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Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ
responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain
expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2EI for compounds
such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2EI is also
related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase
CYP2EL1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2EI are induced.
Finally, we describe the relation of CYP2EI in brain disorders, including the behavioral relations for alcohol consumption via

CYP2El metabolism.

1. Introduction

The most important determinant in the persistence, bioavail-
ability, and subsequent toxicity of a xenobiotic in the organ-
ism is the capacity to be metabolized and excreted [1]. The
brain is a heterogeneous organ in which each region and
cell type has a different metabolic capacity and therefore a
selective cellular answer to different xenobiotics [2]. Xenobi-
otics are substrates of two different, general reactions through
their biotransformation. In phase I reactions, a polar reactive
group is introduced into the molecule. This type of reaction
includes oxidations (cytochrome P450, monoamine oxidase,
alcohol dehydrogenase, etc.), reductions (carbonyl reduction,
sulfoxide reduction, quinone reduction, etc.), and hydrolysis
(esterases, peptidases, etc.). After the polar group is aggre-
gated, these compounds are the target for a second type of

reaction: phase II reactions [1]. These conjugation enzymes
include sulfotransferases, UDP glucuronosyltransferase, and
glutathione S-transferase. These enzymes aggregate heavy
substituents, like sugars, sulfates, or amino acids. These
substituents enhance xenobiotic solubility and facilitate its
elimination outside the body. Even though this biotrans-
formation precedes detoxication, reactive intermediaries are
formed and result in more harmful compounds than the orig-
inal. These compounds are called bioactive compounds. This
activation or bioactivation is the initial event for alot of chem-
ically induced toxicity [3]. The metabolism of endogenous
compounds and 90% of exogenous drugs currently in use
are governed by the highly polymorphic enzyme, cytochrome
P450 (CYP450) [4]. Specifically, CYP2E1 has been implicated
in different brain pathologies, possibly due to its role as a drug
metabolism or activator enzyme.
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2. CYP450 in the Brain

CYP450 is a group of enzymes found in microsomal pro-
tein fractions with monooxygenase activity, principally in
the mitochondrion [5]. CYP450 exerts its actions by three
catalytic enzymatic reactions. The first catalytic activity of
CYP enzymes is the activity as a monooxygenase, activating
molecular oxygen with electrons from NADPH via NADPH-
CYP450 reductase and inserting one atom of molecular oxy-
gen into the substrate, followed by a second catalytic activity,
commonly referred as an oxidase activity. This involves elec-
tron transfer from reduced CYP450 to molecular oxygen with
the formation of a radical superoxide anion and hydrogen
peroxide. The third catalytic activity of the P450 system,
known as reductase activity, involves direct electron trans-
fer to reducible substrates such as quinones and proceeds
under anaerobic conditions [6]. CYP450 phase I enzymes
are involved in the oxidation or deactivation of endogen
and exogenous compounds such as hormones, fatty acids,
drugs, and toxins present in the environment and in the
diet [7]. CYP450s are principally present in the liver, adrenal
cortex, kidney, and lungs and in fewer concentrations in the
brain, which represents 1% of the concentration found in
the liver [8-10]. CYP450s are present in the brain in many
different subcellular membrane compartments, including the
plasma membrane, endoplasmic reticulum, Golgi apparatus,
peroxisomes, lysosomes, and mitochondria [11-14]. Specially
CYPI1AL, CYP2Bl1, CYP2D6, and CYP2E1 have been found
in significant amounts in other cell compartments, particu-
larly within the mitochondria of different species including
humans [15].

Brain regions vary in composition, density, and cellular
type. As expected, the CYP450 brain localization is hetero-
geneous and its levels vary in different brain regions for
the distinct 1, 2, and 3 subfamilies [16]. The most relevant
enzymes present in the brain are CYP1B1, CYP2D6, CYP2E],
CYP2J2, CYP2Ul, and CYP46A1 [17], with heterogeneous
distributions in different brain areas. The dura mater has a
different composition from other brain structures, with high
levels of CYP1BI and a lesser expression of CYP1AI, AYP2U]I,
CYP3A5, CYP2RI, CYP2D6, and CYP46A1 [17]. CYP450
participates in the metabolism of different compounds in the
brain such as drugs; antidepressants; antipsychotics; neuro-
toxins, like ethanol, nicotine, organophosphorus pesticides,
and so forth; and endogen compounds, like fatty acids,
steroids, and neurotransmitters. CYP450 families 1A, B,
2B, C, D, E, and 3A participate in the xenobiotic brain
transformation [16, 18]. In humans, the expression of different
types of CYP450 in the brain is as follows: CYP1Al in mesen-
cephalon, cortical structures, basal ganglia, and cerebellum
[19]; CYP3A5 is expressed in the pituitary gland [20]; CYP1B1
is localized in the cell nucleus or in the temporal lobule
and putamen [19, 21]; CYP2B6 is expressed in high levels in
the cerebellum, basal ganglia, and at lesser levels in cortical
regions and the hippocampus. CYP2C13 is expressed in
a homogenous way in regions such as the basal ganglia,
cortex, hippocampus, and the olfactory bulb. The presence of
CYP2D6 is high in the cerebellum, the hippocampus, and
the cortex. The European Bioinformatics Institute Expression
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Atlas indicates, in general, that CYP450 expression is higher
in the liver than in the brain. The expression of CYP46Al,
which is highly expressed in the brain and has null expression
in the liver, is interesting. CYP1B1 and CYP2UI are expressed
twice as much in the brain than in the liver. The expression of
CYP1A, CYP2C8, CYP2C19, CYP3A4, CYP3A5, and CYP2ElL
seems to be negligible in the human brain [22].

