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Terminal web and vesicle trafficking proteins
mediate nematode single-cell tubulogenesis
Zhe Yang1, Brendan C. Mattingly2, David H. Hall3, Brian D. Ackley1, and Matthew Buechner1

Single-celled tubules represent a complicated structure that forms during development, requiring extension of a narrow
cytoplasm surrounding a lumen exerting osmotic pressure that can burst the luminal membrane. Genetic studies on the
excretory canal cell of Caenorhabditis elegans have revealed many proteins that regulate the cytoskeleton, vesicular
transport, and physiology of the narrow canals. Here, we show that βH-spectrin regulates the placement of intermediate
filament proteins forming a terminal web around the lumen, and that the terminal web in turn retains a highly conserved
protein (EXC-9/CRIP1) that regulates apical endosomal trafficking. EXC-1/IRG, the binding partner of EXC-9, is also localized
to the apical membrane and affects apical actin placement and RAB-8–mediated vesicular transport. The results suggest that
an intermediate filament protein acts in a novel pathway to direct the traffic of vesicles to locations of lengthening apical
surface during single-celled tubule development.

Introduction
The interactions of cell cytoskeleton with vesicle trafficking are
crucial to provide cells with the shape needed to perform spe-
cialized functions. For example, the microtubule and actin fil-
ament structure mediates transport of cargo to form and
maintain the nerve terminal at the end of an axon (Hakanen et al.,
2019; Kiral et al., 2018), Rab proteins regulate the apical specialized
functions of multiple cell types in intestinal villi (Zhang and Gao,
2016), and defects affecting endosomal trafficking (in neurons and
glia) underlie several neural diseases such as Charcot-Marie-Tooth
disease and Niemann-Pick disease (Neefjes and van der Kant,
2014). Advances in understanding these interactions have arisen
from studies in a wide range of tissues and organisms, from yeast
(Chiou et al., 2017; Pires and Boxem, 2018) to Caenorhabditis elegans
(Sato et al., 2014), Drosophila (Mack and Georgiou, 2014;
Nemetschke and Knust, 2016), and mammalian cells such as
MDCK cells in culture (Román-Fernández et al., 2018). An
interesting specialized case is the formation and extension of
narrow tubular structures, which require both the cytoskel-
etal extension to reach out to target tissues and the curvature
of the apical surface to create a patent tubule (Barry et al.,
2015; Sigurbjörnsdóttir et al., 2014; Sundaram and Cohen,
2017).

The excretory canal cell of C. elegans offers a tractable genetic
model for studying single-celled tubular morphogenesis in a
“seamless cell” without intracellular junctions to hold the tube

together along its length (Fig. 1 a; Sundaram and Buechner, 2016;
Sundaram and Cohen, 2017) This cell sends out long hollow
projections that reach the length of the animal to collect and
eliminate excess liquid (Falin et al., 2009; Igual Gil et al., 2017;
Nelson et al., 1983; Sundaram and Buechner, 2016). While the
excretory system as a whole is required for organismal survival,
a large number of viable mutants have been found that impair
the ability of the excretory canals to form narrow tubular ex-
tensions (Al-Hashimi et al., 2019; Buechner et al., 1999; Igual Gil
et al., 2017); cloning of the underlying genes has revealed a wide
variety of cytoskeletal proteins involved, including ezrin-radixin-
moesin (ERM) and βH-spectrin anchors of the actin cytoskeleton
(Khan et al., 2013; Praitis et al., 2005), a diaphanous-related
formin that links actin to the microtubule cytoskeleton (Shaye
and Greenwald, 2015), and three intermediate filament proteins
that wrap around the apical (luminal) surface to form a terminal
web similar to that surrounding intestinal tubes (Al-Hashimi
et al., 2018; Geisler et al., 2020; Karabinos, 2019; Khan et al.,
2019; Kolotuev et al., 2013).

In addition, vesicle trafficking is important for canal mor-
phogenesis. Mutants impairing function of the exocyst (Armenti
et al., 2014) show profound defects in canal formation, as do
mutations affecting the CCM-3/STRIPAK machinery that
maintain normal mammalian brain capillary morphology (Lant
et al., 2015). Finally, three proteins affecting vesicle transport
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Figure 1. EXC-9 is localized to the apical luminal surface of the excretory canals by intermediate filament protein EXC-2. (a) Layout of C. elegans
excretory canals and canal cell body within the animal. (b) Diagram of EXC-9 domains. (c and d) Comparison of maximum canal cyst size (c) and mean canal
length ± SD (d) for different alleles of exc-9; n > 50. ***, P < 0.001, calculated via one-way ANOVA. (e–e’’’’) Collocation of GFP::EXC-9 and labeled intermediate
filament mKate2::IFA-4 at the canal apical surface. GFP::EXC-9 expression at canal lumen and cytoplasm (e); mKate2::IFA-4 (e’); merge (e’’); DIC micrograph of
same section of canal (arrows indicate luminal surface, e’’’); and fluorescence intensity profiles of EXC-9 (green) and IFA-4 (red) along white line in panel e’’’
(e’’’’). n = 30 animals examined. (f and f’) The qpIs125(exc-9::gfp) allele allows cysts to form but is still retained apically (f); fluorescence intensity profile of EXC-
9::GFP along white line in panel f (f’). n = 30 animals examined. (g–j’) Expression of GFP::EXC-9 in homozygous mutants affecting canal apical structure.
Fluorescence intensity profile along white lines for each mutant (g’–j’); exc-2− (n = 50, g); ifa-4− (n = 25, h); sma-1− (n = 25, i); and exc-1− (n = 25, j). (k–k’’’) Co-
expression of mKate2::EXC-9 and GFP::EXC-2. mKate2::EXC-9 (k); GFP::EXC-2 (k’); merge (k’’); and fluorescence intensity profiles of EXC-9 (green) and IFA-4
(red) along white line in panel k’’ (k’’’). All scale bars, 5 µm.
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act in a genetic pathway to regulate canal morphology: EXC-9/
CRIP1, EXC-1/IRG, and EXC-5/FGD (Grussendorf et al., 2016;
Mattingly and Buechner, 2011; Tong and Buechner, 2008). All
of the three encoded proteins have close human homologues:
CRIP1 increases metastatic transformation and invasiveness in
cell culture (Cousins and Lanningham-Foster, 2000; He et al.,
2017; Li et al., 2017; Zhang et al., 2018); IRGM is involved with
autophagy and pathogenic responses (Howard et al., 2011;
Kumar et al., 2018; Pilla-Moffett et al., 2016); and FGD genes
are loci of the developmental diseases Aarskog-Scott syndrome
and Charcot-Marie-Tooth disease type 4H (Delague et al., 2007;
Gao et al., 2001; Stendel et al., 2007). Mutants in these nem-
atode genes show similar cystic defects in the structure of the
canal apical surface as well as defects in vesicle transport:
buildup of RAB-5–labeled vesicles and loss of RME-1–labeled
vesicles in areas of cystic dilation (Grussendorf et al., 2016;
Mattingly and Buechner, 2011). In addition, overexpression of
any of these three genes results in a normal-diameter lumen
(apical surface) folded up within a severely shortened canal.
We interpreted these results as supporting a model in which
EXC-9, EXC-1, and EXC-5 act in sequence to promote vesicle
trafficking to the apical surface of the excretory cell, allowing
that surface to be remodeled as the canals extend and widen
during animal growth. It remains unknown, however, how
EXC-9, EXC-1, and EXC-5 affect vesicle trafficking and whether
cytoskeletal elements are involved with this process.

