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High-resolution definition of humoral immune
response correlates of effective immunity against HIV
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Abstract

Defining correlates of immunity by comprehensively interrogating
the extensive biological diversity in naturally or experimentally
protected subjects may provide insights critical for guiding the
development of effective vaccines and antibody-based therapies.
We report advances in a humoral immunoprofiling approach and
its application to elucidate hallmarks of effective HIV-1 viral
control. Systematic serological analysis for a cohort of HIV-infected
subjects with varying viral control was conducted using both a
high-resolution, high-throughput biophysical antibody profiling
approach, providing unbiased dissection of the humoral response,
along with functional antibody assays, characterizing antibody-
directed effector functions such as complement fixation and
phagocytosis that are central to protective immunity. Profiles of
subjects with varying viral control were computationally analyzed
and modeled in order to deconvolute relationships among IgG Fab
properties, Fc characteristics, and effector functions and to iden-
tify humoral correlates of potent antiviral antibody-directed
effector activity and effective viral suppression. The resulting
models reveal multifaceted and coordinated contributions of poly-
clonal antibodies to diverse antiviral responses, and suggest key
biophysical features predictive of viral control.
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Introduction

Vaccines have been a remarkable public health success, with over 60

licensed vaccines estimated to have saved millions of lives. Yet,

effective vaccines are still urgently needed for a number of devastat-

ing infectious agents. For many of these pathogens, conventional

empirical approaches have failed to yield broad protection, and

traditional measures of immunity, including antibody titers and

in vitro neutralization, have proved insufficient to predict protection.

Promisingly, the empirical processes of vaccine design used over the

past 200 years are being radically revised to leverage crucial insights

into correlates of immunity revealed by studies of naturally or exper-

imentally protected subjects using an emerging suite of systems

vaccinology approaches (Pizza et al, 2000; Pulendran, 2009;

Rappuoli & Aderem, 2011; De Gregorio & Rappuoli, 2012; Sekaly &

Pulendran, 2012). However, in contrast to transcriptional and cellu-

lar profiling tools that have yielded substantial and detailed insights

into the mechanisms underlying the induction of more effective

humoral immune responses (Querec et al, 2009; Nakaya et al, 2011;

Lin et al, 2015; Kazmin et al, 2017), the current tool kit for the evalu-

ation of vaccine-induced humoral responses remains insufficient.

Whereas there is accumulating evidence that antibody effector

functions, including complement fixation and phagocytosis, often

play a central role in protective immunity, functional antibody

assays and broad immunoprofiling approaches have been challeng-

ing to implement widely or consistently in research and develop-

ment platforms. As a result, only limited insights into correlates of

potent humoral responses can generally be made. Approaches that

may close the gap on our ability to better define humoral correlates

of immune protection could accelerate the development of more

effective therapeutics and vaccines. Thus, high-resolution and high-

throughput experimental and analytical means to profile and dissect

the extensive natural biodiversity in the humoral immune response

induced by natural infection or following vaccination have the

potential to support efficient identification of key correlates of

immunity useful for both future vaccine evaluation as well as in the

design of monoclonal antibody therapeutics. Here, we aimed to

merge comprehensive functional and biophysical antibody assess-

ments with computational analyses to develop tools to define the

minimal biomarkers that track with desirable clinical outcomes.

While several lines of evidence point to a role for cytolytic anti-

bodies in viral control of HIV (reviewed in Lewis, 2014), little is

known about the specific biophysical features of the antibodies that

drive cytolytic activity and control virus replication most effectively.

Promisingly, a minor subset of infected subjects are known to

control HIV in the absence of anti-retroviral therapy, such as HIV-1
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controllers include elite controllers (EC) with undetectable viremia,

and viremic controllers (VC) who suppress the virus to nearly non-

transmissible levels. While unique cytotoxic T-cell responses are

enriched in a fraction of controllers (Fellay et al, 2007; Kosmrlj et al,

2010), previous studies have highlighted enhanced antibody effector

function and altered subclass distribution among both long-term

non-progressive subjects (Lal et al, 1991; Baum et al, 1996; Forthal

et al, 1999; Banerjee et al, 2010; French et al, 2013; Ackerman et al,

2016) and protective vaccine recipients (Haynes et al, 2012;

Tomaras et al, 2013; Chung et al, 2014; Yates et al, 2014). Likewise,

differences in the antigen specificity of the humoral response have

also been noted in these populations (Lal et al, 1991; Hogervorst

et al, 1995; Banerjee et al, 2010; Haynes et al, 2012; French et al,

2013), suggesting the value of comprehensive IgG Fab, Fc, and func-

tional profiling to inform the identification of humoral mechanisms

of action and associative relationships to viral suppression.

Here, systematic antibody profiling of an unprecedented array of

antibody features and effector functions was conducted across a

cohort of HIV-infected subjects with varying viral control and

disease progression to deconvolute and dissect relationships among

IgG Fab-mediated antigen recognition, Fc-mediated innate immune

receptor binding characteristics, and effector functions. These rich

serological data were modeled with the objective to define the speci-

fic polyclonal humoral correlates of effective viral suppression and

of potent antiviral antibody effector activity. The resulting models

point to the multifaceted and coordinated contributions of antibod-

ies to diverse antiviral responses, and the minimal biophysical

features that predict virus control. By modeling their interactions to

define the underlying principles by which antibodies collaborate

and/or compete to dictate the overall antiviral activity of the

humoral response, we define new biomarkers associated with

antiviral antibody effector function, aviremia, and non-progression.

