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Summary
Background: The 2013 American College of Cardiology / American Heart Association Guidelines for 
the Treatment of Blood Cholesterol emphasize treatment based on cardiovascular risk. But finding 
time in a primary care visit to manually calculate cardiovascular risk and prescribe treatment based 
on risk is challenging. We developed an informatics-based clinical decision support tool, MayoEx-
pertAdvisor, to deliver automated cardiovascular risk scores and guideline-based treatment recom-
mendations based on patient-specific data in the electronic heath record. 
Objective: To assess the impact of our clinical decision support tool on the efficiency and accuracy 
of clinician calculation of cardiovascular risk and its effect on the delivery of guideline-consistent 
treatment recommendations.
Methods: Clinicians were asked to review the EHR records of selected patients. We evaluated the 
amount of time and the number of clicks and keystrokes needed to calculate cardiovascular risk 
and provide a treatment recommendation with and without our clinical decision support tool. We 
also compared the treatment recommendation arrived at by clinicians with and without the use of 
our tool to those recommended by the guidelines.
Results: Clinicians saved 3 minutes and 38 seconds in completing both tasks with MayoExpertAd-
visor, used 94 fewer clicks and 23 fewer key strokes, and improved accuracy from the baseline of 
60.61% to 100% for both the risk score calculation and guideline-consistent treatment recommen-
dation. 
Conclusion: Informatics solution can greatly improve the efficiency and accuracy of individualized 
treatment recommendations and have the potential to increase guideline compliance.
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1. Background And Significance
Guideline compliance for the prevention and treatment of atherosclerotic cardiovascular disease 
(ASCVD) is suboptimal, even in the highest risk patients. This was true under the Adult Treatment 
Panel III (ATP III) guidelines in 2001 [1] and seems to be continuing under the 2013 American Col-
lege of Cardiology (ACC) and the American Heart Association (AHA) guidelines [2]. This is despite 
the easy availability web-based individual cardiovascular risk score calculators such as the ACC risk 
calculator (tools.acc.org/ASCVD-Risk-Estimator/) to aid clinicians in calculating risk. To use such a 
calculator a clinician must manually enter data such as age, sex, race, blood pressure, hypertension 
history, smoking status, and cholesterol level.

One factor that may be contributing to the under treatment of high risk patients is the time and 
click burden for primary care clinicians to complete this calculation and determine the appropriate 
medication. One can presume from other observations of EHR navigation that this may be challen-
ging [3–4]. The literature also suggests that there is inadequate time in a typical visit to gather infor-
mation necessary for such a risk calculation [5–6]. Primary care also must address preventive ser-
vices and chronic disease management. The U.S. Preventive Services Task Force estimated that a 
clinician would need 7.4 hours each day just to comply with guidelines for preventive services [6]. 
Another barrier is the current state of the EHR, containing an overwhelming amount of information 
in the clinical and structured data elements, not necessarily optimized for clinician workflow [3–4]. 
Significant time is spent interacting with the EHR trying to find relevant information and complete 
clinical documentation [7–8]. Further, information overload and the presentation of data in the 
health record may increase the number of clinical errors [9–11].

In order to automate the process of calculating risk and determining appropriate treatment, and 
hopefully thus improve the prevention and treatment of ASCVD, we have developed a clinical deci-
sion support tool, MayoExpertAdvisor (MEA), that provides cardiovascular risk scores and guide-
line-based treatment recommendations based on patient-specific data in the EHR. In this study, we 
aim to show that our clinical decision support tool improves the efficiency and accuracy of clinician 
calculation of cardiovascular risk and increases the rate at which clinicians provide guideline-con-
sistent treatment recommendations.

Although similar tools to automate the delivery of cardiovascular risk scores and treatment rec-
ommendations and have been developed elsewhere [12–13], to our knowledge ours is the first to 
undergo a formal evaluation to test its effect on the efficiency and accuracy of clinician treatment 
recommendations. Additionally, our tool is likely the first to use data derived through natural lan-
guage processing (NLP) and the first to present treatment recommendations alongside supporting 
data and links to educational resources and decision aids.

2. Objectives
The objective of this study is to assess the impact of MEA on the efficiency and accuracy of clinician 
calculation of cardiovascular risk as well as MEA’s effect on the delivery of guideline-consistent 
treatment recommendations.