CYP450 has been principally reported in some neurons
and sometimes in glial cells [7]. CYP1BI has been identified in
microvessels and has an emphasized role of quantitative
importance in the brain blood barrier (BBB) [23]. CYP1B1
and CYP2UI1 transcripts were mainly detected in brain
microvessels, whereas no other CYP proteins were detected
[22]. BBB expressed different CYP450 isoforms in high
levels, forming a metabolic barrier, regulating the blood flow,
compound flow, and signal during inflammation. In neurons,
CYP450 has other functions: in regions, such as the hypotha-
lamus, the hippocampus, and the striatum, it provides signal-
ing molecules (steroids and fatty acids) for maintenance of
neuronal extension [24]. CYP450s are induced by the pres-
ence of xenobiotics such as nicotine, ethanol, acetone, and
phenobarbital [25]. CYP2EI is a metabolic enzyme, but its
expression and activity in the Central Nervous System (CNS)
is not completely understood. An altered expression has been
observed in normal physiology and pathology of the CNS and
other human tissues.

3. CYP2EI1 in the Brain

CYP2EI is an enzyme that particularly participates in the
metabolism of endogenous substrates, including acetone
and fatty acids (abundant in the brain) [26] and exoge-
nous compounds such as anesthetics, ethanol, nicotine,
acetaminophen, acetone, aspartame, chloroform, chlorzox-
azone, tetrachloride, and some antiepileptic drugs like phe-
nobarbital. CYP2E1 can also activate toxic compounds and
procarcinogens found in tobacco smoke and nitrosamine
compounds [26-33]. CYP2E] has an important player in the
microsomal ethanol oxidizing system (MEOS). After chronic
ethanol consumption, the activity of the MEOS increases,
with an associated rise in cytochrome P450, especially
CYP2EL and the proliferation of the smooth endoplasmic
reticulum (SER) [34]. Excessive alcohol consumption induces
an endoplasmic reticulum (ER) stress response, a condition
under which unfolded/misfolded protein accumulates in the
ER, contributing to alcoholic disorders of major organs such
as the liver, pancreas, heart, and brain [35].

CYP2EI has been founded in significant amounts in
different cell compartments, including the endoplasmic retic-
ulum, the plasma membrane, and the Golgi apparatus [36].
CYP2EI is highly expressed in rat brain mitochondria [12].
CYP2E]1 targeting to the correct subcellular compartment
requires only one type of signal. Proteins targeted to the
endoplasmic reticulum, the Golgi apparatus, and the plasma
membrane, as well as secreted proteins, are first targeted to
the endoplasmic reticulum through a SRP dependent mech-
anism. In contrast, mitochondrial targeting is mostly a post-
translational event which requires protein translocation to
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the mitochondrial matrix by the outer and inner membrane
transporters [15].

Even though most of the studies have indicated that levels
CYP2El mRNA and protein in rat brains are extremely low,
both were detected in the olfactory lobe [37-40], in the
neurons of the cortex, cerebellum, and hippocampus, mainly
in the microsomal fraction [41]. CYP2EI protein levels in
rat brains were reported to be 25% that of liver levels
[42]. Studies of rat brains describe a constitutive CYP2E1
expression in pyramidal neurons of the frontal cortex, cortical
astrocytes, the polymorphic cell layer in the hippocampus,
the olfactory lobe, and endothelial cells, but not in the granule
cells of the dentate gyrus nor in the Purkinje cells of the
cerebellum [11, 43]. In cerebral blood vessels, CYP2EI is
associated with astrocytic end-feet [41, 43, 44]. In contrast,
other studies demonstrate higher CYP2E1 protein levels in
the cerebellum and olfactory bulb compared to other regions
of the rat brain [42, 45, 46]. The olfactory lobes exhibit the
highest CYP2EI protein expression and catalytic activity in
control rats [30, 47]. CYP2EI protein expression is founded
[23, 41, 47]. Human brain mRNA CYP2EI expression is
detected in all the brain regions examined, principally in the
neurons of the cortex, cerebellum, and hippocampus. The
red nucleus and substantia nigra exhibit lower levels of
CYP2El mRNA compared to other regions [41, 48]. Human
CYP2EI protein expression was detected in the brains of non-
alcoholic nonsmokers in granular cells of the dentate gyrus,
pyramidal cells of the hippocampus, and pyramidal neurons
of the frontal cortex. CYP2EI protein expression in the saline-
treated brains of monkeys resembles the CYP2EI1 distribu-
tion in the brains of nonalcoholic nonsmokers, suggesting
significant differences in expression between rodent and
primate brains [49]. CYP2E1 mRNA is also found in the eye,
specifically in the human retinal pigment epithelium [50].
In human prenatal cephalic tissues, CYP2E1 mRNA, protein,
and enzymatic activity were documented during the first
and second trimesters of pregnancy [51,52]. Glial and
neuronal cell cultures exhibit a higher activity of CYP2E1
compared with the liver CYP2EI enzyme [53].

The protein, mRNA, and catalytic CYP2EI1 is detected in
rodents, human, and nonhuman primates (Table 1). In all
cases the presence in regions is specifically cellular depen-
dent. These findings support the fact that the different brain’s
needs depend on the cell and region and tell us about the
vulnerability or the efficacy metabolism in different regions
to different compounds substrate of CYP2EL

4. Protein, mRNA, and Activity Modulation of
CYP2EI1 in the Brain

A varjety of heterocyclic compounds such as imidazole,
pyrazole, 4-methylpyrazole, thiazole, isoniazid, solvents such
as dimethyl sulfoxide, various alcohols, benzene, and acetone
have been shown to elevate CYP2EI levels [54]. In the same
way as with many pathophysiological conditions, such as obe-
sity, diabetes, fasting, and cancer, nonalcoholic steatohepatitis
CYP2EI1 expression is elevated [26, 30, 55-58].