Results

A systems serology approach was used to comprehensively profile

antibody features and functions spanning from antigen recognition

through effector cell activation (Fig 1). We evaluated antibody

specificity across 41 different HIV protein variants, and innate

immune recruiting capacity by determining the titer, subclass, glyco-

sylation, and FccR and lectin recognition properties of these anti-

gen-specific antibodies (Appendix Table S1, Dataset EV1). These

methods were coupled to functional assays including assessments of

antibody-dependent cellular cytotoxicity (ADCC), complement depo-

sition (ADCD), neutrophil phagocytosis (ADNP), and natural killer

(NK) cell activation (NKA) as measured by CD107a, IFNc, and

MIP1b expression—antiviral activities that have correlated with

protection from infection in animal models (Barouch et al, 2013,

2015; Fouts et al, 2015; Bradley et al, 2017). Data were collected for

a blinded cohort of 200 HIV-infected subjects that included EC, VC,

and chronic progressive subjects on (treated progressor, TP) or off

(untreated progressor, UP) anti-retroviral therapy.

Given the rich data collected, a machine-learning approach was

employed to identify combinations of humoral response features

able to predict subject class and antibody effector function. Cross-

validated classifiers trained to distinguish subject groups identified

minimal sets of antibody features that accurately and robustly

discriminated among all four subject groups, between viremic and

aviremic subjects, and between controllers and progressors (Fig 2).

Subject class was determined by a class score (LOD, or log2 odds

ratio) that defined the relative likelihood of a given subject’s assign-

ment to one as compared to other classes. Differentiation across EC,

VC, TP, and UP groups was accomplished with approximately 60%

accuracy, as compared to the approximately 25% accuracy expected

at random based on class size for this four-group differentiation
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Figure 1. Serological profiling.

Systematic immune profiling was conducted to characterize humoral responses observed in HIV-infected subjects including elite controllers (EC), treated progressors (TP),
untreated progressors (UP), and viremic controllers (VC). For a set of 41 different virally encoded proteins comprised primarily of variants of envelope (gp140, gp120, gp41),
capsid (p24), and others (e.g., integrase, Nef, Vif, Rev), the Fc array was used to determine the subclass (IgG1, 2, 3, 4), ligation propensity for Fc receptor (FccR1, 2a, 2b, 3a, 3b) and
complement cascade initiating proteins (C1q andMBL), and glycosylation state (plant-derived lectins) for antibodies specific to each tested antigen. Antibody glycoformswere
assessed for total serum IgG and for gp120-specific antibodies using capillary electrophoresis to define specific glycoforms and overall levels of antibody galactosylation (G),
sialylation (S), fucosylation (F), and GlcNac bisection (B). Antibody effector functions including antibody-dependent complement deposition (ADCD), antibody-dependent
neutrophil phagocytosis (ADNP), antibody-dependent cellular cytotoxicity (ADCC), and NK cell activation (NKA), defined by expression of CD107a, MIP1b, and IFNc were
assessed using high-throughput functional assays.
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model, and as observed when scrambled study data were used as

a modeling input (Fig 2A). Approximately 75% accuracy was

observed for the two-way classifications aimed at differentiation of

subjects by progression (EC and VC versus TP and UP) or by

viremia (EC and TP versus VC and UP), as compared to the approxi-

mately 50% accuracy expected by chance, or again, observed when

study data were permuted prior to learning (Fig 2A). Confusion

matrices (Fig 2B–D), which compare actual and predicted classifi-

cations, indicated that with the exception of UPs, who could not be

confidently differentiated from TPs or VCs, most classes were

predicted well. While there was little evidence of systematic confu-

sion, among misclassified VCs and TPs, most were modeled to be

UPs, consistent with the difficulty noted in classification of this

group, and suggestive that they may have a less distinct humoral

profile as a group. Further, class score can be considered a measure

of model confidence (Fig 2B–D). Whereas in the two-way

classifications misclassified subjects often had marginal class scores,

in the four-group differentiation models, incorrect predictions were

often made confidently. For example, misclassified ECs tended to be

confidently predicted as either TPs or VCs, suggestive of the exis-

tence of some subjects with profiles that are considerably more

consistent with other classes.

Again, in comparison, models trained on permuted, that is, inten-

tionally scrambled, data failed to provide classification accuracy

beyond that expected at random based on class size (Fig 2A). Given

this indicator of model reliability, inspection of the specific antibody

features enabling robust classification has the potential to suggest

meaningful and mechanistic associations with viremia and progres-

sion (Appendix Figs S1–S3). Consistent with prior studies, differen-

tial aspects of antibody glycosylation (Ackerman et al, 2013a), FccR
ligation (Ackerman et al, 2013b), and antigen specificity and

subclass (Lal et al, 1991; Banerjee et al, 2010; French et al, 2013;
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Figure 2. Humoral profiles distinguish subject class.

A Accuracy of classification models trained using antibody profiles to distinguish across all four infected subject classes (EC, elite controller; TP, treated progressor;
UP, untreated progressor; VC, viremic controller) or between subjects with variable progression [controllers (C) defined as EC and VC versus progressors (P) defined
as TP and UP] or variable viremia [viremics (V) defined as UP and VC versus aviremics (AV) defined as EC and TP]. Accuracies observed in models (red) are compared
to the baseline expectation based on random chance (dotted line) or when classification models were constructed using permuted class labels (black). Error bars
denote standard deviation observed across 100 cross-validation folds and replicates.

B–D Confusion matrices (left) and class log2 odds scores (right) for prediction of progression (B), viremia (C), and subject class (D). In the four-class model, the class
assigned to each subject is indicated by color (EC red; TP green; UP blue; VC yellow). For (D), the plot was truncated to give |class score| ≤ 2. Box and whisker plots
denote median, minimum, maximum, and interquartile ranges.
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Ackerman et al, 2016) each contributed to successful class differen-

tiation (Dataset EV2).