3. Methods

3.1 Practice Setting
The clinicians invited to participate in this study were from Employee and Community Health and 
Cardiology in Mayo Clinic, Rochester, Minnesota. Thirty-three clinicians of the eligible 262 includ-
ing 13 primary care internal medicine physicians, 4 family medicine physicians, 10 internal medi-
cine residents, and 6 cardiology nurse practitioners participated in the study.
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3.2 Patient Selection

Real patient data was used in this study to simulate MEA use in clinical practice. The patients in the 
study were selected from the Employee and Community Health population which consists of pa-
tients receiving primary care at Mayo Clinic, Rochester, MN.

We randomly selected patients who were not on the recommended dose of statin, determined by 
manual review. We looked at two groups of patients. The first group included 409 patients between 
the ages of 40 and 75 with an LDL greater than 190mg/dL and no history of ASCVD. The second 
group included 3880 diabetic patients between the ages of 40 and 75 with an LDL over 70 mg/dL or 
Non-HDL over 100 and no history of ASCVD. We selected four patients randomly from each group, 
and these 8 patients were used for the test scenarios in the study.

3.3 MEA System Description
MEA provides care recommendations that are established by care process models (CPMs) in Ask-
MayoExpert, an internal resource designed for point of care knowledge delivery. The knowledge of 
the CPMs is based on the most recent guidelines and input from subject matter experts. The CPMs 
are presented as flow-charts so that clinicians may proceed through each decision point until they 
arrive at the appropriate care recommendation. Embedded within the CPMs are risk score calcula-
tors and links to relevant patient education materials. Our CPM for the management of cholesterol 
differs only minimally from the recommendations of the 2013 ACC/AHA guidelines [2].

The clinical data needed to automate the care processes come from diverse sources including 
multiple EHR and internal specialty specific applications (▶ Figure 1). Both structured data and un-
structured data concepts are extracted from the clinical notes via natural language processing 
(NLP). In order to collect and deliver the data in one service layer, a unified data platform (UDP) 
has been developed at Mayo Clinic. The UDP serves as a composite data source that is needed to 
execute the rules for the MEA initiative.

The identification of data needed at each node in the CPMs and the clinical logic portrayed 
therein was translated into programmable logic utilizing a collaborative effort between clinicians, 
informaticians, and technologists. Using C#.NET, this logic was encoded into a rules engine.

A web service for the ACC/AHA ASCVD risk calculator is prefilled with data from the EHR to 
determine the risk for a given patient. The user interface provides a risk score when MEA is accessed 
(▶ Figure 2). The user interface also allows users to modify the data parameters in the calculator and 
see the effect on patient risk for ASCVD without affecting data in the EHR (▶ Figure 3).

Finally the system delivers individualized care recommendations based on patient-specific data 
from the EHR and the knowledge from the CPMs (▶ Figure 2). In addition to the recommended 
clinical action, the user interface also delivers automated risk score calculations and access to rel-
evant patient education materials and shared decision-making tools. MEA is integrated into the loc-
ally produced EHR in order to limit the number of applications that clinicians need to open during 
patient encounters. Mayo Clinic‘s EHR is in a general electric (GE) centricity environment. To im-
prove the user interface Mayo Clinic has developed a viewer called Synthesis that used GE web ser-
vices to retrieve data and present it to clinicians in a more intuitive format. MEA has been interfaced 
with the Synthesis thus enabling easy navigation for the clinicians to the risk score and any recom-
mendations regarding cholesterol management.

3.4 Study design and data collection
Each clinician was given a set of instructions, which asked them to look at two randomly selected 
patient records, one patient record from each group previously described. The clinicians were asked 
to calculate the ASCVD risk score and recommend treatment for each patient based on EHR review 
with or without input from MEA. The patient group for which MEA input was given was switched 
every other clinician so that time differences could not be attributed to different patient character-
istics.

Each clinician performed the assigned tasks on a computer with Morae® software (v 3.3.3, Tech-
Smith Corporation, Okemos, MI). Using Morae®, the following efficiency metrics were collected: 

Research Article

M.R. Scheitel et al.: Effect of CDS Tool on Treatment Recommendations for Cholesterol 
Management

License terms: CC-BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0)



128

© Schattauer 2017

time, number of clicks, and number of key strokes. In addition, we compared the clinicians’ ASCVD 
risk score calculations to the pre-calculated scores given by MEA and noted whether the care recom-
mendation matched the suggested care on the hyperlipidemia CPM.