Here, we show that one of the three canal intermediate fil-
ament proteins, EXC-2, retains EXC-9/CRIP to the canal apical
surface, mediated by the C-terminal domain (CTD) of EXC-2.
The results also show that the EXC-1/IRG protein is retained at
the apical surface of the canals independent of its binding
partner EXC-9/CRIP and of intermediate filament EXC-2. Fi-
nally, overexpression of the vesicle trafficking protein RAB-8
partially suppresses the effects of mutations in exc-9 and exc-1
(but not mutations in exc-5) on the development of narrow canal
tubules. These results delineate a novel pathway from the in-
termediate filament matrix to vesicle trafficking proteins that
regulate the formation of the luminal diameter in this highly
regulated polarized tubule cell.

Results
EXC-9 is localized to the apical surface of excretory canals by
expression of EXC-2
EXC-9 (Human CRIP1 orthologue) is a small protein required for
development and maintenance of the excretory canals; mutants
develop shortened canals with large fluid-filled cysts (Tong and
Buechner, 2008). The 85 amino acids of EXC-9 encode a single
conserved LIM domain of the cysteine-rich protein class (Davis
et al., 1998; Smith et al., 2010) at the N-terminus (60 amino
acids; Fig. 1 b) followed by a short tail of unknown function
conserved from nematodes to humans. In the exc-9(n2669) mu-
tant, cystic canals always form a medium-sized (1/4–1/2 the di-
ameter of the animal) cyst at the distal ends of the lumen, though
cyst size and canal length vary depending on the allele used
(Fig. 1, c and d). Allele n2669 is a strong allele that was previously
studied (Tong and Buechner, 2008). Allele qp130, a putative null

CRISPR/Cas9–induced deletion of the first eight nucleotides of
the coding region (the next ATG is not in-frame), produces
significantly shorter canals than seen in n2669 homozygotes,
while insertion of GFP at the C-terminus of the protein (see
below) creates a milder mutant phenotype, with smaller cysts
and longer canals.

To determine the subcellular location of EXC-9, the CRISPR/
Cas9 systemwas used to insert the gfp coding region at either the
59- or -39 terminus of exc-9 (Dickinson et al., 2015). Expression of
N-terminal GFP::EXC-9 (BK583) allowed the protein to remain
fully functional and form long, thin, hollow canals, with the
protein located predominantly at the apical surface (Fig. 1 e).
Expressionwas also seen at lower levels within the uterine seam
cell, both distal tip cells, and the lumbar ganglion (Fig. S1).
Within the canals, expression was largely coincident with the
intermediate filament protein marker mKate2::IFA-4, which
labels the terminal web surrounding the canal lumen (Al-
Hashimi et al., 2018), though some EXC-9 was also found
within the cell cytoplasm. As noted above, when GFP was in-
serted at the C-terminus (BK589), the function of EXC-9 was
compromised (Fig. 1, d and f). However, EXC-9::GFP was still
enriched at the apical surface. Blockage of the C-terminal tail
by GFP impaired EXC-9 function without affecting apical
localization.

As EXC-9 has no transmembrane domain but is enriched at
the apical membrane, we examined how EXC-9 is retained at the
membrane by crossing our fully functional GFP::EXC-9 strain to
mutants defective in known canal apical lumen cytoskeletal
proteins (Fig. 1, g–j). In the absence of the large intermediate
filament protein EXC-2 (Al-Hashimi et al., 2018), GFP::EXC-9
lost apical localization and became evenly distributed through-
out the canal cytoplasm (Fig. 1 g). In contrast, loss of another
canal-specific intermediate filament, IFA-4 (Flibotte et al., 2010),
which likely forms heterodimers with EXC-2, did not affect
EXC-9’s ability to be retained at the apical surface (Fig. 1 h).
Similarly, loss of βH spectrin SMA-1 causes formation of large
irregular cysts throughout the length of the canals (Buechner
et al., 1999) but retains strong expression of EXC-9 predomi-
nantly at the apical surface (Fig. 1 i). Finally, loss of the IRG GTPase
protein EXC-1, a known EXC-9 binding partner (Grussendorf et al.,
2016), also had no effect on the apical retention of EXC-9 (Fig. 1 j).
The results indicate that EXC-2 retains the majority of EXC-9
protein at the apical surface; this was confirmed by coexpression
of functional labeled EXC-2 and EXC-9, which were completely
collocated at the canal apical surface (Fig. 1 k).

EXC-2 CTD localizes EXC-9 to the apical surface
Intermediate filaments usually consist of a short N-terminal
domain (NTD) and a longer CTD flanking a conserved filament
domain used for dimerization (Herrmann and Aebi, 2016).
While IFA-4 and IFB-1 follow this plan (including a conserved
lamin tail domain [LTD] within the CTD; Carberry et al., 2009;
Zuela and Gruenbaum, 2016), EXC-2 has a much longer NTD and
no lamin tail homology in its CTD (Fig. 2 a). There is also a gene
termed ifc-2 (Hüsken et al., 2008) that begins from a promoter in
an exon of exc-2 and that contains only the filament domain and
CTD, but isoforms of IFC-2 are found predominantly in the
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intestine and are not expressed in the canal cell (Geisler et al.,
2020).