This modeling approach reliably identified Fab and Fc character-

istics that were distinct among subject groups using traditional

statistical approaches. For example, while HIV infection is known to

alter the global glycosylation state of plasma IgG (Moore et al,

2005) in both the presence and absence of plasma viremia

(Ackerman et al, 2013a), this dataset offered an unprecedented

opportunity to identify IgG glycoforms that might be associated with

variable viral control or progressive infection. For example, numer-

ous bisected glycoforms contributed to the differentiation of

aviremic from viremic subjects when the glycosylation profiles of

HIV envelope-specific antibodies were used to predict viral load

status (Appendix Fig S3), suggesting a difference in the level of anti-

body bisection between groups. Indeed, aviremic subjects were

distinguished by an enrichment of envelope-specific antibodies with

bisected glycans (Fig 3A, Appendix Fig S4). Interestingly, this

distinction was a specific attribute of pathogen-directed antibodies

rather than a general feature of plasma antibodies in aviremic

subjects, as it was restricted to the envelope-specific antibody pool,

and somewhat reduced bisection was observed on total plasma IgG

in aviremic subjects relative to those with ongoing viral replication.

Whether this glycosylation state difference associated with viral

load may be a cause or effect of viremic status remains to be deter-

mined, but potential mechanistic relevance to antiviral humoral

immunity is suggested by previous studies demonstrating that anti-

bodies with bisected glycans exhibit enhanced FccR3 binding and

ADCC activity (Umana et al, 1999), a mechanistic link that was

further explored within this dataset in models of antibody function.

Analysis of the Fab specificity of features contributing to classifi-

cation of ECs but not observed in modeling viremia status

(Appendix Figs S1 and S2, and Dataset EV2) pointed toward recog-

nition of the virus capsid (p24/Gag) as a differential marker

between subjects with immune-mediated as opposed to pharmaco-

logic viral suppression. To investigate this antigenic target as

compared to other biomarkers that could distinguish ECs and TPs,

the two classes of aviremic subjects were plotted to identify dispari-

ties in the humoral response that may be associated with the mecha-

nism of viral suppression (Fig 3B). As indicated by a volcano plot of

Fc array measurements, ECs had distinctly elevated levels of capsid-

specific antibodies, consistent with previous observations in persons

with non-progressive infection (Hogervorst et al, 1995). HIV-specific

IgG2 and IgG4 response magnitudes were greater in TPs, particu-

larly among antibodies to gp41, whereas FccR-ligating antibodies to

internal HIV proteins beyond the capsid were also enriched among

ECs, perhaps as a result of variation in antigen processing, presenta-

tion, and T-cell activation in this subject group.

Thus, the profiling approach used here can serve to confirm

previously observed and identify novel aspects of the humoral

response to HIV infection that differentiate among subject groups.

Significantly, features of both antibody specificity and Fc character-

istics revealed critical compound distinctions in the humoral

responses of subjects associated with varying viral suppression,

progression, and treatment status.

Because mounting evidence points to coordination of multiple

aspects of humoral responses as superior markers of both reduced

risk of infection and durable viral control (Chung et al, 2014;

Barouch et al, 2015; Ackerman et al, 2016), we also evaluated

correlative relationships between antibody glycoforms and biophysi-

cal antibody features for each subject group (Fig 4). Balancing the

competing desires of discovery and confidence, plots depicting rela-

tionships between glycoforms and Fc Array measurements with

correlation coefficients exceeding an absolute value magnitude of

0.4 and an uncorrected P-value of 0.01, representing the top 7% of

correlations in strength and significance, were generated. Striking

differences were apparent in the coordination of the response among

groups, evidenced by distinct hub and spoke linkages. Among ECs,

who possess preserved polyfunctional responses (Ackerman et al,

2016), the IgG G1S1F glycoform was uniquely correlated with the

induction of multiple IgG3 specificities. In contrast, the G2S2F
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Figure 3. Examples of differentiating humoral response features identified by classification models.

A Level of IgG glycan bisection among HIV-specific and total plasma IgG in viremic (V) and aviremic (AV) subjects. Boxes and whiskers indicate interquartile range,
median, minimum, and maximum values. Significance in differences between groups as defined by an uncorrected two-tailed unpaired t-test is indicated as
*P < 0.05, **P < 0.005, ****P < 0.0001.

B Volcano plot characterizing the magnitude (fold change) and significance (P-value) of differences in Fc array measurements between the two types of aviremic subjects,
elite controllers (EC) versus treated progressors (TP). Fc array measurements are colored by detection reagent and antigen specificity is indicated by symbol shape.
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glycoform was uniquely and strongly associated with IgG2

responses among UP. Because individual antibody types act in the

context of immune complexes, such variance in the architecture of

humoral responses may identify global differences among respon-

ders and between responses, informing our understanding of

antibody phenotype networks and both mechanisms and biomarkers

of enhanced viral control.

We next sought to define the composite features of the humoral

immune response predictive of the potency of antibody effector

activity, employing biophysical data to develop cross-validated
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Figure 4. Key distinctions in humoral immune responses among subject groups.

Network plots of significant correlations (|r| > 0.4, P < 0.05) between IgG glycoforms and Fc array data within each subject group. Glycans are labeled and represented by pink
hexagons, with strength and direction of correlation to Fc array measurements illustrated in distance and color (positive correlations are proximal and colored in blue,
negative correlations are distal and noted in orange). Line weight and style indicate significance in uncorrected two-tailed correlation tests, where thin dotted lines represent
P < 0.05, medium dashed lines represent P < 0.01, and thick solid lines represent P < 0.001. Fc arraymeasurements are colored by detection reagent and antigen specificity is
indicated by symbol shape.
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models of each effector function (Fig 5A). Prediction accuracy, the

correlation between modeled and observed activity, was generally

as good as the degree of correlation observed between assay repli-

cates, which provides a reasonable benchmark for how well a model

might be expected to perform. In contrast, when the same modeling

strategy was applied to permuted data, random performance was

observed, again, providing confidence that the discovered relation-

ships are reliable. In all cases other than ADCD, in which equivalent

performance was observed, models trained on the complete

biophysical dataset were more accurate than models that considered

only traditional measures of antibody titer, clearly demonstrating

that qualitative evaluation of antigen-specific antibodies was impor-

tant to accurate prediction of functional potency. Despite the hetero-

geneity among subject groups, we found that for each function, a

single model could effectively predict antibody activity equally well

across as within groups (Fig 5B, Appendix Fig S5), indicating that

relationships between antibody features and antibody functions

were common across subjects, and highlighting the strength and

potential general utility of these biomarkers in predicting enhanced

antibody functionality.