Initially observed with ethanol, a substrate of CYP2EI,
many of the substrates of CYP2EI can induce their own
metabolism and elevate CYP2EI expression. CYP2E1 induc-
tion by ethanol contributes to an increase in the ethanol
metabolism observed in alcoholics (Figure 1) [28, 57],
whereas the major ethanol metabolizing enzyme in the liver
is alcohol dehydrogenase I (ADH) [2], which is not found in
the brain [34]. Ethanol metabolism oxidation to acetaldehyde
occurs in the brain [59].

Several studies have evaluated the effects of ethanol over
the CYP2E1 protein, mRNA levels, and activity. In the rat
brain, ethanol treatment (3.0 g/kg, 30 days) regions such as
the cerebellum, hippocampus and the brainstem are cellular
specific induction of CYP2EI protein and activity by ethanol,
accompanied by ethanol-induced reactive oxygen species
(ROS) generation and neuronal degeneration [60]. Other
studies report that ethanol treatment (3.0 g/kg, 7 days) in rats
significantly increases CYP2EI1 levels in the olfactory bulbs,
the frontal cortex, the hippocampus, and the cerebellum
[11, 61]. Rats pretreated with ethanol, pyrazole, or acetone
have increased microsomal CYP2E1 brain activity. Ethanol
treatment (0.8 mL/kg, one day) increases the levels of mRNA
expression and activity in the cerebellum and hippocampus,
and there is a relatively small increase in the olfactory lobes
but no significant change in other brain regions. In the
same study, in vitro assay using CYP2EI inhibitors (dimethyl
sulfoxide, dimethylformamide, hexane, and diallyl disulfide)
show an inhibited N-nitrosodimethylamine (NDMA) activ-
ity that indicates that, like the liver, NDMA-activity in rat
brains is catalyzed by CYP2EI1 [46]. In cortical glial cultures,
low concentrations of ethanol cause increased activity of
CYP2EL [40]. In the human ARPE-19 retinal epithelium
pigment cell line, exposure to ethanol augmented CYP2EIL
mRNA and CYP2E] protein activity, accompanied with the
formation of ROS in an alcohol dependent manner [50]. This
demonstrates that chronic alcohol ingestion could enhance
the sensitivity of certain regions of the brain to neurodegen-
eration induced by these substances or by other exogenous
compounds.

Tobacco smoke has been shown to have greater ethanol
metabolism rates and to induce the ethanol metabolizing
enzyme CYP2E] in animals and humans [62-65]. Nicotine
treatment (1.0 mg/kg, 7 days) increases CYP2E1 levels in
olfactory bulbs, the frontal cortex, cerebellum, and brainstem.
This induction is cell type specific in the rat brain [11].
Chronic nicotine treatment increases CYP2E1 in the rat brain.
On the other hand, chronic 7-day (1 mg/kg, 7 days, s.c.) treat-
ment increases CYP2EL] in the frontal cortex, hippocampus,
and cerebellum, returning to basal levels 24 h after the last
injection. In contrast, acute nicotine treatment only induces
CYP2El1 levels in the cerebellum [44]. Chronic nicotine treat-
ment (average 0.6 mg/kg, 22 days, similar to the average daily
amount received by a smoker) induces CYP2E1 expression
in the pyramidal neurons in the frontal cortex and in the
Purkinje cells in the cerebellum. The expression pattern in
monkey brains following a chronic nicotine treatment is
similar to that of smokers, suggesting that nicotine may be
the primary component in cigarettes that induce CYP2EIL
[44]. After ethanol treatment, the CYP2EI protein and mRNA
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TaBLE 1: CYP2EI brain distribution in rat, human, and monkey brains.
Species Region CYP2ElL Detection method Reference
RNA o RT—P.CI.Q | (37]
Olfactory lobe . in situ hybridization [45]
Protein Western blot [39, 40, 43]
Activity HPLC chlorzoxazone method [45,152]
mRNA In situ hybridization [45]
Cortex Protein Immunohistochemistry (11, 43]
Activity HPLC chlorzoxazone method [45,152]
Rat mRNA In situ hybridization [41]
Hippocampus Protein Immunohistochemistry (11, 38]
Activity HPLC chlorzoxazone method [40, 41]
mRNA In situ hybridization [45]
Cerebellum Protein Immunohistochemistry [11, 43]
Activity HPLC chlorzoxazone method [45,152]
Stri mRNA In situ hybridization [45]
triatum
Activity HPLC chlorzoxazone method [45,152]
Thalamus mRNA In situ hybridization [45]
Protein Immunohistochemistry [11]
Cortex mRNA In situ hybridization, PCR [41, 48]
Activity HPLC chlorzoxazone method [41]
Protein Immunohistochemistry [11]
Cerebellum mRNA In situ hybridization, PCR [41, 48]
Activity HPLC chlorzoxazone method [41]
Protein Immunohistochemistry [11]
Human Hippocampus mRNA In situ hybridization [41]
Activity HPLC chlorzoxazone method [41]
Eye mRNA RT-PCR (50]
Pons mRNA PCR (48]
Activity HPLC chlorzoxazone method [41]
Substantia nigra mRNA PCR [48]
Striatum Activity HPLC chlorzoxazone method [41]
Thalamus Activity HPLC chlorzoxazone method [41]
Protein Western blot [49]
Human prenatal brain mRNA RT-PCR [49]
Activity HPLC nitrophenol method [49]
Cerebellum Protein Immunohistochemistry [44]
Monkey . Cortex Prote?n Immunoh?stochem?stry [44]
Hippocampus Protein Immunohistochemistry [44]
Substantia nigra Protein Immunohistochemistry [44]

