerted an
off-target stimulatory effect, as a paradoxical increase in ret-
inal function has been reported in the early phases of intra-
ocular inflammation [72]. Meanwhile, it was not surprising
Table 3 Predicted upstream regulators after ONC

Name Predicted
change

Activation
z-score

P-value of
overlap

Target molecules in datase

ATF4 Activated 3.14 6.10E-18 AARS, ASNS, ATF3, ATF5, BCA
SERPINF1, TNFRSF12A

IFNG Activated 2.64 2.05E-04 BCL2, CDKN1A, CEBPB, CLIC4

P38
MAPK

Activated 2.22 2.42E-06 BBC3, CDKN1A, EGR1, HMOX

TP53 Activated 2.14 6.99E-05 APBB2, ATF3, BBC3, BCL2, CD
PARK7

ALDH2 Inhibited −2.22 1.94E-07 ATF5, MTHFD2, PHGDH, PSAT

ACOX1 Inhibited −2.00 1.33E-02 CDKN1A, CSTB, DDIT3, SQSTM

Data were analyzed with Fisher’s exact test. Differences were considered significant
the likely activation states of upstream regulators based on a comparison with a m
indicates likely upstream regulators, represents the significance of the overlap betw
transcriptional regulators.
to observe the up-regulation of all 14 DEGs specifically
expressed in microglia, as these cells have an important role
in scavenging dying neurons [73]. One of these 14 DEGs,
Clic1, is involved in the production of reactive oxygen spe-
cies [74], which could be a key mediator of RGC death, as
oxidative stress is known to contribute to the pathology of
axonal injury [75]. In this study, we only examined changes
in gene expression 2 days after ONC because, unlike the
sham group, the number of RGCs significantly decreases at
later time points in ONC group, which can complicate the
direct comparison of gene expression between the two
groups. However, it has been reported that inflammation
and oxidative stress, as well as ER stress, are more activated
at later time points after axonal injury [75,76]. Therefore, it
is also important to evaluate changes in transcriptome pro-
files in these later stages, and we hope to investigate them
in a future study using a different approach.
Among the 180 DEGs, Bcat1 showed the largest expres-

sion difference (Table 1). The validity of this CAGE data
was verified with conventional qRT-PCR, which showed
that expression increased in the ONC eyes by ~16.1-fold
(Figure 3). This gene is therefore highly interesting as a
therapeutic target, but its involvement in axonal injury and
RGC death has not yet been reported. Bcat1 encodes the
enzyme branched-chain amino acid transaminase and is
the target of c-Myc. It can reportedly induce cell death by
causing the production of excessive branched-chain keto
acids through transamination [77]. It is also possible that
this gene mediates the death of the RGCs via a similar
mechanism.
Our in silico pathway analysis revealed that the “Cell

Death and Survival” pathway was the most significant
biological process in the ONC retinas (Table 2). Among
relevant DEGs, genes involved in ER stress eventually
leading to cell death, such as Atf3 and Ddit3, were up-
regulated 2 days after ONC (Additional files 4 and 10).
It has been reported that Ddit3 up-regulates mRNA ex-
pression of Bbc3, a cell death-related gene [78], and also
t

T1, CDKN1A, CEBPB, DDIT3, GARS, HERPUD1, MTHFD2, PSAT1, SARS,

, CREM, DDIT3, FCGR2B, GNAO1, MMP12, SPRR1A, TAC1

1, JUN, NEDD4

KN1A, CLIC4, CNN3, COL3A1, CSTB, HIST1H1B, HMOX1, HSP90AA1, KITLG,

1, SLC1A4

1

with a P-value < 0.05 and |z-score| ≥ 2. The activation z-score was used to infer
odel that assigns random regulation directions. The P-value overlap, which
een the dataset genes identified here and known targets of



Table 4 List of predicted motif sequences associated with axonal injury

Motif no. Consensus Foreground Background P-value Known motifs (P-value)