This consistency suggested that the model features may bear

mechanistic significance. Qualitative assessments of the FccR bind-

ing capacity of envelope-specific antibodies were the most frequent

and strongest predictors of the cell-based functional assays (Fig 6A–

D, Appendix Fig S6). Specifically, the ability of envelope-specific

antibodies to complex FccR3 was the greatest and most frequent

contributing features to models of effector activity in NK assays.

That this effector type expresses only FccR3 suggests that this profil-

ing approach has captured subtle differences in antibody responses

that are associated with differential recruitment among homologous

FccRs. Further, consistent with expectations, C1q recognition was

the most important feature in models of complement deposition.

Subclass assessments also contributed to ADCD models, with IgG3

responses contributing to enhanced bioactivity. Contrastingly, nega-

tive contributions were observed for IgG2 and IgG4, suggesting that

these subclasses, which bind poorly to C1q, rather than benignly co-

existing, may actively disrupt and thereby reduce initiation of the

complement cascade. Evidence for interference between antibody

types has been previously suggested by both traditional correlate

and machine-learning analyses (Haynes et al, 2012; Choi et al,

2015; Ackerman et al, 2016) and experimentally supported by

depletion (Chung et al, 2014) and competition (Tomaras et al,

2013) experiments. Again, such observations point toward the value

of high-resolution assessment of multiple aspects of the humoral

response, as well as the exploration of multi-parameter modeling

approaches. Thus, even though titer-alone models performed simi-

larly well to those trained with qualitative data for ADCD, mechanis-

tically relevant insights about immune complex-driven complement

deposition, with a biological basis supported by previous studies of

monoclonal antibodies in other disease settings, were gained from

the model features. In contrast, the relatively poorer predictive

performance for ADNP suggests that additional features of antigen-

specific antibodies, yet to be captured by this platform, may be

essential to better model and dissect qualitative differences in induc-

tion of effective neutrophil responses.

Lastly, beyond even IgG subclass and FccR binding, it is well

appreciated that antibody glycosylation can dramatically impact

antibody bioactivity. For example, Fc fucosylation reduces binding

to FccR3a, thereby regulating ADCC potency (Shields et al, 2002),

whereas Fc bisection is associated with enhanced FccR3a binding

(Umana et al, 1999). Here, while we observed that IgG fucosylation

was strongly associated with neither ADCC (Figs 6E, Appendix Fig

S7) nor viremia (Appendix Fig S4) in this cohort, beyond differenti-

ating subjects on the basis of viremia, bisection of the IgG glycan

was significantly associated with ADCC activity, as were two speci-

fic, albeit rare, afucosylated glycoforms (G0B and G1). Other

A B

Figure 5. Diverse antibody activities are robustly predicted by biophysical profiling data.

A Prediction quality (correlation coefficients) of models learned from Fc array data for each antibody function and as compared to correlations observed between
biological assay replicates (red). Agreement between model predictions and experimental observations using complete Fc array data (green), only IgG subclassing data
from the Fc array (gray), and when activity values were permuted (black) are shown. The dotted line represents a baseline drawn at a correlation coefficient of 0, the
performance expected at random. Symbols and error bars represent the mean and standard deviation across experimental replicates (red, triplicates available only for
ADCC, ADCD, and ADNP) or across 100 cross-validation folds and replicates for models (green, gray, black).

B Representative scatterplot of predicted versus observed antibody-dependent expression of IFNc by NK cells for each study subject. Subjects are color coded by class
and the best fit line for each class is illustrated (EC red; TP green; UP blue; VC yellow).
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activities were more strongly correlated with different glycoforms

(Appendix Fig S7), highlighting the extent to which novel glyco-

forms may be naturally selected to drive enhanced antibody bioac-

tivity. Thus, deeper analysis of natural functional humoral

specification may be encoded within subclass and glycoform types

to adaptively direct differential effector functions.

Discussion

This work builds upon the systems serology framework recently

used in analysis of human responses to tuberculosis infection and

HIV vaccination (Chung et al, 2015; Lu et al, 2016), in an expanded

form that has supported the identification of correlates of protection

in nonhuman primate SIV/SHIV challenge studies (Barouch et al,

2015; Vaccari et al, 2016; Bradley et al, 2017), and applies this

enhanced systematic humoral profiling approach to capture the

spectrum of antigen and innate immune recognition properties of

HIV-specific antibodies induced by natural infection. Immune mark-

ers of protection represent critical biomarkers that are selectively

enriched in individuals that control or resist infection that may

guide the development of diagnostics, influence the development of

rationally designed vaccines, provide design clues for the genera-

tion of more effective monoclonal therapeutics, or simply support

the evaluation and down-selection of different vaccine products.

However, the discovery of humoral biomarkers, which have the

added advantage of being antigen-specific, has historically been

narrowed by the limited array of assays that probe the humoral
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*P < 0.05, **P < 0.01. Antibody glycan species are annotated according to the presence or absence of GlcNac bisection (B), sialylation (S), galactosylation (G), and
fucosylation (F).
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immune response. Specifically, traditional humoral correlates anal-

yses have focused on the comparison of the magnitude of the

humoral immune response to pathogen targets and in some cases

to their ability to block infection (neutralization). Yet, antibodies

have the capacity to contribute to pathogen control via a diverse

array of functions driven by their ability to recruit the innate

immune system. However, while novel platform technologies, such

as the recently described systems serology approach (Ackerman

et al, 2017), can provide a comprehensive glimpse at the broad

view of the landscape of functional responses of pathogen-specific

antibodies, approaches to specifically define minimal physical

biomarkers, which can be tailored to maximize information and

reduce experimental redundancy, which are more easily interro-

gated in validated assays, and which are associated with desirable

clinical outcomes, need to be further implemented to better define

cross-cohort, cross-regimen, and cross-pathogen principles of

protective humoral immunity. To this end, the combination of tools

that broadly probe antigen specificity, Fc receptor binding, func-

tional activity, and antibody Fc glycosylation as reported here offers

a distinct opportunity to chart the integrated Fab and Fc character-

istics that are uniquely enriched in individuals that are protected

from disease.