To determine which section of EXC-2 is required for binding
EXC-9 to the luminal surface, the long NTD (amino acids 1–767)
and short CTD (amino acids 1112–1339) were each cloned into a
fluorescence translational construct for overexpression in wild-
type and in the exc-2(qp110) null mutant background. In a pre-
vious study, overexpression of full-length exc-2 PCR product

greatly shortened the canals to less than half-length and caused
small dilations of the lumen (lumen diameter <1/4 body width;
Al-Hashimi et al., 2018). Here, overexpression of each of these
partial exc-2 constructs from the strong canal-specific vha-1
promoter caused similarly shortened canals with small dila-
tions (Fig. 2, b and c). In the wild-type background, overex-
pressed EXC-2NTD::GFP remained apically localized (Fig. 2 b),
but labeled EXC-9 did not. The presence of excess EXC-2NTD

Figure 2. EXC-2 C-terminal fragment is colocalized with EXC-9 to the canal apical membrane. (a) Scale diagram of domains of intermediate filament
expressed in the excretory cell, including EXC-2, IFB-1, and IFA-4. The lamin-like intermediate filament domain allows homo- and hetero-dimerization of the
filaments. (b–b’’’) Overexpression of EXC-2(1–767; N-terminal half) in BK590 (EXC-9 modified via CRISPR/Cas9 insertion of mKate2) reduced binding of
mKate::EXC-9 to the apical surface. Overexpressing EXC-2(1–767) fluorescence (b); EXC-9 fluorescence (b’); merge (b’’); and fluorescence intensity profiles of
EXC-2(1–767) (green) and EXC-9 (red) along white line indicated in b’’ (b’’’). n = 29 animals examined. (c–c’’’) Overexpressing EXC-2 (1112–1339) in BK590
(mKate2::EXC-9) showed colocalization of both proteins to the growing tip of the luminal canal surface; EXC-2(1112–1339) (C-terminal portion) fluorescence (c);
EXC-9 fluorescence (c’); merge (c’’); and fluorescence intensity profiles of EXC-2(1–767) (green) and EXC-9 (red) at the canal tip along the white line indicated in
c’’ (c’’’). (n = 25 animals). (d–d’’) EXC-2(1–767) overexpressed in exc-2(qp110) homozygotes forms a meshwork at the canal apical surface. EXC-2 fluorescence,
inset at 2× magnification (d); DIC image showing cystic lumen (d’); merge (d’’). (n = 32 animals). (e–e’’’)Mutation of the LIM domain prevents EXC-9 localization
to the apical surface. Diagram of EXC-9 showing conserved cysteines (C) and histidine (H) in loops of LIM domain. Amino acids in red indicate replacement by
alanine (A) in mutant strain (e); EXC-9 fluorescence in cysteine-substituted mutant is evenly expressed throughout the cytoplasm surrounding an enlarged
lumen (e’); fluorescence intensity profile along three lines in e’ (n = 26 animals, e’’); comparison of canal length ± SD in the exc-9(qp128) mutant (3 Cys→Ala) to
that in wild-type (e’’’). ***, P < 0.001 (n = 50). All scale bars, 5 µm.
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prevented EXC-9 from being retained at the luminal membrane.
This implies that EXC-2NTD and EXC-9 compete for the same
locations on the luminal membrane.

Overexpression of EXC-2CTD::GFP exhibited a unique po-
larized fluorescence phenotype (Fig. 2 c): canals were generally
wild-type in diameter along their length, but did not grow to full
length and terminated in medium-sized cysts at the distal ends.
In addition, fluorescently labeled EXC-2CTD and labeled EXC-9
were fully collocated but strongly enriched toward the distal
end, with very bright fluorescence at the distal tip of the canal
lumen. We inferred that the CTD of EXC-2 recruits EXC-9 and
that they are able to remain at high concentration at the canal
apical surface only at the luminal tip of the canals.

In the exc-2(qp110) null allele mutant background, EXC-
2NTD::GFP was still localized at the apical surface (Fig. 2 d), and
its expression pattern resembled the localization and meshwork
pattern of wild-type GFP::EXC-2 expressed in animals lacking
one of the other intermediate filament proteins, IFB-1 or IFA-4
(Al-Hashimi et al., 2018). This indicated that the N-terminus of
EXC-2NTD is capable of binding either to the other intermediate
filament proteins IFB-1 and IFA-4 or to other proteins anchored
or bound to the luminal surface.

GFP attachment to either end of the small EXC-9 protein did
not affect its expression at the apical surface of the excretory
canals, although C-terminal GFP impaired EXC-9 function
(Fig. 1 d). We investigated the role of the LIM domain at the
N-terminus of EXC-9 by using CRISPR/Cas9 to make endoge-
nous mutations in key conserved cysteines (Fig. 2 e). LIM do-
mains are composed of two contiguous zinc fingers containing
three conserved cysteine residues and one histidine in the first
zinc finger and four conserved cysteines in the second zinc
finger (Weiskirchen and Günther, 2003). We used CRISPR/Cas9
to replace the last cysteine in the first zinc finger and first two
cysteines in the second zinc finger with alanine (Fig. 2 e). With
these changes, about half of the animals (28 of 50) were mildly
affected in regard to canal length, with canals reaching longer
than half the length of the organism, while the other animals had
full-length canals (81% of full-length average; Fig. 2 e’’’). In the
cysteine-substituted mutant canals, apical retention of labeled
EXC-9 was variably impaired, with some sections showing wild-
type levels of EXC-9 at the apical surface compared with the
cytoplasm, while in others, almost no EXC-9 was retained at the
apical surface. (Fig. 2 e’) Loss of apical EXC-9 was coincident
with areas of wider lumen, possibly nascent cysts. These results
suggest that LIM domain function plays a role in apical locali-
zation of EXC-9 to the canal apical surface.