3.5 Survey
A survey regarding the ASCVD risk score calculator and satisfaction withthe MEA tool were admin-
istered following the completion of the study through Morae®. The survey questions are in ▶ Table 4.

3.6 Statistics
The patient populations and data characterisics were compared using t-tests and a two-sided test 
with a significance < 0.05 on JMP® (v 10.0.0, SAS Instittue Inc, Cary, NC).

A t-test was used to compare the amount of time with and without assistance from MEA. 
ANOVA was used to compare the amount of time it took between clinician type. These tests were 
performed on SAS 9.3 (SAS Institute, Cary NC).

4. Results
The characteristics of the patient data used in this study is shown in ▶ Table 1. Because some pa-
tients were used more frequently in the study than others due to patient data changing during the 
time of the study, we confirmed that there was no selection bias by analyzing the patient data char-
acteristic and finding no statistical differences between populations.

4.1 Time spent making calculation and recommendation
Without any assistance from MEA, the clinicians spent an average of 4 minutes and 21 seconds to 
calculate the ASCVD score and a total of 5 minutes and 8 seconds to additionally determine the care 
they would recommend for the patient. Qualitatively, some clinicians took a lot of time scrolling 
through previous notes to find parameters such as blood pressure rather than looking in parts of the 
EHR with discrete data, such as looking in the vitals section. With MEA, the clinicians spent 39 sec-
onds to calculate the ASCVD score and a total of 1 minute and 31 seconds to calculate the ASCVD 
score and determine a recommendation for patient care. The clinicians saved 3 minutes and 42 sec-
onds in calculating the ASCVD score and a total of 3 minutes and 38 seconds in determining the 
recommendation. The time savings were statistically significant.

A break out summary comparing the time required to complete the tasks with and without the 
use of MEA is found in ▶ Table 2. We analyzed statistical significance across clinician types. We 
found that when clinicians did not use MEA there was statistical significance (p<0.05) in the total 
amount of time for calculation and recommendation between nurse practitioners and physician as-
sistants and all other clinicians types. There was also a statistically significant difference between the 
residents and the internal medicine physicians. However, usage of MEA resulted in no statistical dif-
ference across clinician types.

4.3 Efficiency of clicks and key strokes making calculation and recom-
mendation

Without any assistance from MEA, clinicians have to go through the EHR clicking on multiple tabs 
in order to find relevant data. The quantiative nature of this time and click burden and the signifi-
cantly improved the efficiency of this process is shown in ▶ Table 3.
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4.4 Accuracy of calculation and recommendation

The clinicians were found to have a 60.61% accuracy of ASCVD risk score calculation and 60.61% 
accuracy in selecting the guideline recommended statin treatment without MEA. The clinicians had 
a 100% accuracy of ASCVD risk score calculation and 100% accuracy in selecting the guideline rec-
ommended statin treatment with the use of MEA. The gold-standard for ASCVD risk score and 
guideline-recommended treatment was the MEA output which was verified by the study team to en-
sure accuracy. There was no statistical difference in accuracy by type of clinician.

The most frequent errors that clinicians made in calculating the ASCVD risk score were not 
using the most recent blood pressure (41.7%) and incorrectly determining whether the patient was 
being treated for hypertension (33.3%). Clinicians also inputted the wrong gender, age, and smoking 
status.

4.5 Survey Results
Of the clinicians surveyed, 51.5% indicated they calculate ASCVD risk most of the time or always, 
and 27.3% indicated that a high 30 year risk score may affect initiating treatment. Fewer than half of 
the clinicians used the risk calculator to encourage patients to quit smoking (45.4%) and lower 
blood pressure or cholesterol (46.8%). The questions and results regarding clinician perception of 
ASCVD risk score utility and general satisfaction with MEA are given in ▶ Table 4.