ethanol induction exhibit greater magnitudes in the neuronal
cells than in glial cells [53], and human neuroblastoma IMR-
32 cells show a higher nicotine induced CYP2EI expression
[11]. Humans exposed to nicotine, smokers, and patients
receiving nicotine treatments (patients with Alzheimer’s
disease, Parkinsons disease, or ulcerative colitis) may have
altered CYP2E1 levels and activity, mediated metabolism
of drugs and toxins, and altered toxicity generated by the
CYP2E1 metabolism [44].

From 80 to 95% of alcoholic smokers, compared with
25-30% of nonalcoholic smokers, consume twice as much

alcohol as nonsmokers [64]. Following this line, consis-
tent nicotine administration to rats increases their self-
administration of ethanol [65]. Nicotine pretreatment of rats
increases voluntary ethanol intake compared to saline
pretreatment and enhanced CYP2E1 levels correlate with
enhanced alcohol consummation after ten days. Hence,
chronic nicotine exposure increases voluntary ethanol intake
and enhances CYP2EI levels, contributing to the coabuse of
these drugs and altering the metabolism of clinical drugs and
endogenous substrates [66]. CYP2EI levels were increased in
the frontal cortex and putamen of green monkeys exposed to
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e Drugs

Ethanol, acetaminophen, pyrazole, acetone,
isoniazid, and nicotine

o Anesthetic agents

Isoflurane, enflurane, and phenobarbital

o Pesticides

Lindane, transfluthrin, D-allethrin,
cypermethrin, and propetamphos

o Other compounds

Lipopolysaccharide and titanium oxide

« Related disorders

Porphyria, Parkinson’s disease, epilepsy,
alcoholism, and diabetes

o Chemical agents

Dimethyl sulfoxide
Dimethylformamide
Dimethylcarbamate
Hexane

Diallyl disulfide

 Neuroprotection agents:

MPP*, MPTP, LPS, ethanol, and reduced
antioxidant environment

FIGURE 1: Exogenous agents and pathologies associated with CYP2EI activity and expression in brain. LPS: lipopolysaccharide; MPP+: 1-
methyl-4-phenylpyridinium; MPTP: I-metil-4-fenil-1,2,3,6-tetrahydropyridine.

ethanol alone or in combination with nicotine. The mRNA
levels were unaffected by ethanol or nicotine exposure [67].
The brains of alcoholic nonsmokers and alcoholic smokers
show greater staining of the granular cells of the dentate
gyrus and the pyramidal cells of the CA2 and CA3 hippocam-
pal subregions, as well as of the cerebellar Purkinje cells,
compared to nonalcoholic nonsmokers. CYP2EI induction
in the brain by ethanol or nicotine may influence the central
effects of ethanol and the development of the nervous tissue
pathologies observed in alcoholics and smokers [11]. Nicotine
and/or alcohol show induction of CYP2EI1 levels in the same
brain regions. The coabuse of these drugs may be explained
because tobacco smoke constituents increase the metabolic
inactivation of ethanol, providing an impetus for increased
ethanol consumption. Coaddiction of ethanol and nicotine
potentially alters the sensitivity of drugs and toxins in the
brain [67]. The modulation of CYP2EI expression seems to
be an adaptive response. Subjects addicted to ethanol and
nicotine can respond differently to drugs and endogenous
compounds because of this enhanced CYP2EI expression in
the brain [11, 67, 68].

Other exogenous compounds alter CYP2EI protein and
mRNA levels. Nanoparticles, such as titanium oxide (TiO,),
widely used in toothpastes, sunscreens, and products for
cosmetic purpose, accumulate in the brain. Mice exposed
to nasal administration of TiO,(10 mg/kg, 90 days) develop
oxidative stress and tissue necrosis as well as hippocampal
cell apoptosis accompanied by increased expression of genes
involved in brain toxicity, including CYP2E1 [69]. Porphyria
is an inherited disorder of the heme metabolism that displays
neurological symptoms. Porphyrogenic agents include enflu-
rane, isoflurane, and ethanol. Chronic isoflurane anesthesia
(I1mL/kg, 10 doses, i.p.) induced CYP2E1 protein expression
and acute enflurane anesthesia (2 mL/kg, 1 dose, i.p.) treat-
ment induced CYP2EI1 activity in the mitochondrial fraction
of mice brains. In the microsomal brain fraction, isoflurane
(chronic and acute treatment) diminished CYP2E1 protein
levels. These results support an emergent role of CYP2E1 in
the pathogenesis of neurological disorders, indicating that
CYP2EI response in the brains of mice could be one of the

multiple factors influencing acute porphyria attacks [70].
Brains of streptozotocin-induced diabetic rats, a model
reproducing a state of insulin deficiency, mitochondrial
CYP2EI protein, and activity were enhanced in several tissues
including the brain. Concomitantly, a marked increase in
mitochondrial oxidative stress was observed in brain. Raza
et al,, 2004, suggested that the induction of mitochondrial
CYP2EI1 in brain may contribute to the clearance of different
compounds, without the presence of exogenous derivatives
and induce deleterious effects in the brain [15, 71]. CYP2E1
generates large amounts of ROS that can damage cellular and
mitochondrial components, such as mitochondrial DNA and
cytochrome c oxidase, enhancing local and cellular oxidative
stress [72].