EXC-1 is also localized to the canal apical surface
EXC-9 binds to the N-terminal half of EXC-1 and acts genetically
upstream of EXC-1 to mediate endosomal vesicle transport
within the canals (Grussendorf et al., 2016). EXC-1 possesses two
RAS-like GTPase domains and is the sole nematode homologue
of mammalian IRG proteins (Fig. 3 a; Grussendorf et al., 2016).
Since EXC-9 is largely collocated with EXC-2, we examined
whether the EXC-9–binding partner EXC-1 is also retained near
EXC-2 within the excretory cell. Through use of CRISPR/Cas9,
GFP was inserted at the C-terminus of EXC-1. This labeled

protein was found at the apical surface, and surprisingly, unlike
EXC-9, little EXC-1 protein was apparent in the cytoplasm
(Fig. 3 b). In addition to the excretory canal cell, EXC-1 was
expressed at lower levels in the amphid sheath cells (Fig. S2).
Localization of EXC-1 did not require activity of EXC-9, since in
the deletion mutant exc-9(qp130), EXC-1 fully retained its locali-
zation to the apical luminal membrane (Fig. 3 c). Similarly,
crossing the labeled EXC-1 strain into a null exc-2(qp110) mutant
strain caused no change to the apical localization of EXC-1
(Fig. 3 d). EXC-1 appears to be anchored to the membrane inde-
pendently of the EXC proteins that act genetically upstream of
EXC-1.

SMA-1/spectrin is required for spacing of the EXC-2 meshwork
The βH–spectrin SMA-1 is another important cytoskeletal ele-
ment regulating canal shape (Buechner et al., 1999), but it does
not affect the placement of EXC-9 (Fig. 1 i). βH-spectrin and the
ERM homologue ERM-1 anchor actin filaments to the apical
surface (Khan et al., 2019, 2013; Praitis et al., 2005). In erm-1
knockdown animals, labeled IFB-1 showed the intermediate fil-
ament network to be greatly disrupted (Khan et al., 2019). To
investigate the ability of SMA-1 to affect placement of inter-
mediate filaments, we examined the other two canal interme-
diate filaments via separately crossing the fluorescent mKate2::
ifa-4 and gfp::exc-2 strains into animals carrying a null mutation
either in sma-1 or in exc-4 (encoding a chloride intercellular
channel ion channel, as a control mutant with large cysts), both
of which also severely disrupt canal morphology (Berry et al.,
2003; Praitis et al., 2005). In the homozygous sma-1(ru18) mutant
background, both mKate2::IFA-4 and GFP::EXC-2 fluorescence
showed disruption to the spacing of filaments surrounding the
apical surface (Fig. 4, b and d). The “weave” of the intermediate
filament meshwork was looser, allowing the appearance of large
gaps of openmembrane between intermediate filaments, as seen
by the repetitive distance between peaks of fluorescence (Fig. 4,
b’ and d’). In contrast, in the exc-4 background (Fig. 4, c and e),
the meshwork of both labeled filaments generally showed a
tighter weave, with filaments aligned closely to each other,
comparable to the meshwork of wild-type animals (Fig. 4, a and
a’’), even though exc-4 animals exhibit very large canal cysts
comparable in size to those of sma-1 mutants (Buechner et al.,
1999). Occasional filament breakdowns in very large cysts could
be seen in exc-4 mutant animals, but the background filament
weave was generally as tight as in wild-type animals. The dis-
ruption of filament weave in sma-1 mutants is similar to that
caused by knockdown of ERM-1 (Khan et al., 2019). We conclude
that both ERM-1 and SMA-1 are needed for proper layout of the
intermediate filament network.

Examination of sma-1 and exc-4mutants by means of electron
microscopy (Fig. 5) showed further differences between these
animals. In the exc-4(rh133) mutant, the luminal surface electron-
dense terminal web was intact and associated tightly with the
membrane at the luminal surface (Fig. 5 c), as is seen in wild-
type animals (Fig. 5 a). The membrane itself was in contact with
long chains of small canalicular vesicles (Fig. 5, a and c, marked
by asterisks), rich in vacuolar ATPase and aquaporin, and which
pump water into the canal lumen for expulsion from the animal
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(Sundaram and Buechner, 2016). In contrast, the sma-1(e30)
mutant (Fig. 5 d) exhibited an electron-dense terminal web layer
that was no longer juxtaposed to the apical membrane. In ad-
dition, the terminal web was broken in places, with large gaps
between electron-dense areas (arrowheads in Fig. 5 d’). Al-
though canalicular vesicles were numerous in this mutant, the
canalicular membrane appeared disorganized in areas where
the terminal web was distant from themembrane. Finally, in the
exc-2(rh90) mutant missing the largest intermediate filament
protein, the terminal web was largely missing from some areas
of the apical membrane, and very few canalicular vesicles were
visible, as seen in Fig. 5 b, although some areas of the canal in
exc-2(rh90) and exc-2(rh209) animals retained some terminal
web together with canaliculi attached, as reported previously
(Al-Hashimi et al., 2018; Buechner et al., 1999). These results
confirm that intermediate filaments make up the terminal web
of the excretory canal, similar to terminal webs in the gut (Coch
and Leube, 2016), and that βH-spectrin is required for proper
arrangement of these intermediate filaments. In addition, the

terminal web appears to be necessary for stabilization of the
network of canalicular vesicles that are presumed to carry out
osmoregulation of the animal in hypotonic environments.

Apical actin filaments are bundled in exc-1, exc-5, and exc-9
mutants
Previous data showed that EXC-9, EXC-1, and EXC-5 act in se-
quence to regulate endosomal vesicle transport in the excretory
canals (Grussendorf et al., 2016; Mattingly and Buechner, 2011;
Tong and Buechner, 2008). To investigate the potential cargo or
cytoskeletal protein being regulated, we used a strain containing
two integrated constructs that both use a canal-specific pro-
moter to express either a cytoplasmic CFP or the actin dye
LifeAct (Shaye and Greenwald, 2015). To better visualize the full
length of actin filaments along the curved apical surface of the
canals, a series of Z-axis pictures were taken and merged into a
single micrograph (Fig. 6 a). In the wild-type canal background
(Fig. 6 b), the apical membrane actin filaments appear as a
uniform field of short actin filaments throughout the length of