Already, for several vaccines, including the meningicoccal B

(Goldschneider et al, 1969) or Haemophilus influenza (Kayhty et al,

1983) vaccines, functional antibody correlates are key to predicting

protective immunity (Plotkin, 2010). However, functional antibody

assays are more variable and difficult to validate. The humoral

immune response to infection is driven by polyclonal pools of anti-

bodies that target the pathogens through swarms of antibodies that

interact with both low-affinity classical and non-classical Fc recep-

tors expressed in different combinations on all innate immune cells.

Combinatorial binding profiles then drive unique antibody effector

functions (Tomaras et al, 2013; Chung et al, 2014; Pollara et al,

2014; Choi et al, 2015; Ackerman et al, 2016). Thus, biophysical

interactions of antigen-specific antibodies with specific Fc receptors,

rather than the total levels of pathogen-specific antibodies, are likely

to provide enhanced resolution of functional antibodies that track

with protective immunity. Biophysical assays, able to provide

simple measures that go beyond antibody titer, may provide high

value for vaccine evaluation. Importantly, common Fc receptor

binding profiles were able to predict antibody functionality across

the four different groups of HIV-infected subjects, strongly arguing

that the relationships between biophysical antibody characteristics

and antibody activities are universally preserved across the groups.

Thus, it is possible to identify minimal biophysical features that

track with the functions that are selectively enriched in protected

populations. While antibody Fc modifications that increase ADCC

have been previously defined (Umana et al, 1999; Shields et al,

2002), the Fc modifications that enable selective augmentation of

ADCP and ADCD are less well characterized. Moreover, novel modi-

fications that drive additional functional responses, including the

ability of antibodies to induce dendritic cell (DC) activation or anti-

inflammatory activity, may be identified and point to additional

opportunities to develop more effective therapeutics. Thus, while

observations using this approach are necessarily only associative,

an integrated Fc-functional and deep biophysical profiling offers a

unique opportunity for the identification and development of strate-

gies that may enhance monoclonal therapeutics broadly.

Beyond Fc receptor binding, a particular antigen-specific anti-

body Fc glycosylation profile was linked with viral load. Specifi-

cally, subjects with low viral loads, including individuals who

spontaneously control HIV to undetectable levels as well as individ-

uals on anti-retroviral therapy, exhibited elevated levels of gp120-

specific antibodies with a bisecting GlcNAc, a modification that has

been actively exploited in the monoclonal therapeutics field to

enhance ADCC (Umana et al, 1999). The addition of the bisecting

GlcNAc sterically blocks the addition of core fucose, known to

profoundly impact the affinity of antibodies for FccR3a, found on

NK cells (Shields et al, 2002). Moreover, previous studies, on a

smaller group of HIV-infected individuals (Ackerman et al, 2013a),

highlighted reduced fucose levels in spontaneous controllers and

elevated bisecting GlcNAc in treated aviremic subjects, pointing to

the potentially critical role for these intertwined antibody glycosyla-

tion changes on tuning antibody effector function in the context of

HIV infection. Moreover, though this study was designed only to

assess associations, given the intimate link between the bisecting

GlcNAc and fucose on the antibody Fc domain, these data argue for

a role for an enrichment of ADCC inducing antibodies in the absence

of viremia. However, it is unclear whether ADCC actively contri-

butes to reservoir control in the absence of therapy or is selectively

enriched upon the resolution of virus-induced immune activation to

restore viral control, but this association may point to a natural anti-

body Fc modification that can be selectively generated by the

immune system during HIV infection to drive the rapid elimination

of infected cells.

While initial biomarker discovery efforts began with the charac-

terization of antibodies against a single antigen or pool of antigens,

antibodies function as immune complexes that target distinct

pathogen antigens and epitopes during infection. Here, Fc profiling

was coupled to a broader integration of Fab measures, linking the

remarkable biodiversity of the Fab and Fc in targeting a pathogen.

Interestingly, subjects in this study who successfully controlled

infection possessed antibodies targeting the structural capsid protein

p24 selectively, as has been observed previously (Hogervorst et al,

1995). While p24 is not expressed on the surface of cells, recent data

suggest that antibodies may access cytoplasmic compartments

where they may induce Fc-dependent pathogen killing via cytoplas-

mic Fc receptors such as Trim21 (Mallery et al, 2010; Foss et al,

2015). Moreover, recent work suggests that p24-specific antibodies

may be able to induce innate immune effector activities (French

et al, 2013; Tjiam et al, 2015), arguing that these antibodies may

not simply represent biomarkers associated with protective immu-

nity, but may potentially also contribute to enhanced viral control.

Thus, next-generation Fc-profiling efforts, that extend beyond anti-

gen specificity and response magnitude, may point to specific anti-

body subpopulations in protective immunity, offering further

opportunities to mine for correlates of immunity to guide vaccine

and therapeutic design.

In sum, this objective analytical approach to systematically

assess the spectrum of antibody biophysical features and innate

immune receptor interactions, integrated within a machine-learning

framework, demonstrates a novel strategy for understanding the

features of functionally potent immune responses and to identify

potentially mechanistic correlates of potent antibody effector func-

tion (Choi et al, 2015; Ackerman et al, 2016) and of antibody-

mediated protection (Barouch et al, 2015; Vaccari et al, 2016) or
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even pathology. Here, we have elucidated antibody markers of HIV

viral suppression and potent effector function, pointing toward

minimal biophysical signatures to support the analysis of future

vaccine trials. These methods move beyond antibody titering to

permit broad, yet analytically principled investigations into humoral

immunity, opening a pathway toward improved mechanistic under-

standing of vaccination and new prospects for antibody-based

prevention and therapy.