Up-regulated at top peaks

AMD_001 YNRNAGGTGT 21 101 2.50E-06 NA

AMD_002 CCTNDGNNNGAG 24 167 7.79E-05 NA

AMD_003 WGAGNNTTACCNS 20 91 2.65E-06 NA

AMD_005 GNNNGTGNTGATGNC 19 92 1.30E-05 NA

AMD_006 YDNWNATTCHTAGGYNA 16 102 1.61E-03 NA

AMD_007 CNNNMAGARTNNTTGNMNW 22 115 3.75E-06 NA

AMD_009 ACGNNATAYWNNNA 16 92 5.85E-04 NA

GLAM2_001 SCBCCCBCCCCYCCCCCNCCCB 34 330 2.24E-05 SP1 (5.25E-08), Pax4 (6.97E-07), RREB1 (5.84E-06)

Up-regulated at bottom peaks

AMD_003 CTGSNYNNAGA 22 128 4.80E-06 NA

AMD_004 SNYAGGWGTCATK 18 87 9.50E-06 NA

AMD_006 ATCNNNNNNBCCAM 20 106 6.28E-06 Tal1::Gata1 (3.02E-06)

AMD_009 CTGNNNNNNNNNTNNANAKANNNA 21 162 5.58E-04 NA

GLAM2_004 CCBCCYCCTCCHBHCHCCC 33 371 1.07E-04 Pax4 (1.56E-05), SP1 (2.93E-05)

Down-regulated at top peaks

AMD_002 WTCAATGAKWTACANTGWWMW 20 193 5.23E-03 NA

AMD_003 SANKWAMAMTGARAAAMAYM 23 237 3.82E-03 NA

GLAM2_005 TTCTTTYTTBTTYBTYTYYHTTTYT 30 360 8.54E-04 NA

Down-regulated at bottom peaks

GLAM2_006 AAAMATGRAAAATRANAAAAANCAMA 24 327 0 NFATC2 (6.39E-05)

DREME_001 ACTCATCTA 13 56 2.14E-06 NA

DREME_002 AAAACCACACTGTA 18 124 1.42E-06 NA

DREME_003 ATGAGTTAC 12 38 5.11E-07 NA

DREME_004 AGTTACACTGAA 14 83 1.65E-05 NA

DREME_006 TACACTGTTCTACA 12 87 5.72E-04 NA

DREME_007 ATTCGTTGG 8 22 3.70E-05 NA

DREME_008 ATATTTCA 16 99 3.37E-06 NA

DREME_009 AATGAGAAAC 14 74 5.10E-06 NA

DREME_010 TCACTAAAA 14 104 1.62E-04 NA

DREME_011 ACTGTAGGA 15 82 2.43E-06 NA

DREME_012 AAACGGGATT 10 73 2.26E-03 NA

DREME_013 HTATGAA 15 78 1.40E-06 NA

DREME_014 ATATGTTC 16 102 4.82E-06 NA

Foreground values indicate the number of occurrences of a motif sequence in DEGs after ONC.
Background values indicate the number of occurrences of a motif sequence in non-DEGs after ONC.
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down-regulates mRNA expression of Bcl2, a cell survival-
related gene [79]. Up-regulation of Bbc3 and down-
regulation of Bcl2 were confirmed in this study (Additional
file 4) and may be caused by the increased transcription of
Ddit3 and activation of ER stress as a mechanism of RGC
death after ONC.
We also found that Serpinf1 (aka Pedf ) was a cell

survival-related DEG (Additional file 10). Serpinf1 re-
portedly plays a neuroprotective role in ONC [80].
Park7 was also classified as a cell survival-related DEG
(Additional file 10). Previous reports showed that the
translated protein of Park7 increased 4 days after ONC
in rats [81] and that mutations in Park7 were associated
with Parkinson’s disease (PD) [82]. Animal models of
PD have suggested that the translated protein exerts an
anti-oxidative effect that leads to neuroprotection [83].
While the role of Park7 in the pathology of ONC is still
unclear, it is possible that a similar anti-oxidative
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mechanism may protect the RGCs from axonal injury-
induced death.
The significance of our findings was reinforced by the in

silico identification of networks of DEGs and the prediction
of the most significant upstream regulators for each net-
work, including the prediction that ATF4 was an up-stream
regulator of the ER stress pathway (Table 3). It is conceiv-
able that ATF4 could increase the transcription of ER
stress-related genes, including Aft3 and Ddit3, which may
ultimately promote RGC death [84]. We found similar up-
regulation of ER stress-related genes in RNA-seq data ob-
tained with a similar experimental design comparing ONC
and sham-treated eyes [84]. Interestingly, Bcat1 was also in-
cluded as a target of ATF4. The list of predicted upstream
regulators of altered pathways also included P38MAPK and
TP53, both implicated in RGC death after ONC [85,86].
In addition, we performed a motif discovery analysis