Figure 3. EXC-1/IRG is localized exclusively at the apical surface of canals. (a) Scale diagram of the GTPase domains within the EXC-1 protein.
(b–b’’) Collocation of (CRISPR/Cas9–generated endogenous) EXC-1::GFP and mKate2::EXC-9 at the canal apical surface. EXC-1 fluorescence (b); EXC-9 flu-
orescence (b’); and merge (b’’). (b’’’) Fluorescence intensity profiles of mKate2::EXC-9 (red) and EXC-1::GFP (green) along the white line of b’’. (b’’’’) Com-
parison of average canal length of wild-type and exc-1::gfp animals. For fluorescence studies, n = 20 animals examined; for canal length, n = 50 animals
examined. (c–c’’) EXC-1::GFP remains at the apical surface in a homozygous null exc-9(qp130) cystic mutant. EXC-1 fluorescence (c); DIC image of fluid-filled
cysts (c’); and merge (c’’); n = 25 animals examined. (d) EXC-1 is retained at the surface of canals in a homozygous exc-2(qp110) cystic mutant. EXC-1 fluo-
rescence (d); DIC image of fluid-filled cysts (d’); and merge (d’’); n = 25 animals examined. All scale bars, 5 µm.
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the canal apical surface. This structure is maintained in the
sma-1mutant (Fig. 6 c), where the canal lumen is often enlarged
to a similar degree throughout the canal without obvious sep-
tations (Buechner, 1999); this result suggests that the labeled
actin filaments are anchored to the membrane by another
means. In the exc-9 mutant background, some aggregation of
actin filaments into thick bundles (Fig. 6 d, arrow) became ev-
ident in areas with larger septate cysts, corresponding to septate
cysts that thin the amount of cytoplasm present. This effect was
progressively exacerbated in exc-1 mutants (Fig. 6 e) and most
dramatically in the large cysts of exc-5 mutants, where the actin
filaments contained little actin except in thick bundles (Fig. 6 f).
In addition, in the exc-5 mutant, these thick bundles were col-
located with accumulations of cytoplasmic material around the
swollen luminal cyst. We conclude that these three exc mutants
therefore are needed to stabilize a uniform actin meshwork at
the apical surface.

EXC-1 and EXC-9 promote RAB-mediated apical transport
In exc-1, exc-5, and exc-9 mutants, endosomal expression of the
basal trafficking marker RME-1 was significantly decreased
within the cytoplasm of canal cysts, while that of other vesicular

markers, especially the early endosome antigen EEA-1 and (to
a lesser extent) the apical trafficking marker RAB-11.1, were
increased (Grussendorf et al., 2016; Mattingly and Buechner,
2011). To better understand the relationship of these EXC
proteins on traffic movement within the excretory canal, we
first examined competition between apical and basal traf-
fic markers (Fig. 7, a–c). A strain carrying a stable integ-
rant of mCherry::rme-1 driven by a canal-specific promoter
(Mattingly and Buechner, 2011) exhibited punctate endo-
somes and strong cytoplasmic expression (Fig. 7 a). We
crossed this marker line to a strain harboring an integration
of a construct that strongly expresses canal-specific gfp::rab-
11.1 (Fig. 7 b). With the expression of rab-11.1, expression of
mCherry::RME-1 in the canal was greatly reduced to near-
background levels (Fig. 7 c). We conclude that apical and
basal transport within the excretory canal cell depends on the
ratio of apical-directed and basal-directed transport ma-
chinery present.

Next, since expression of Rab proteins within the canal ap-
pears to affect transport ratios, as in the intestine (Sato et al.,
2014), and exc-9, exc-1, and exc-5 mutants impair vesicle traf-
ficking and maintenance of the apical surface (Grussendorf

Figure 4. SMA-1 is required for proper intermediate filament arrangement. (a and a’’) Fluorescence of labeled EXC-2 (n = 20) and IFA-4 (n = 20) in wild-
type background. (a’ and a’’’) Fluorescence intensity profile along the white line in the corresponding micrograph. (b–e) Fluorescence of labeled IFA-4 or EXC-2
in homozygous sma-1 or exc-4 backgrounds. (b’–e’) Fluorescence intensity profile along the white line in the corresponding micrograph. (b) IFA-4 fluorescence in
sma-1(ru18) homozygous mutants (n = 25 animals examined). (c) IFA-4 fluorescence in exc-4(rh133) mutants (n = 25 animals). (d) EXC-2 fluorescence in sma-1(ru18)
mutants (n = 25 animals). (e) EXC-2 fluorescence in exc-4(rh133) mutants (n = 25 animals).
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et al., 2016; Mattingly and Buechner, 2011; Tong and Buechner,
2008), we examined whether overexpression of an apical-
directed Rab protein could rescue mutation of the exc-1, exc-5,
and exc-9 genes (Fig. 7, d and e). A construct overexpressing
canal-specific rab-8 was injected into exc-1 (rh26), exc-5 (rh232),
and exc-9(qp130) mutants (Fig. 7, d–f). Cyst formation in these
mutants causes significant shortening of the canals, but in the
presence of excess RAB-8, the canals of exc-1 and exc-9 mutants
were significantly longer (Fig. 7 d). Similarly, overexpression of
any of these exc genes caused the canals to have a “convoluted”
phenotype, where the basal surface was shortened, while the
normal-diameter luminal surface was still extended and ended
up coiled within the canal (Tong and Buechner, 2008; Fig. 7 e).
Canal overexpression of rab-8 also caused a significant increase
in convoluted canals in exc-1 and exc-9 mutants (though not
as strong as overexpression of the exc proteins themselves;
Grussendorf et al., 2016; Fig. 7 f). Surprisingly, overexpression of
rab-8 had no significant effect on the exc-5 mutant, either in
canal length or formation of cystic canals (Fig. 7, d and f). These
genetic epistasis experiments suggest that RAB-8 acts down-
stream of EXC-9 and EXC-1 in directing cargo to the apical
surface.