5. Discussion
In this study we observed not only significant savings in time and efficiency, but also marked im-
provement in the overall accuracy for a clinician to calculate an ASCVD risk score and determine 
appropriate cholesterol treatment using MEA. Clinicians saved 3 minutes and 38 seconds in com-
pleting both tasks with MEA, were more efficient with 94 fewer clicks and 23 fewer key strokes with 
MEA, and improved accuracy from the baseline of 60.61% for both the risk score calculation and 
treatment recommendation. On average, there are 62 patients not on optimal cholesterol treatment 
seen in the Mayo Clinic primary care practice each day. If time savings is estimated only based on 
patients who need treatment, MEA would save the practice 3 hours and 45 minutes each day – ap-
proximately one half day of clinician time.

Providing care to patients in a timely and accurate manner is challenging when there is an over-
load of information [10]. We observed the types and frequency of errors that can occur with manual 
entry into a calculator, i.e. almost 40% of calculations were erroneous due to input of wrong infor-
mation. For example, clinicians sometimes selected the wrong blood pressure reading from the 
EHR, or missed that a patient was on anti-hypertensive treatment, and thus chose the wrong field in 
the ACC risk score. With this knowledge delivery solution, data can be extracted automatically from 
the EHR and can populate the ACC risk score calculator to help clinicians deliver individualized 
treatment recommendations for patients with elevated cardiovascular risk. Only 15% of the clini-
cians in this study indicated that they always will calculate a patient’s ASCVD risk score and this 
suggests that technology can have an integral role in ensuring consistent and accurate delivery of in-
dividualized recommendations.

One of the challenges in delivering electronic knowledge recommendations from clinical guide-
lines has been ensuring it fits the clinician’s workflow [14]. Even though we have not yet evaluated 
MEA in clinical practice, the brief survey at the end of our encounter suggested a positive perception 
of the user interface and design (▶ Table 4). Further analysis of clincian satisfaction will be needed 
when MEA is implemented in practice.

An important limitation of this study is that this was conducted in a simulated clinical environ-
ment. Clinicians searched the EHR for evidence of smoking, race, etc. in calculating the ASCVD 
score, but in a true patient encounter, the clinician would have some of this information upon his-
tory taking and clinicians typically know patients’ medical histories reducing the amount of infor-
mation that needs to be looked up. However, a clinical environment is also prone to more distrac-
tions and interruptions. Another limitation is small sample size. However, the objectively large time 
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saving and statistical significance of these findings suggest broad applicability. Further MEA is cur-
rently only integrated useI n Mayo’s internally produced EHR viewer Synthesis. Moreover, there are 
plans to integrate MEA in Cerner for other Mayo Clinic sites, and to EPIC as Mayo transitions to 
this EHR.

6. Conclusion
Our study demonstrates opportunity for electronic knowledge delivery solutions to improve effi-
ciency by decreasing the amount of time and the number of clicks for information retrieval required 
for individualized risk calculation and to increase the accuracy in the delivery of guideline-consist-
ent treatment recommendations for reduction of cardiovascular risk by primary care clinicians.

Multiple Choice Questions
Clinical Decision Support Systems:
a) Can improve accuracy of calculation of individual risk scores
b) Can improve efficiency of clinicians by automating the task of manually entering data into scor-

ing tools
c) Support clinician decision making, but allow clinicians to use their own judgments
d) All of the above

American College of Cardiology/American Heart Association atherosclerotic cardiovascular disease 
risk calculator includes which of the following:
a) Presence of diabetes mellitus
b) Systolic blood pressure
c) Smoking status
d) All of the above

Clinical Relevance Statement
The current study demonstrates significant time savings and potential improvement in guideline 
compliance for the treatment of cholesterol by primary care clinicians. Further development of 
clinical decisional support tools, such as MEA, have the potential to save time and to improve care 
in concordance with best practice, evidence based guidelines for more complex clinical issues.
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Fig. 1 Architecture Diagram of MEA System
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Fig. 2 MayoExpertAdvisor User Interface: Interface includes care recommendation, risk score, and relevant patient data.
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Fig. 3 Risk Calculator Interface: Risk calculator pulls data from EHR and allows the user to do “what if” scenarios without affecting the data in the 
EHR.
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Table 1 Characteristics of patient data used with and without MEA

Patient Characteristic

Mean Number of medications (SD)