and determined that the SP1 (Sp1 transcription factor)
motif was differentially up-regulated at bottom peaks
(Table 4). SP1 is a zinc-finger transcription factor that
binds to GC-rich elements [87,88]. It has been reported
to regulate the transcription of damage-induced neur-
onal endopeptidase (DINE) through interaction with
ATF3, c-Jun, and STAT3 [89]. DINE is also known as
Ecel1 [90], which was up-regulated after ONC in this
study. Therefore, SP1 may be implicated in transcription
regulation after axonal injury.
Despite CAGE and RNA-seq using clearly different

quantitative methods to evaluate gene expression, we
found that they had a certain degree of commonality in
their final output when identifying DEGs. However,
CAGE did provide us with a unique insight into differ-
ences in TSSs, especially through its analysis of the
differential use of multiple promoters within a given
gene, and through the discovery of the associated DNA-
binding motifs. However, at this point, we do not know
which comprehensive gene expression database is more
useful for selecting therapeutic targets. It may be that
DEGs commonly observed in both the CAGE- and
RNA-seq-derived datasets will yield the best targets.
Nevertheless, conclusions on this point cannot be drawn
until the functional characterization of a number of can-
didate genes from both groups is completed.

Conclusions
In summary, CAGE analysis followed by in silico
molecular network analysis using retinal samples from a
mouse ONC model revealed a list of DEGs partly
matching a list previously identified with RNA-seq data
[29]. A detailed analysis of TSSs provided us with a
wealth of unique information on the differential use of
promoters and the associated DNA binding motifs. As a
next step, we aim to develop a high throughput pipeline
to enable the efficient prioritization of candidate genes,
using the current CAGE dataset to search for novel
drug targets.

Additional files

Additional file 1: Summary of mapping statistics from SAMStat
output. The pie charts show the number of sequence alignments in
various mapping quality (MAPQ) intervals and the number of unmapped
sequences. The percentage and number of alignments in each category
is given in brackets. Red indicates reads with a high mapping accuracy
(MAPQ > 30). Black indicates unmapped reads. The RNA integrity number
(RIN) of each sample is shown after the sample name.

Additional file 2: CAGE data analysis workflow. The workflow has
two phases: primary data processing followed by clustering and analysis.
During the first phase, the sequence data is evaluated for quality, filtered,
mapped, and converted to an annotation file with a nAnT-iCAGE pipeline.
During the second phase, the file is fed into the analytical pipeline, where
the analysis of differential expression and motif discovery are carried out
with the RECLU pipeline.

Additional file 3: List of Taqman probes used in this study.

Additional file 4: List of DEGs after ONC.

Additional file 5: List of unannotated TSS clusters differentially
expressed after ONC.

Additional file 6: List of expression changes in the retinal cell-
specific transcriptome.

Additional file 7: Example of top and bottom peaks of TSS clusters.
Genome Explorer views of Efemp1 and Eif1 genes are shown here,
representing TSS clusters with a top peak (A) and a bottom peak (B),
defined with a modified Paraclu program. Based on the distribution of
the mapped tags, TSS clusters show two types of structures, sharp with a
high peak (termed “top”) and broad with a low peak (termed “bottom”)
[42]. The red frame indicates a top peak. The blue frame indicates a
bottom peak.

Additional file 8: Alternative promoter usage in Tnfrsf12a gene
transcription after ONC. Genome Explorer view comparing the
distribution of mapped CAGE tags for the Tnfrsf12a gene in the ONC and
sham groups. The X-axis indicates the number of mapped CAGE tags.
Alternative promoters of Tnfrsf12a were activated at the bottom peak
after ONC (red frame).

Additional file 9: Detailed list of functions and molecules
associated with the “Cell Death and Survival” pathway after ONC.

Additional file 10: List of DEGs involved in the Cell death and Cell
survival pathways after ONC.

Additional file 11: Predicted regulators of axonal injury after ONC.

Additional file 12: DNA sequence motifs likely to regulate gene
expression changes after ONC. Logos of the most significantly up- or
down-regulated DNA sequence motifs for each TSS peak are shown. The
relative size of the letters represents their frequency in the motif
sequences.
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