Discussion
Intermediate filament EXC-2 retains EXC-9/CRIP at the apical
surface
The cytoskeleton forms and reinforces the shape of cells. Pro-
jections of actin and microtubules underlie cell protrusions,
while intermediate filaments act as ropes or stretchable bun-
gee cords to allow limited stretch to the plasma membrane
and nuclei (Delacour et al., 2016; Gerace and Burke, 1988;
Gruenbaum and Foisner, 2015). Both of these elements are
needed for formation of long hollow tubules, which must be
guided to grow out along the length of the body wall, but whose
luminal diameter must be restrained as excess water is brought
into the tubule to be expelled from the organism (Sundaram and
Buechner, 2016; Sundaram and Cohen, 2017). The results in this
paper show that EXC-1/IRG GTPase and EXC-9/CRIP1 are both
held predominantly near the apical surface, either in the plasma
membrane itself or together with the EXC-2/IFA-4/IFB-1 inter-
mediate filaments of the terminal web surrounding the lumen.
EXC-1 is located at the apical surface even in exc-2 mutants
where there is little or no terminal web (Fig. 3). Upon re-
examining the amino acid sequence of EXC-1 with the help
of predictive lipidation tools, we found that its N-terminus

Figure 5. Transmission electron micrographs of cross section of canals in wild-type and homozygous mutant animals. (a–c) N2 wild type (a); exc-
2 (rh90) mutant (b); and exc-4(rh133) mutant (c); electron-dense intermediate filament–rich terminal web (arrows) is closely apposed to the apical membrane,
and canalicular vesicles (asterisks) are connected to the lumen and to each other (n = 3 animals, multiple sections each). In large cyst of exc-2(rh90) mutant (b),
the terminal web is missing, as is the bulk of canalicular vesicles. (d) sma-1(e30) mutant shows frequent detachment of the terminal web (arrows) from the
apical membrane, with visible gaps (arrowheads) between sections of the terminal web (n = 6 animals, multiple sections). (d’) Enlargement of boxed section of
d; in spite of terminal web disruption, abundant canalicular membrane is visible, though the vesicles appear disrupted in areas where the terminal web is
separated from the membrane.
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contains a cotranslational myristoylation sequence MGHKTS
(Johnson et al., 1994; Udenwobele et al., 2017; Xie et al., 2016).
Our attempts to engineer a CRISPR/Cas9–mediated insertion of

GFP at the N-terminus of this protein were unsuccessful, which
may indicate that this sequence is essential for organismal vi-
ability. Future biochemical studies of possible lipidation of this

Figure 6. Actin filament mesh exhibits increasingly severe bundling gaps in exc-9, exc-1, and exc-5 mutants. (a) Scheme of summation of fluorescence
through Z-stack serial pictures through half the depth (nearest to hypodermis and microscope objective) of canals and cysts to show filament morphology of
LifeAct-labeled filaments at the canal apical surface. (b–f’’) All animals express cytoplasmic CFP under an integrated canal-specific promoter and an over-
expressing construct of fluorescent actin label (LifeAct) under the same promoter. Left column: cytoplasmic fluorescence; center column, actin filament mesh;
right column, merge. (b–d)Wild-type background (b); homozygous sma-1(ru18) background (c); and homozygous exc-9(n2669) background (d); arrows indicate
a distinct thickly bundled actin filament, while arrowheads indicate a less distinct actin bundle. (e) Homozygous exc-1(rh26) background. (f) Homozygous exc-
5(rh232) background. All scale bars, 5 µm. n ≥ 20 for all samples.
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protein should be fruitful for further understanding its inter-
actions with cytoskeletal elements.

EXC-9 is a small protein containing only a single LIM domain
and a short tail and was expected to be fully cytoplasmic. It was
highly surprising to find that this protein was instead found to

be predominantly concentrated at the terminal web at the apical
surface, though with a visible fraction in the cytoplasm (Fig. 1).
Also surprising was the finding that, of the three intermediate
filament proteins within the excretory canal, EXC-2 is specifi-
cally needed to retain EXC-9 at the terminal web (Fig. 1). These

Figure 7. EXC-1 and EXC-9 promote RAB-mediated apical transport. (a and a’) mCherry::RME-1 is overexpressed in the excretory canals. Fluorescence
micrograph of section of excretory canal expressing mCherry::rme-1 construct under an exc-9 promoter; endosomes are visible as bright puncta (a); mea-
surement of fluorescence in boxed area of panel a, measured in direction of arrow along line in panel, with a width of 300 pixels (space between dotted lines; a’).
(b–b’’) Expression of GFP::RAB-11 in worms also expressing mCherry::RME-1. Fluorescence micrograph (b); fluorescence of mCherry::RME-1; area measured is
shown in box (b’); and fluorescence intensity of GFP::RAB-11 and mCherry::RME-1 (b’’). (c) Graph of average ratio of fluorescence of mCherry::RME-1 to auto-
fluorescence within worm in area of canal. Left column: average ratio for animals expressing fluorescent mCherry::RME-1 alone; right column: for animals expressing
GFP::RAB-11 in addition to mCherry::RME-1; n > 25 animals for each column. All data points are shown, including themean ± SD. ***, P < 0.001 as calculated via one-
way ANOVA test. (d) Length of excretory canals of excmutant animals and same strain overexpressing rab-8; posterior canal lengths were measured. All data points
are shown, including the mean ± SD. ***, P < 0.001; P value is calculated via one-way ANOVA test. (e and e’) Convoluted canal phenotype in exc-1 and exc-9mutant
animals with overexpression of rab-8. exc-1−/− (e); exc-9−/− (e’). Circled areas show regions of normal-diameter lumen coiled within shortened, swollen cytoplasm.
(f)Measurement of frequency of canals showing convoluted tubules trapped within shortened basal surface; a convolution is defined as the lumen crossing itself at
least once. Convolutions were counted in the progeny of animals microinjected with buffer (Mock) and for animals overexpressing rab-8. ***, P < 0.001; P value is
calculated by one-way ANOVA test. n > 35 for all samples in d and f. OE, overexpressing.
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results suggest that EXC-9 is either present in the cytoplasm
before being bound to the terminal web, or it can be released
into the cytoplasm from the terminal web. Impairment of the
EXC-9 LIM domain (Fig. 2) reduced the ability of EXC-9 to bind
to the terminal web, with regions of lower terminal web fluo-
rescence associated with lumen widening, possibly indicative of
formation of incipient cysts. These observations reinforce the
idea that EXC-9 binding to the canal terminal web is important
for maintaining the narrow diameter of the excretory canals.
The effect of mutation of the LIM domain was surprisingly
small, however, compared with that of null mutants of exc-9. It is
possible that the C-terminal domain of EXC-9 could be most
critical for the function of this protein or instead that the mu-
tated LIM domain retained some residual binding ability.