Chronic treatment of phenobarbital anesthesia in African
green monkeys induces enhanced CYP2EI protein levels in
the cerebellum and in the putamen [73]. Some xenobi-
otic compounds, such as pesticides, also modulate CYP2EIL
protein levels and activity. Low dose, prenatal exposure to
the pesticide lindane produces overexpression of xenobiotic
metabolizing enzymes, including CYP2EL, in the brain and
liver of postnatal offspring (3 weeks rats) and could be related
to behavioral changes observed in these rats [74]. Other
pesticides like transfluthrin or D-allethrin pyrethroid vapors
induce CYP2El and CYP3A2 proteins in the brain. This
protein overexpression correlates with an increase in their
catalytic activity [75]. Other pesticides such as cypermethrin
and propetamphos combinations induce increased CYP2E1
expression and a decrease of glutathione, a major cellular
antioxidant, especially in the brain [76]. The antituberculosis
drug, isoniazid, induces CYP2EI expression in primary cere-
bellar granule neuronal cultures [77].

As in chemical activation, certain circumstances such as
a proinflammatory environment or infectious conditions,
CYP2ELI are also activated [78]. In vitro studies show that
lipopolysaccharide (LPS) treatment in primary cortical glial
cultures induced CYP2EI activity and increased mRNA
levels [40, 79]. Using ischemic injury in gerbils and rats,
CYP2EI has been found to be induced in astrocytes, cerebral
vessels, and neurons [40, 43, 80, 81]. In diabetic rat models



induced with streptozotocin, the consumption of aspartame
and insulin treatment increases CYP2EI activity and protein
levels in the brain, without modifying levels and activity in
the liver. The induction of CYP2E1 in the brain could have
important in situ toxicological effects, given that this CYP
isoform is capable of bioactivating various toxic substances
and increasing susceptibility to neurotoxic processes [30].

In experimental rat models of hyperlipidemia combined
with cerebral ischemia, reperfusion injury increases the
protein expression of CYP2El combined with enhanced
CYP2EI protein expression and levels of proinflammatory
factors. Meanwhile, this study also shows that hyperlipidemia
significantly enhances cerebral ischemia/reperfusion- (I/R-)
induced transfer of cytochrome ¢ from mitochondria to
cytosolic and the protein expressions of Apaf-1and caspase-3
but also decreases cerebral I/R-induced bcl-2 protein expres-
sion. These results reveal that hyperlipidemia exacerbates
cerebral I/R-induced injury through the synergistic effect of
CYP2FE1 induction, which further induces ROS formation,
oxidative stress, inflammation, and neuronal apoptosis by the
coexistence of hyperlipidemia and cerebral I/R.

Aquaporin-4 participates during the drug metabolism
and the detoxification of exogenous substances, aquaporin-
4 knockout astrocytes, increased CYP2E1 mRNA expression
compared to wild-type astrocytes. CYP2E1 inhibitors protect
the cell from damage and the production of ROS induced by
l-methyl-4-phenylpyridinium ions (MPP™), LPS, and ethanol
in wild-type primary astrocytes [82].

5. CYP2E1 Regulation of Expression
in the Brain

The induction of CYP2EI by alcohol appears to be through
translational, posttranslational (protein stabilization), and
transcriptional mechanisms [83].

CYP2E1 induction involves posttranscriptional stabiliza-
tion of CYP2EL unlike other CYP isoform induction pro-
cesses involving de novo RNA and protein synthesis. The
induction of CYP2EI seems to be regulated at the posttran-
scriptional or posttranslational levels by the stabilization of
mRNA [84] or by protection against the rapid degradation of
protein [85] in the liver. The posttranscriptional regulation
would be responsible for not only the inducible, but also
the constitutive expression of CYP2EL1 in liver [86]. Studies
in rat and monkey brains demonstrate that CYP2E1 mRNA
levels do not increase after ethanol or nicotine treatment, sug-
gesting a nontranscriptional regulation in the brain [44, 67].
Recent works have shown that mRNA CY2El expression is
modulated by microRNAs, miR-552 [87].

Transcriptional regulation of CYP2EI has not been exten-
sively examined because its induction in most circumstances
has been found to be posttranscriptional. Transcription acti-
vation of CYP2E1 has been reported principally during devel-
opment [83]. Moreover, prenatal exposure to antidepressant
drugs such as the serotonin reuptake inhibitor increased the
DNA methylation status at the CYP2EI gene. Furthermore,
alteration in birth weight was associated with the neonatal
CYP2El DNA methylation status [83]. Astrocytes exposed

Oxidative Medicine and Cellular Longevity

to LPS induce MKKK3 activation, which in turn stimulates
a C/EBP and binding element that mediates transcriptional
activation of CYP2EI [79].

We revised in this work, where CYP2E]1 is increased in
the brain, it may contribute to the clearance of different com-
pounds but also generates ROS without the need for a ligand
to produce damage on mitochondria, DNA modification,
lipid peroxidation, elevated cytokine production, and even
cell death. The alteration of the normal metabolism of
endogenous and xenobiotic compounds increases the risks of
neurotoxicity by compound bioactivation by environmental
chemicals that are metabolized to more toxic derivatives or to
procarcinogens by CYP2EL The regulation of CYP2E1 induc-
tion still needs more evidence to be clarified.