Document Count

Appointment Count

Hospital Days

Height Count

Weight Count

Pulse Count

BP Count

Lab Count

No MEA

7.7 (4.9)

170.3 (95.5)

40.1 (22.2)

0.1 (0.3)

4.8 (2.0)

8.3 (5.1)

10.8 (7.7)

11.5 (8.7)

112.6 (89.6)

MEA

8.2 (5.4)

172.4 (91.6)

40.3 (22.0)

0.1 (0.33)

4.8 (2.0)

8.4 (5.0)

10.7 (7.6)

11.5 (8.5)

110.1 (88.0)

p value

0.61

0.93

0.98

0.71

0.9

0.98

0.98

0.97

0.93

Table 2 Amount of Time to Complete Tasks

Clinician 
Type

All Clinicians
(N=33)

CNP/PA
(N=6)

Resident
(N=10)

Staff-Family 
Medicine
(N=4)

Staff-Internal 
Medicine
(N=13)

Task

ASCVD Calculation

Total Time for 
 Recommendation

ASCVD Calculation

Total Time for 
 Recommendation

ASCVD Calculation

Total Time for 
 Recommendation

ASCVD Calculation

Total Time for 
 Recommendation

ASCVD Calculation

Total Time for 
 Recommendation

No MEA
(in sec)

Mean (STD)

261(75)

308(101)

342(93)

437(129)

197(33)

230(53)

286(66)

314(68)

266(49)

307 (59)

Min

144

155

193

250

144

155

196

235

182

219

Max

465

611

465

611

252

317

348

391

336

420

With MEA
(in sec)

Mean (STD)

37(19)

91(33)

31(8)

93(17)

29(7)

77(29)

38(13)

97(38)

50(24)

98(40)

Min

16

49

19

77

20

37

24

60

16

49

Max

80

173

43

126

47

105

46

137

88

173

|∆ 
Time|Mean
(STD)

222(74)

218(98)

310(92)

343(115)

168(35)

153(71)

248(66)

216(32)

216(50)

210(67)

Pr > |t|

<0.0001

<0.0001

0.0004

0.0008

<0.0001

<0.0001

0.0049

0.0009

<0.0001

<0.0001

Table 3 Efficiency Metrics

Clinician Type

Clicks (N=24)

Key strokes (N=24)

Task

ASCVD Calculation

Total for Recommendation

ASCVD Calculation

Total for Recommendation

Mean Number (Standard Deviation)

No MEA

88 (67)

101 (85)

25 (36)

27 (38)

With MEA

1.2 (1.0)

6.6 (4.1)

1.5 (4.2)

5.2 (4.8)

|∆|

87 (67)

94 (84)

24 (37)

22 (40)

Pr > |t|

<0.0001

<0.0001

0.0046

0.0132
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Table 4 Survey of providers perception on ASCVD risk score utility

Survey of providers perception on ASCVD 
risk score utility and MEA prototype 

1. How often would you calculate the ASCVD risk 
score for a given patient if it were not pre-calcu-
lated for you?

2. Would a high 30 year risk score (>30%) in-
fluence your likelihood of initiating statin therapy 
if a patient‘s 10 year risk score is low? Note that 
the 30 year risk score applies to patients ages 
20–59 years.

3. Do you use the ASCVD risk score calculator to 
encourage patients to quit smoking?

4. Do you use the ASCVD risk score calculator to 
encourage patients to lower blood pressure and 
cholesterol through exercise?

5. I am able to trust the pre-calculated risk scores.

6. I am able to trust the care recommendation.

7. The care recommendations displayed on the In-
dividualized Knowledge Page (IKP/MEA) are easy 
to understand.

8. The layout of the information is logically organ-
ized for providing patient care.

Always

15.1%

0.0%

15.1%

18.7%

71.9%

59.4%

75.8%

69.7%

Most of
the Time

36.4%

27.3%

30.3%

28.1%

25.0%

25.0%

18.2%

24.2%

Sometimes

36.4%

55.6%

27.3%

31.2%

3.1%

12.5%

6.1%

6.1%

Rarely

12.1%

18.2%

18.2%

15.6%

0.0%

0.0%

0.0%

0.0%

Never

0.0%

0.0%

9.1%

6.2%

0.0%

3.1%

0.0%

0.0%
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