Materials and Methods

Study cohort

Two hundred plasma samples from adult HIV+ individuals,

balanced for sex, age, and protective HLA alleles were identified

from Ragon Institute HIV cohorts. The study group represented a

set of four clinical classes defined by viral load and treatment.

Chronic progressors, individuals who without combination anti-

retroviral therapy (cART) failed to control viremia, were classified

as treated (TP), or untreated (UP). The untreated group included

both ART-naive subjects and those off treatment. Long-term non-

progressors were classified as viremic controllers (VC), individuals

with an HIV viral load between 50 and 2,000 RNA copies/ml with-

out cART, and elite controllers (EC), a subset of viremic control-

lers able to maintain a plasma HIV viral load below 50 RNA

copies/ml, reflecting spontaneous suppression of HIV replication to

undetectable levels. Of these 200 samples, 19 were excluded for

technical reasons, and 181 subject samples (45 EC, 51 VC, 44 TP,

41 UP) were included in the study. The study was reviewed and

approved by the Massachusetts General Hospital Institutional

Review Board; each subject gave written informed consent, and

experiments conformed to principles defined in the WMA Declara-

tion of Helsinki and the Department of Health and Human Services

Belmont Report.

Antibody purifications

IgG was enriched, and IgA, albumin, and other prevalent plasma

proteins were depleted from each sample via Melon Gel purification

as previously described (Ackerman et al, 2016). The concentration

of IgG in each sample was determined by ELISA (Mabtech), and

samples were diluted to a consistent total IgG concentration for test-

ing in functional assays and in the Fc Array at constant concentra-

tions of total IgG. Antigen-specific antibodies were purified by

affinity chromatography as described previously to enable analysis

of glycosylation (Brown et al, 2015). Briefly, Agilent Bravo Strepta-

vidin Cartridges were loaded with approximately 50 lg of chemi-

cally biotinylated SF162 gp120 antigen and used for affinity capture.

Antigen-specific antibodies from 200 ll of plasma were captured on

the cartridges via centrifugation, washed, eluted with low pH

(100 mM sodium citrate pH 2.9), and immediately neutralized.

Effector function assays

The functional activity of HIV-specific antibodies was determined in

a number of cell-based assays (Barouch et al, 2015; Ackerman et al,

2016; Vaccari et al, 2016) (Appendix Table S1). Functional assays

were performed in triplicate, with the exception of the NK activation

assay, which was performed in duplicate. Replicates of assays

performed using primary cells or primary plasma as a source of

effectors or complement were performed across multiple donors.

Averages across replicates are reported.

ADCC

Antibody-dependent cellular cytotoxicity (ADCC) was tested using a

rapid fluorescent ADCC assay, which assesses the ability of antibod-

ies to drive primary NK cells to lyse gp120-pulsed target cells

(Gomez-Roman et al, 2006). Briefly, SF162 gp120 protein (Immune

Technology) at 60 lg/ml was used to coat CEM.NKr target cells

labeled with intracellular and membrane dyes which were then co-

cultured with NK cells enriched from healthy donor whole blood by

negative selection (Stem Cell Technologies) effectors at an E:T ratio

of 5:1. Following a 4-h incubation at 37°C and antibody at 20 lg/
ml, cells were fixed, and the proportion of lysed target cells was

determined by flow cytometric analysis of cells that were positive

for the membrane dye but negative for the intracellular dye.

ADNP

Antibody-dependent neutrophil phagocytosis (ADNP) was deter-

mined using an adaptation of a flow cytometry-based phagocytic

assay described previously (Ackerman et al, 2011; McAndrew et al,

2011). Briefly, fluorescent, streptavidin-conjugated microspheres

were coated with chemically biotinylated SF162 gp120 (Immune

Technology) for 2 h at 37°C and washed with 0.1% BSA in PBS and

opsonized with purified antibody for 30 min at 37°C. Neutrophils

were purified from healthy donor blood anti-coagulated with acid

citrate dextrose by incubation for 25 min at room temperature with

equal volume of 3% dextran-500 0.9% NaCl solution, isolating the

leukocyte layer and further purifying neutrophils by centrifugation

over Ficoll Paque Plus (GE Healthcare) at 400 g for 40 min. The

resulting pellet containing neutrophils was shock-treated with water

to remove contaminating red blood cells. Cells were resuspended in

HBSS solution without Ca2+ or Mg2+ and incubated with healthy

donor serum diluted 1:10 in Veronal buffer saline (Fisher) + 0.1%

gelatin as a source of complement and Ab-coated beads for 15 min

at 37°C. Cells were then fixed with 4% paraformaldehyde solution

and analyzed on a flow cytometer. A phagocytic score was derived

as an integrated MFI by multiplication of the fraction of neutrophils

that phagocytosed one or more opsonized beads by the MFI of this

population.

NKA

An assay to determine NK cell activation (NKA) state based on the

expression of surface CD107a and intracellular production of IFNc
and MIP1b was performed as previously described. NK cells were

isolated from whole blood from healthy donors using negative

selection with RosetteSep (STEMCELL Technologies). Following a

pulse with SF162 gp120 (60 lg/ml), T lymphoblast CEM-NKr cells

and isolated primary NK cells were mixed at a ratio of 1:5, and puri-

fied IgG, anti-CD107a-phycoerythrin (PE)-Cy5 (BD), brefeldin A

(10 mg/ml) (Sigma), and GolgiStop (BD) were added. After a 5-h

incubation at 37°C, cells were first stained for surface markers using

anti-CD16-allophycocyanin (APC)-Cy7 (BD), anti-CD56-PE-Cy7 (BD),

and anti-CD3-Alexa Fluor 700 (BD) and then stained intracellularly

with anti-IFNc-APC (BD) and anti-MIP1b-PE (BD) after treatment
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with Fix and Perm A and B solutions (Invitrogen). Cells were then

fixed in 4% paraformaldehyde and analyzed by flow cytometry. NK

cells were defined as CD3-negative and CD16-positive and/or CD56-

positive, and the percent of NK cells positive for each marker was

determined.