6. CYP2E1 and Oxidative Stress in Brain

Even though in SNC antioxidant defense has lower expression
and it is less efficient. Brain contains nonenzymatic and
enzymatic antioxidants system to avoid oxidative damage by
ROS. They are vitamins (A, C, and E), low weight molecules
(glutathione GSH/GSSG cycle), -carotene, uric acid, alpha
lipoic acid, and also enzymes such as GSH-related (GSH-
peroxidase, GSH-transferases, thioredoxin, and peroxire-
doxin-2), superoxide dismutase, catalase, and peroxiredoxin-
1[88-91].

The activation or enhanced levels of CYP2E1 by different
chemicals are sometimes accompanied by the generation of
ROS, which may lead to macromolecular damage such as
lipid peroxidation and DNA oxidation. Activity of CYP2EIL
mainly generates superoxide anion [92] and hydrogen per-
oxide. In animals with cerebral induced I/R and hyperlipi-
demia, CYP2EI induction exacerbates neurological deficit
and increases ROS formation, oxidative stress, inflammation,
and neurodegeneration [93]. Oral coadministration of vita-
min E (200 mg/kg BW) attenuated the neurotoxic effects of
deltamethrin (0.6 mg/kg BW), by decreasing oxidative stress,
DNA fragmentation, and the expression of CYP2E1, TP53,
and COX2 genes. Similarly, the neuroprotection effect has
been reported with flavonoids in PCI12 cells [94].

Exposure to some active compounds such as ethanol, iso-
niazid, TiO,, and MPP" induces CYP2EL. LPS generates ROS
and is accompanied by oxidative stress markers in vivo and in
vitro [60, 69, 77, 82, 95]. The brain contains a large amount of
phospholipids that are rich in polyunsaturated fatty acids that
are liable to peroxidation by ROS, besides the limited regen-
erative capacity of the brain [53]. CYP2E1 induction leads to
increased lipid peroxidation and apoptosis, resulting in
increased permeability of the brain blood barrier (BBB)
and neurodegeneration, resembling what happens with BBB
impairment in alcohol abusers [47]. CYP2EI shows a higher
rate of oxidase activity in purified microsomes compared
to other forms of CYP450 [96]. An important substrate of
CYP2El is molecular oxygen, which displays a high NADPH
oxidase activity, with the uncompleted reactions of CYP2EI
leading to the generation of species of free radical [97, 98].
Ethanol metabolism yields to alteration in cellular redox state.
In this condition mitochondria exacerbates the production
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FIGURE 2: Ethanol oxidation by CYP2EI results in an increase of ROS and oxidative stress. Ethanol can induce the expression/activity of
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of reactive oxygen and nitrogen species. CYP2EI activity to
ethanol oxidation to acetaldehyde uses H" from NADPH as
well as O, resulting in production of large quantities of H,0,
and superoxide anion radical ("0, ). Depletion of NADPH
as well as O, results in the production of large quantities
of H,0, and the superoxide anion radical ("0, ). Depletion
of NADPH can interfere with the respiratory chain: this
condition is key to oxidative stress by CYP2El activity.
Additionally, aldehyde metabolite increases mitochondrial

damage that can result in oxygen reduction to "0, . CYP2E1
activity can occur in the presence or absence of the CYP2E1
substrate, sensitizing the cells to macromolecular damage and
starting a feedback cycle (Figure 2) [99]. CYP2EI generates
ROS such as the radical superoxide anion and hydrogen
peroxide in the presence of an iron catalyst and powerful
oxidants such as the hydroxyl radical [100]. ROS generated
by CYP2EI may lead lipid peroxidation and its products, such
as 4-hydroxynonenal, which binds to DNA, forming highly
carcinogenic exocyclic ethane DNA-adducts [101]. A reduced
antioxidant environment results in ROS production, DNA
oxidation, and cell death. These effects are attenuated by the
inhibition of CYP2EI [77]. An in vitro study of monocytic
cell lines demonstrates that the PKC/JNK/SP1 pathway is
involved in the induction of CYP2E1 via ROS [95].

CYP2E1 expressing cells were found to be toxic when
GSH was depleted by treatment with 1-buthionine sulfox-
imine (BSO) and CYP2E1 inhibitors prevented the toxicity by
the above treatment. HepG2 cells overexpress CYP2E1 (E47
cells) but not the control C34 HepG2 cells, which do not
express CYP2EL E47 cells had a significant 30% increase in
the total GSH compared to C34 cells. E47 cells have increased
catalase, cytosolic, and microsomal glutathione transferase
and heme oxygenase-1 (HO-1) compared to control HepG2

cells, due to activation of their respective genes. This upreg-
ulation of antioxidant genes may reflect an adaptive mecha-
nism in removing CYP2EI-derived oxidants [102]. The same
working group shows that basal levels of Nrf2 protein and
mRNA were higher in the CYP2El-expressing E47 cells
compared to the C34 cells [103]. It has been proposed that
Nrf-2 activation is mediated via ROS and free radicals derived
from substrates generated by the enhanced activity of CYP2EIL
in mice livers [104].

Evidence has demonstrated the role of CYP2EL over ROS
production. Depending on the metabolized substrates and
the nature of the compound, CYP2El can produce elec-
trophilic compounds that can cause cell toxicity by reacting
with cellular macromolecules. As we mentioned, CYP2EI],
with O, and NADPH, can produce principally superoxide
anions and hydrogen peroxide causing cell damage by macro-
molecule oxidation.