Overexpressed labeled EXC-2 (intermediate filament) NTD
appeared along the entire canal length and largely prevented
EXC-9 from binding to the terminal web, resulting in EXC-9
being essentially all cytoplasmic. In contrast, overexpression of
the EXC-2 CTD lowered the amount of free EXC-9 visible in the
cytoplasm and concentrated this protein at the terminal web
toward the cystic posterior end and especially at the canal tip
(Fig. 2). The canal luminal surface extends the length of the
animal, closely following the growing tip of the basal surface
during embryogenesis and the first larval stage (Fujita et al.,
2003). For overexpressed EXC-2 CTD and EXC-9 to label only
the canal luminal tip and cystic areas, CTD must accumulate
there until a step occurs to restrain dilation of the membrane,
presumably via vesicle trafficking and construction of the actin
cytoskeleton and terminal web.

There are 11 cytosolic intermediate filaments in C. elegans
(Carberry et al., 2009; Dodemont et al., 1994; Karabinos et al.,
2001; Zuela and Gruenbaum, 2016). Several studies have focused
on the intestinal terminal web, where intermediate filaments
are also necessary to maintain narrow luminal diameter (Coch
and Leube, 2016; Geisler et al., 2020; Karabinos, 2019; Karabinos
et al., 2017; Khan et al., 2013, 2019). While exc-9 and exc-1 are not
expressed within the intestine, other LIM-domain proteins
could be interacting with intermediate filaments in this tissue.
EXC-1, EXC-9, and its homologue VALV-1 are expressed in a
range of tissues that undergo stretching and bending move-
ments, including the intestinal-pharyngeal valve, spermathecal
valves, and amphid glia (Grussendorf et al., 2016; Tong and
Buechner, 2008).

Interactions with the actin cytoskeleton
Mutants in sma-1 (encoding βH spectrin) show disorganization of
the terminal web (Fig. 4 and Fig. 5; Buechner et al., 1999; Praitis
et al., 2005), which indicates that this spectrin has an organizing
effect on the intermediate filament network, though the sma-1
mutation does not abrogate the terminal web’s overall formation
near the apical membrane. Significantly, sma-1 mutants tend to
exhibit very wide canals with few narrow septations, with nu-
merous canaliculi attached to the apical membrane (Fig. 5 d),
unlike mutants of intermediate filament genes (Fig. 5 b; Al-
Hashimi et al., 2018; Khan et al., 2019; Kolotuev et al., 2013).
The presence of intermediate filaments at the apical membrane
therefore appears to be necessary for attachment of these canaliculi,

as much as the activity of the exocyst and STRIPAK complex is
(Armenti et al., 2014; Lant et al., 2015).

Loss of EXC-9, EXC-1, or EXC-5 function resulted in ACT-5
actin filaments appearing as thick cables restraining the lumen,
which swelled into cysts around these cables (Fig. 6). Surpris-
ingly, sma-1 mutants lacking βH-spectrin still maintained a
tightly knit meshwork of actin around the canal lumen, which
suggests that unlike the FERM-domain protein ERM-1 (Khan
et al., 2013, 2019), this spectrin is not the most critical orga-
nizer of these actin filaments. This result was surprising, since
SMA-1 regulates actomyosin cytoskeletal contractility in several
C. elegans tissues (Wirshing and Cram, 2018). Disorganization of
the terminal web could therefore be secondary to SMA-1’s ef-
fects on cytoskeletal actin, or perhaps actomyosin contractility
may not play a significant role in organizing the canal actin
meshwork.

Interactions with Rab proteins
EXC-9 acts genetically upstream of and binds to EXC-1, which
itself acts upstream of EXC-5. Results here show that over-
expressing RAB-8 partially rescues the exc-9 and exc-1 mutants,
but not the exc-5 mutants (Fig. 7). While the result is consistent
with RAB-8 acting downstream of EXC-9 and EXC-1, over-
expression of these two genes by themselves gives stronger
rescue (Grussendorf et al., 2016; Tong and Buechner, 2008),
suggesting that EXC-9 and EXC-1 may stimulate multiple traf-
ficking proteins. Both RAB-11.1 and RAB-8 target vesicles to the
apical membrane (Sato et al., 2014), so they may be acting to-
gether downstream of EXC-1.

Rab8 has been seen to direct traffic apically and basolaterally
in different organisms and cell types (Ang et al., 2003; Bellec
et al., 2018; Sato et al., 2007), which complicates interpretation
of our overexpression results. The exc mutants show clear de-
fects in morphogenesis and maintenance of the apical surface,
and overexpression of exc genes yields normal-diameter “con-
voluted” lumens within canals that are severely shortened on
the basal surface. While RAB-8–directed cargo in vesicles inside
the excretory canals has not been identified, overexpression of
rab-8 phenocopies the convoluted canals. This suggests that
RAB-8 directs traffic to the apical surface in this cell type.

RAB-8 did not rescue the effects of exc-5mutation. This could
indicate that RAB-8 acts upstream of EXC-5 (as in the model
posited above), which is expressed at or near the canal apical
surface (Mattingly and Buechner, 2011), or that RAB-8 stim-
ulates a different guanine exchange factor while a different
protein (perhaps again RAB-11) stimulates EXC-5. Further re-
search on the function of various Rab proteins and guanine
exchange factors at the canal apical surface should provide a
fruitful avenue of study.

Implications: Modeling tubule growth
Several alternative hypotheses can explain how these interac-
tions form the terminal web and guide outgrowth of the canal
lumen. One attractive hypothetical model is shown in Fig. 8.
EXC-1/IRG is associated with the membrane along the entire
length of the canal. At sites where EXC-1 is exposed to the cy-
toplasm (i.e., at the growing canal tip and at sites of membrane
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addition during growth, such as evenly spaced “beads” in the L1
stage; Kolotuev et al., 2013), soluble EXC-9/CRIP can bind to and
activate EXC-1 (Grussendorf et al., 2016), as well as be retained
by the CTD of EXC-2. EXC-1 then directs the movement of
vesicles via RAB-8 and/or via guanine exchange factor EXC-5/
FGD to facilitate actin polymerization for vesicle delivery to that
area of the tubules. Polymerization of cytoskeletal elements
ACT-5/actin, SMA-1/spectrin, and the three intermediate fila-
ments EXC-2, IFA-4, and IFB-1 follows.