ADCD

The ability of donor antibodies to induce complement component

C3b deposition on gp120-coated target cells was assessed by flow

cytometry as previously described (Barouch et al, 2015). Briefly,

CEM-NKr target cells were pulsed with gp120SF162 (60 lg/ml),

then incubated with purified antibody at a concentration of

100 lg/ml, and freshly harvested HIV-negative donor plasma

diluted 1:10 with veronal buffer 0.1% gelatin as a source of comple-

ment for 20 min at 37°C. Following a wash with 15 mM EDTA in

PBS, cells were fixed and complement deposition was detected by

staining with anti-C3b-FITC (Cedarlane). The proportion of C3b-

positive cells was determined based on negative controls in which

heat-inactivated donor plasma was used.

Fc array

The quantity and qualitative features of HIV-specific antibodies

were evaluated using a custom multiplex array in which HIV-

specific antibodies were characterized according to their titer (anti-

IgG), subclass (anti-IgG 1,2,3,4), and ability to interact with innate

immune antibody FcR (FccRI, IIa, IIb, IIIa, IIIb and their major allo-

typic variants), initiators of the complement cascade (C1q and

mannose binding lectin or MBL), and plant-derived lectin proteins,

essentially as previously described (Brown et al, 2017). A diverse

panel of HIV antigens coupled to carboxylated fluorescently coded

magnetic beads (Luminex Corp.) was prepared essentially as previ-

ously described (Brown et al, 2012, 2017).

Biotinylated Fcc receptors (FccR), mannose binding lectin

(MBL), and the complement cascade initiator C1q protein were

tetramerized and utilized to characterize the Fc domains of each

antigen-specific antibody population. FccR and human MBL2 were

produced in HEK293 cells and purified via Ni++ ion affinity and size

exclusion chromatography as previously described (Boesch et al,

2014). Human C1q was purchased from Sigma (C1740). FccRs,
MBL, and C1q were minimally chemically biotinylated at a molar

ratio of 5 mols biotin per mol of protein using EZ-link sulfo-NHS-SS-

biotin (Pierce). The biotinylation reaction was carried out for 2 h at

RT in Tris pH 8.2, with a protein concentration of 0.2 mg/ml, and

free biotin was removed via buffer exchange into PBS. Lectins

(Vector Laboratories) were purchased biotinylated. Immediately

prior to use, each biotinylated detection reagent was mixed with a

1/4th molar ratio of streptavidin–PE (Prozyme) and diluted to a final

concentration of 1.0 lg/ml in assay buffer (PBS + 0.1% BSA +

0.05% Tween). Multiplexed antibody titering and subclassing were

performed as described previously (Brown et al, 2012).

A working mixture of coupled microspheres at 12.5 microspheres

per bead type, per ll, were premixed in Assay Buffer. A 40 ll
volume of the working microsphere mixture (500 beads of each

type/well) was added to 10 ll of dilute, purified antibody sample in

black, clear bottom 384-well plates (Greiner Bio One, 781906).

Following incubation for 2 h at RT on an XYZ plate shaker (IKA),

plates were washed five times with 65 ll of Assay Wash (1× PBS,

0.1% BSA, 0.5% Triton X-100) using a plate washing system

(BioTek 405). Antigen-specific antibody was detected using the

tetrameric PE-conjugated detection reagents described above, at 1.0

lg/ml, or R-phycoerythrin (PE)-conjugated anti-IgG secondary

reagents (Southern Biotech), at 0.65 lg/ml, with 50 ll/well. After

1-h incubation at room temperature on a shaker, the plate was

washed five times with 65 ll of sheath fluid (Luminex 40-75680),

and microspheres were resuspended in 40 ll of sheath fluid.

A Bio-Plex array reader (FlexMap 3D, Bio-Plex Manager 5.0,

Bio-Rad) detected the microspheres, and binding of each PE-functio-

nalized detection reagent was measured to calculate a Median Fluo-

rescence Intensity (MFI). MFI measurements for each antibody

detection reagent—antigen pair (antibody feature), were standard-

ized individually by subtracting the background signal, defined as

the average MFI observed for each antigen microsphere set when

incubated in the detector reagent in the absence of a clinical anti-

body sample, from each feature MFI value. These features were

named according to the following convention: “detection

reagent.antigen”. Appendix Table S1 provides a complete list of the

41 HIV antigens tested, comprised largely of envelope variants but

inclusive of a number of capsid variants and other viral proteins,

and the 19 detection reagents used to interrogate the Fc domain

characteristics of antigen-specific antibodies.

Glycan analysis

A capillary electrophoresis-based technique for analyzing plasma-

derived polyclonal IgG glycosylation was used to determine the rela-

tive abundance of glycan structures decorating gp120-specific and

total plasma IgG, as previously described (Mahan et al, 2015).

Briefly, glycans were released from IgG with the N-linked glycosi-

dase PNGase F, were fluorescently labeled by reductive amination

with 8-aminopyrene-1,3,6-trisulfonic acid, separated from unreacted

dye, and analyzed on an Agilent 3130XL ABI DNA sequencer. Peak

identities were determined by exoglycosidase reactions and use of

glycan standards, and the prevalence of each glycan species was

determined by peak area integration with a custom script. The

prevalence of 19 individual glycoforms and six summary glycosyla-

tion state assessments were determined (Appendix Table S1).