7. CYP2EI1 Relationship with Brain Disorders

Clinical studies of Parkinson’s disease (PD) show that envi-
ronmental factors, xenobiotics, including chemicals, pesti-
cides, and volatile solvents are the most suspected causes, all
of which are substrates of CYP2E1 [105]. CYP2El is present in
dopaminergic neurons of the substantia nigra in the same
compartment as tyrosine hydroxylase [11, 42, 106, 107]. Also,
CYP2EI mRNA is detected in the basal ganglia and in the
substantia nigra [108, 109]. Experimental data show that
alcohol reduces the dopamine levels in the midbrain, even
if contradictory data is present in the literature and there is
an increased oxidative stress in the nigral cells [110, 111].
Nissbrandt et al. in 2001 [112] demonstrated that CYP2E1



activity affects dopaminergic neurotransmission of the sub-
stantia nigra, possibly by participating in the metabolism
of dopamine. CYP2E1 produces toxic reactive intermediates
from endogenous or exogenous substrates, which in turn
triggers a chronic impairment of the DA neurons neuronal
viability.

It has been shown that CYP2El is involved in the
I-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in-
duced mouse model of PD [108, 109]. Acetaldehyde increases
the toxic effect of MPTP in striatum [113-115]. In the
MPTP mouse model of PD, the inhibition of CYP2EI with
diethylcarbamate increase CYP2EI toxicity, enhancing DA
cell death. Likewise, CYP2EI null mice did not show any
enhanced sensitivity to MPTP or any (1-methyl-4-phenylpyr-
idinium) MPP* accumulation, suggesting a compensatory
role of other isozymes that homologue CYP2E1 function
[109]. Another report from the same research group states
that the lack of CYP2E1 did not increase MPTP toxicity, as
they previously reported. In contrast, CYP2E1 mice are
weakly sensitive to MPTP-induced brain lesions [116]. Cell
cultures from CYP2E1 null mice accumulate more intra-
cellular MPP+ than the cell culture from wild-type mice
[109]. Also, MPP" accumulates inside the neurons from
Knockout CYP2EI mesencephalic cultures twice as much as
wild-type embryos [105]. This evidence suggests further
that CYP2EI1 plays a role in MPP" storage and efflux. The
accumulation of MPP" in dopaminergic neurons results in
the generation of ROS by the mitochondria, including nitric
oxide, superoxide anion, hydrogen peroxide, and hydroxyl
radicals [117, 118]. MPP+ also stimulates the release of DA
[119], and autooxidation of dopamine results in the formation
of cytotoxic quinones and highly reactive hydroxyl radicals,
generating biomolecular damage [120]. In contrast to this,
neuroprotection CYP2El-regulated mechanism has been
observed in a hypoxia model [121].

CYP2E]1 brain overexpression has been proposed benefi-
cial in an experimental model of PD [109]. Some compounds
related to addictive behaviors, such as smoking and coftee,
showed protection against PD [122, 123]. Nicotine subcuta-
neous injections in rats have been associated with central
nicotinic receptor adaption, a pharmaceutic change observed
in brain regions of postmortem smokers’ brains and hypoth-
esized to be one pathway by which nicotine exerts its behav-
ioral effects such as tolerance [124, 125]. CYP2EI could exert
beneficial effects through an efficient detoxification of neuro-
toxins related to PD, such as metals and pesticides, decreasing
risk factors of PD like oxygen radical production [126].
Furthermore, this evidence supports the notion that the
balance between beneficial and neurotoxic effects of CYP
enzyme expression might occur as a function of the disease
state.

Population studies have demonstrated a possible associa-
tion between CYP2EI polymorphisms and some brain disor-
ders, such as PD [127, 128] and the risk of glioma [129] and
pain implications [130]. CYP2El gene methylation and
increased CYP2El mRNA are found in PD patient’s brains
[131]. These data suggest that epigenetic CYP2EL alter-
ations may facilitate the degenerative process through the
metabolism of such xenobiotics and represent the genetic
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TABLE 2: CYP2EI polymorphisms related to brain pathologies.

CYP2ElL

polymorphism Brain pathologies  Inductor agent Reference
Crc2 Polyneuropathy Isoniazid [153]
Rs6413419 G Alcohol dependence Alcohol [154]
CYP2E1I"1D Motor neuron disease [140]
CYP2EI Rsal Glioma [129]

susceptibility to the disease [105]. These gene of CYP2EI can
influence the body’s ability to interact with the detoxificant or
the bioactivation of multiple chemical substrates. Kumsta
et al,, 2016, reported methylation changes in the promoter-
regulatory region of the cytochrome P450 2E1 gene in
children with clinical markers of impaired social cognition
(132].

The overexpression of CYP2E1 has been described in the
hippocampal region of postmortem patients with drug-
resistant epilepsy and in hippocampal cultures. It has also
been described in mice with status epilepticus exposed to the
antiepileptic drug phenytoin [28]. In rodents exposed to
ethanol, it has been reported that cerebral CYP2EI activity
correlates with locomotor activity, which could suggest that
metabolic acetaldehyde is a mediator of some ethanol-
regulated pharmacological effects [133]. CYP2EI could influ-
ence sensitivity to ethanol in the SNC [134]. Acetaldehyde in
the hippocampus affects synaptic transmission [135].

Acetaminophen causes apoptosis and DNA fragmen-
tation through CYP2El mediated JNK activation in C6
glioma cells [136]. Unexpectedly, the researchers found that
acetaminophen reduced p53 proapoptotic protein and the
necessary doses of acetaminophen that induced cell death,
despite the stimulation of p53 phosphorylation in C6 glioma
cells through CYP2E1 [137].

CYP2E1 exerts many functions in the metabolism of
different endogenous or exogenous compounds, including
bioactivation, degradation, flux, and storage. Alterations in
these functions of CYP2E] are related to different brain dis-
orders. The genetic variant or epigenetic changes to CYP2EI
make it more susceptible to an efficient metabolism but,
conversely, more vulnerable to bioactive compounds formed
through CYP2EI activity and has been related to different
brain disorders (Table 2).