While the present results provide a plausible framework by
which intermediate filaments can serve as a luminal scaffold for
proteins that regulate directed tubular growth, other models are
equally plausible. Future studies examining the biochemistry of
EXC-1 and EXC-9 activation during canal development will be
invaluable in understanding tubular growth mediated by these
two proteins and by intermediate filaments. Recent manuscripts
on bioRxiv (Sun et al., 2020 Preprint; Winkelman et al., 2020
Preprint; not yet peer reviewed) suggest that other LIM-domain
proteins are capable of measuring tension in cytoskeletal actin
filaments. The growing excretory canal could provide an ex-
ample of where the LIM domain of CRIP is performing a similar
functionwith the stretchable domains of intermediate filaments.
This model of the excretory canal potentially suggests that cy-
toskeletal filaments as measured by CRIP/LIM–domain proteins
for repair/growth via IRG proteins and vesicle transport could
be a widespread mechanism for growth and repair of cytoskel-
etal elements linked to membrane. The homology of EXC-9 to
CRIP and EXC-1 to the IRG family of proteins (including the

autophagy regulator IRGM) suggests that study of the excretory
canal cell provides a model for greater understanding of the
regulation of these ubiquitous mammalian proteins.

Materials and methods
C. elegans strains
C. elegans strains were grown on BK16 bacteria (a streptomycin-
resistant derivative of OP50; Brenner, 1974) at 20C according to
standard techniques. All strains used are listed in Table S1.

DNA constructs and plasmids
EXC-2 NTD (amino acids 1–767), EXC-2 CTD (amino acids
1112–1339), RAB-8, and GFP::RAB-11.1 constructs were built by
means of Gibson assembly (NEBuilder HiFi DNAAssemblyMaster
Mix, Cat. #E2621S). pCV01 (Oka and Futai, 2000) was used as the
backbone vector. Detailed primers are listed in Table S2. CRISPR/
Cas9 modifications were performed according to the protocols of
the Goldstein laboratory (Dickinson et al., 2015). The sites of
modifications made are shown in Table S3.

Microscopy
Animals were examined via a Zeiss Axioskop microscope
equipped for both epifluorescence and differential interference
contrast microscopy with 40× (NA 1.3) and 63× (NA 1.4) ob-
jectives, and photographs were captured by use of an Optronics
MagnaFire Camera. Animals were placed on 2% agarose pads in
M9 solution + 35 mM NaN3. Contrast on DIC images was

Figure 8. Hypothetical model of extension of the excretory canal lumen. Diagram of distal end of a canal showing the canal lumen and terminal web
within the cytoplasm. Most proteins are shown in a narrow plane of focus, but ACT-5 actin and SMA-1 spectrin are shown covering the luminal membrane on all
sides; these are presumed to be added as the canal grows during development (right-hand side of the diagram). EXC-1/IRG is linked to the luminal membrane
(via presumed myristoylation site), while most EXC-9 is retained by the C-terminus of the EXC-2 component of the terminal web. In regions of osmotic stress
(“Gap”) or rapid growth (right-hand end), the terminal web is thinned or missing, and EXC-9 can make contact with and activate EXC-1. EXC-1 then directly or
indirectly (thick dashed arrows) stimulates RAB-8 to deliver vesicles (thin dashed arrows), containing cargo of unknown identity, that help rebuild or
strengthen the cytoskeleton at that location. Overexpressed EXC-2 CTD (short red lines on right) blocks EXC-1 activity.
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uniformly enhanced over the entire image to increase clarity.
The subcellular location of fluorescent proteins at high reso-
lution was examined through a FluoView FV1000 laser-
scanning confocal microscope (Olympus) with 60× objective
(NA 1.42). Lasers were set to 488-nm excitation and 520-nm
emission (for GFP and CFP) or 543-nm excitation and 572-nm
emission (for mKate2 and mCherry). All confocal images were
captured via FluoView software (Olympus), and collocation was
analyzed by use of ImageJ software. Fluorescent images from
both microscopes were false-colored (green to cyan, red to
magenta). Electron microscopy on thin sections of immersion-
fixed animals was performed on a Philips CM10 electron mi-
croscope following standard methods (Hall, 1995).

Statistical analysis
Canal length was measured as a percentage of full-length pos-
terior canals (reaching past the anus); full length was rated
100%; canals reaching to the vulva in the center of the animal,
50%; and complete lack of extension, 0%; lengths between these
landmarks were interpolated. Comparisons of canal length and
of percentage of convoluted canals were calculated via one-way
ANOVA.

Brightness of expression in the canals was measured in Im-
ageJ by measuring brightness along a line perpendicular to the
animal of maximum width (300 pixels). Average brightness of
the background was subtracted from all, then the ratio of av-
erage brightness in areas outside of the canal was subtracted
from average brightness in the area of the canal. The ratio of
canal-specific brightness to brightness of the worm overall was
plotted (e.g., Fig. 7 C).

Online supplemental material
Fig. S1 shows the expression pattern of EXC-9 outside the ex-
cretory canals. Fig. S2 shows the expression pattern of EXC-1
outside the excretory canals. Table S1 lists the strains used for
this study. Table S2 lists the primers used for making constructs.
Table S3 lists the mutations induced via CRISPR/Cas9 injection.
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Supplemental material

Figure S1. EXC-9 expression pattern outside the excretory canals. (a–a’’). EXC-9 shows expression in the uterine seam cell. (b–d’’) Anterior and posterior
gonadal distal tip cells (b–c’’) within the lumbar ganglion (d–d’’). For each set of micrographs, the top image shows fluorescence, the middle micrograph shows
the DIC image, and bottom image is merged.
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Provided online are three tables. Table S1 lists the strains used for this study. Table S2 lists the primers used for making constructs.
Table S3 lists the mutations induced via CRISPR/Cas9 injection.

Figure S2. EXC-1 expression pattern outside the excretory canals. EXC-1 is strongly expressed within the tip of the amphid sheath cells. Fluorescent
micrograph (a); DIC image (a’); and merge (a’’).
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