Summary glycosylation characteristics, such as level of galactosyla-

tion (G) and sialylation (S), and presence of absence of fucose (F) or

bisecting GlcNAc (B), were compiled by summing individual glyco-

forms. Unadjusted, two-tailed Pearson correlation coefficients,

assuming Gaussian distributions, and unadjusted, two-tailed t-tests

assuming equal variances between groups, are reported.

Data analysis and visualization

Input data are compiled in Dataset EV1 in four separate spread-

sheets (comma-separate values, csv, format): functional measure-

ments, glycan measurements, Luminex measurements for IgG

detection reagents (“titer”), and Luminex measurements for other

detection reagents (“Fc Array”). Each spreadsheet has a single row

per subject with a single column per feature.

Basic data analysis and visualization were performed using

GraphPad Prism along with in-house scripts developed for the R

statistical computing environment (2013) supported by standard R

packages caret, ggplot2, and gplots.
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Graphical networks were generated using Cytoscape (2013; Shan-

non et al, 2003), with nodes and edges programmatically generated by

an R script so as to include for each subject group just those pairs of

features having at least a weak correlation over the group’s subjects,

namely an unadjusted Pearson correlation coefficient (PCC) magni-

tude of 0.4 at an unadjusted P-value of 0.05, and assuming Gaussian

distributions. Edge colors were linearly mapped from �1 (orange) to 0

(white) to 1 (blue) and line styles set according to three different

P-value thresholds (< 0.05: thin dotted; < 0.01: medium dashed;

0.001: thick solid). Cytoscape files are provided in Dataset EV2.

Predictive modeling

While previous studies have shown that a number of different algo-

rithms can be effectively used to model antibody activities (Choi et al,

2015), for the sake of model simplicity and interpretability we

employed here generalized linear models (GLMs). GLMs encompass

statistical learning methods that model a response, here subject

classes and functional activities, in terms of weighted sums of feature

values, here Fc Array and glycan measurements, in a manner general-

izing beyond the assumption of normally distributed error as with

standard linear models (Nelder & Weddebum, 1972). Such models

can be productively complemented with regularization approaches

designed to reduce variance and redundancy and mitigate the poten-

tial for overfitting “wide” data (Hastie et al, 2009). In this study, we

performed single response linear regression to predict functional assay

data, binary logistic regression to classify subject group pairs (viremic

versus aviremic, controller versus progressor), and multinomial logis-

tic regression to classify all four subject groups (EC, VC, TP, UP).

Preprocessing

Prior to modeling, each antibody feature was independently scaled

and centered to a mean of 0 and a standard deviation of 1 as previ-

ously described (Choi et al, 2015) to facilitate interpretability of

model coefficients.

Modeling

All models were trained and evaluated using the glmnet R package

(Friedman et al, 2010) for regularized generalized linear modeling.

Glmnet systematically evaluates the effect of a regularization parame-

ter k on prediction accuracy (here misclassification error or mean-

squared regression error), in a cross-validation setting (here 10-fold).

Glmnet further allows varying an elastic net parameter a to trade off

between reducing the number of included features (Lasso L1 penalty)

and managing collinearity (ridge L2 penalty), allowing a balance

between the two (elastic net L1,L2 penalty) (Friedman et al, 2010).

The elastic net approach is particularly well suited for high-dimen-

sional datasets, where the number of features/predictors is much

greater than the number of observations and many features may be

highly correlated (Hastie et al, 2009; Friedman et al, 2010), as is the

case in this study. In order to obtain smaller feature sets driving the

models, a = 0.8 (more Lasso-like) was used for the presented results;

similar performance and feature sets were obtained with a = 0.4

(more ridge-like) and 1.0 (Lasso), suggesting good generalization.

Model training, evaluation, and selection

The glmnet modeling process was repeated 100 times, for each repli-

cate training models and evaluating their 10-fold cross-validated

prediction error over a range of k values. Glmnet’s assessment of

the impact of k enables identification of two natural choices for the

parameter: kmin, the value that achieved the minimum cross-

validated error, and k1se, the largest value of k yielding error within

one standard error of the minimum (Friedman et al, 2010). In

general, we found the performance using these two settings to be

quite similar and the features selected at k1se to be a subset of those

selected at kmin. For consistency, reported prediction accuracies

were based on kmin. In order to enable discussion of details of a

specific modeling run and a specific model, a “representative repli-

cate” for each task was selected as that obtaining median accuracy

over 100 replicates, and its “representative model” was selected as

the full glmnet model (i.e., trained on all data) at the kmin for that

replicate.

Overall evaluation and robustness

The 100 repetitions enabled assessment of the robustness of the

modeling approach, in terms of variance in prediction accuracy. To

further evaluate reliability, in terms of how well one could expect a

model to perform at random, we performed a permutation test

(Ernst, 2004), producing 100 cross-validated models learned using

the same input data and elastic net parameter, but with the response

variable randomly shuffled.

Modeling code

A single R script encapsulating all modeling steps is available in

Code EV1. The script takes the experimental data files, along with

meta information (antigen, detection reagent, and glycan grouping

information, subject classes, and coloring schemes) collected in

Dataset EV1, and produces a set of output files that are hierarchi-

cally organized by the a value for glmnet, the input data type (e.g.,

Luminex, glycan, etc.), the output data type (e.g., ADCC, four-class

subject classification, etc.), and the choice for the glmnet k parame-

ter (kmin or kmax). The output files include the coefficient path plot;

a summary of the overall performance for input data and permuted

input data; and both pdf-format plots and raw csv files for the cross-

validated performance over varying k values, predicted versus

observed values for the representative replicate, and coefficients for

the full model.

Modeling results

Complete output files for models presented (a = 0.8, kmin) are

supplied in Dataset EV3.

Data availability

Input data are compiled in Dataset EV1, and cytoscape files are

available in Dataset EV2. Model outputs are provided in Dataset

EV3, and modeling scripts are provided in Code EV1.

Expanded View for this article is available online.
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