8. Ethanol Oxidation in Behavioral Alterations
and CYP2E1

Three enzymes are responsible for oxidizing ethanol to
acetaldehyde: aldehyde dehydrogenase (ADH), catalase, and
CYP2EI [138]. Catalase is the primary ethanol metabolizing
enzyme in the brain. Studies have revealed it to be responsible
for approximately 50% of ethanol metabolism occurring in
the brain [139]. In neurons and monocytes/macrophages,
ADH is present at very low levels in these cells; thus the
involvement of CYP2EI is greater than ADH [85]. Animal
models using genetic knockout of CYP2E1 and/or catalase
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indicate that CYP2EI is responsible for =20% of ethanol
metabolism in the brain. Catalase and CYP2EI inhibitors
diminish the accumulation of the ethanol derived acetalde-
hyde and acetate in brain homogenates. Inhibitors of ADH
decrease the acetate but not the acetaldehyde [139]. The
absence of CYP2EI in brain homogenates of CYP2E1 knock-
out mice was not affected by acetaldehyde levels, bringing
into question the importance of this enzyme in ethanol oxida-
tion [138]. The mRNA P450s from CYP2EI1 has been observed
in human amygdala and prefrontal cortex of alcoholics and
smokers, areas associated with addictive behaviors [140],
suggesting that this expression may be altered by alcohol
and tobacco and influenced by the normal metabolism of
exogenous and endogenous chemicals by CYP2EL.

Different ethanol-associated behavior alterations are
attributed to acetaldehyde toxicity, such as euphoria, anxi-
olytic, hypnotic, amnesiac, and aggression, as well as rein-
forcement or aversion to voluntary ethanol consumption
(preference) [141-144]. Physiological alterations caused by
acetaldehyde in glia include alterations in cell function,
growth, and differentiation [145]. Studies contradict the the-
ory that acetaldehyde contributes to ethanol’s hypnotic effect,
shown in anticatalasemic mice or CYP2EI null or cata-
lase/CYP2E1 dual deficient mice. In this sense, a decrease in
blood acetaldehyde levels was accompanied by an increase
in ethanol-induced sleep time, especially with high doses of
ethanol [138]. In 2009 Correa et al. showed that, with the
lack of the CYP2EI enzyme, the consequence was an increase
of catalase levels, as a compensatory detoxifying metabolism.
The lack of CYP2EI has an impact over ethanol-induced
sensitization and on voluntary ethanol preference in knock-
out CYP2EI mice after repeated intermittent alcohol intake
showed a reduction in preference for ethanol intake com-
pared with wild-type mice [146]. These results suggest that
the role of CYP2EI in ethanol oxidation of acetaldehyde and
their behavioral alterations in the brain needs to be clarified.

9. CYP2E1 in Inflammatory
and Autophagy Processes

The metabolism of ethanol induces brain damage and neu-
rodegeneration by triggering inflammatory processes in glial
cells through the activation of Toll-like receptor 4 (TLR4)
signaling [147]. Chronic ethanol consumption impairs pro-
teolytic pathways in mouse brains and the immune response
mediated by TLR4 receptors participates in these dysfunc-
tions [147]. Recent studies have shown that autophagy serves
as a protective mechanism against ethanol-induced injury.
Autophagy was found to be protective against CYP2EI-
dependent toxicity in vitro in hepatic HepG2 cells that express
CYP2EI and in vivo in an acute alcohol/CYPEI-dependent
liver injury model [148]. MTOR pathway integrates cellular
signals and mediated autophagy activation is also a neuro-
protective response that alleviates ethanol toxicity [149, 150].

An immature brain is more susceptible to ethanol neuro-
toxicity. Fetal alcohol spectrum disorder (FASD) results from
ethanol exposure to the developing fetus and is the leading
cause of mental retardation. FASD is associated with a broad

range of neurobehavioral deficits which may be mediated by
ethanol-induced neurodegeneration in the developing brain.
The vulnerability of the immature brain to ethanol shows
a high expression of proapoptotic proteins and responsive
stress system deficiency, such as unfolded protein response
and autophagy [151].

10. Concluding Remarks

In summary, this paper shows differential expression of
CYP2EI in brain regions. The activity of CYP2EI is similar to
the metabolism of endogenous and xenobiotic compounds.
CYP2E1 is a highly conserved enzyme related to a diversity of
effects in the mammalian brain. The differential expression of
CYP2E1 in the brain suggests that some regions are more
susceptible to an efficient detoxification or to cell damage,
principally through the generation of oxidative stress, as a
result of different molecular metabolisms of CYP2EL. CYP2EIL
expression has been involved on behavioral and locomotor
activity or in the neurophysiology in different toxicological
animal models and human diseases. In this work, we have
revised the modulation of CYP2E1 by different xenobiotics or
pathological situations (Figure 1), demonstrating not only the
different brain targets of CYP2E], but also the mechanisms
throughout the physiological damage in the brain. Further
studies are required to clarify how the mechanisms of CYP2E1
induction are regulated in the brain and how environmental
and pharmacological factors induce it, in addition to cell or
region vulnerability in the brain. It is necessary to know if
the polymorphisms, expression, and activity of CYP2EI are
related to either ethanol or nicotine preference or dependence
and its effects on the susceptibility in the human population.
In this regard, it is important to explain the role of CYP2El in
different regions of the CNS and its contribution to addictive
behaviors and in neurodegenerative processes.
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