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Abstract

Objective: Evidence shows that gene mutation is a significant proportion of genetic factors associated with prostate cancer.
The DNA damage response (DDR) is a signal cascade network that aims to maintain genomic integrity in cells. This com-
prehensive study was performed to determine the link between different DNA damage response gene mutations and prostate
cancer.

Materials and methods: A systematic literature search was performed using PubMed, Web of Science, and Embase. Papers
published up to February 1, 2022 were retrieved. The DDR gene mutations associated with prostate cancer were identified by
referring to relevant research and review articles. Data of prostate cancer patients from multiple PCa cohorts were obtained
from cBioPortal. TheOR or HR and 95%CIs were calculated using both fixed-effects models (FEMs) and random-effects models
(REMs).

Results: Seventy-four studies were included in this research, and the frequency of 13 DDR genes was examined. Through
the analysis of 33 articles that focused on the risk estimates of DDR genes between normal people and PCa patients,
DDR genes were found to be more common in prostate cancer patients (OR = 3.6293 95% CI [2.4992; 5.2705]). Also,
patients in the mutated group had a worse OS and DFS outcome than those in the unmutated group (P < .05). Of the
13 DDR genes, the frequency of 9 DDR genes in prostate cancer was less than 1%, and despite differences in race, BRCA2
was the potential gene with the highest frequency (REM Frequency = .0400, 95% CI .0324 - .0541). The findings suggest
that mutations in genes such as ATR, BLM, and MLH1 in PCa patients may increase the sensitivity of Olaparib, a PARP
inhibitor.

Conclusion: These results demonstrate that mutation in any DDR pathway results in a poor prognosis for PCa patients.
Furthermore, mutations in ATR, BLM, and MLH1 or the expression of POLR2L, PMS1, FANCE, and other genes significantly
influence Olaparib sensitivity, which may be underlying therapeutic targets in the future.
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Introduction

Prostate cancer is the most common malignant tumor with the
highest number of confirmed cases and the second-highest
number of fatal patients after lung cancer in American males.
In the United States, an estimated 268 490 new cases will be
diagnosed in 2022, with 34 500 men dying as a result of the
disease.1 Urologists and academics are focusing on how to
detect prostate cancer early and provide accurate and effective
treatment. The genetic susceptibility of malignant tumors is
receiving increasing attention these days. Cancers such as
breast, ovarian, colorectal, and kidney cancer have all been
linked to genetic factors. Recent data show that approximately
10% of patients with advanced prostate cancer may have a
well-characterized tumor suppressor gene mutation.2 Prostate
cancer occurrence may also be linked to genetic factors.3,4 For
instance, studies have shown that high-risk genetic factors
cause 8% of prostate cancer.5 The proportion of prostate
cancer variation by germline genetics is about 58% in prostate
cancer patients.6

So far, genome-wide studies have identified more than 100
common mutations in prostate cancer patients, which account
for a significant portion of the genetic factors underlying
prostate cancer, including mutations in DNA damage repair
genes.7-10 Genomic DNA is frequently harmed by a variety of
internal and external factors such as double-strand breaks.
Cells have evolved a well-coordinated signal cascade network
called DNA damage response (DDR) to maintain genomic
integrity, which senses and transmits damage signals to ef-
fector proteins and induces cell responses such as cell cycle
arrest, DNA repair pathway activation, and cell death, and
many genes are involved, including BRCA, ATM, and
CHEK2.11 Because cancer cells frequently have specific ab-
normalities in DNA damage response, several treatment
strategies based on this discovery have been concerned and
developed, for example, in combination with DNA damage
drugs to enhance the ability to kill cancer cells, or as a single
drug to treat cancer with DNA damage repair defects. One of
the most notable examples is the killing effect of poly ADP
ribose polymerase (PARP) inhibitor on BRCA1 or BRCA2
deficient tumors, which takes advantage of the defects of DNA
repair of cancer cells.12

PARP is an enzyme found in our cells which helps dam-
aged cells to repair themselves. As a targeted cancer drug,
PARP inhibitors (PARPi) stop the PARP from doing its repair
work in cancer cells. Although PARPi such as Olaparib and
Rucaparib has been developed for cancer patients with DDR
gene mutation, research on the relationship between prostate
cancer and DDR genes mutations is still in infancy. Owing to

the variability in research design, target genes, and researches
involved in this field, there are only a few systematic reviews
on the relationship between the frequency of different sub-
types of DDR genes mutations and their prognosis in prostate
cancer patients,13,14 and no meta-analysis on the association of
different subtypes of DDR gene mutations with prostate
cancer risk and frequency. Furthermore, despite a few meta-
analyses focusing on the high-incidence mutation genes such
as BRCA1/2, there are subtle differences in the results.15,16

Hence, it is imperative to undertake a comprehensive
analysis of the relationship between DDR gene mutations and
prostate cancer. We examined several genes associated with
PCa DDR, including ATM, BRCA1, BRCA2, BRIP1, CHEK2,
MUTYH, MSH2, MSH6, NBN, PALB2, PMS2, RAD51D, and
TP53. The present study has gathered as many original studies
as possible for analysis, which can provide more detailed and
credible data support for the incidence of prostate cancer in
DDR gene mutation carriers and the frequency of DDR genes
mutations in PCa patients.17

Materials and Methods

Literature Search

We consulted relevant research and review articles for the
most commonly identified DDR gene mutations in PCa pa-
tients. Furthermore, we deleted the DDR genes that few
studies focused on.18,19 On February 1, 2022, we conducted
searches in PubMed, Web of Science, and Embase using the
search string (BRCA1) OR (CHEK2)) OR (BRCA2)) OR
(ATM)) OR (BARD1)) OR (BRIP1)) OR (CHEK1)) OR
(PALB2)) OR (RAD51D)) OR (RAD51B)) OR (RAD51C)) OR
(NBN)) OR (MLH1)) OR (MSH2)) OR (MSH6)) OR (PMS2))
OR (DDR)) OR (DNA damage response) AND (PCa) OR
(prostate cancer)). We were left with 2432 potentially relevant
articles after removing duplicates. At least 2 of us (Xinglin
Chen, Xu Zhang) independently screened the titles and
abstracts of retrieved articles. This meta-analysis was
conducted in accordance with the guidelines for systematic
reviews and meta-analysis preferred reporting items.20 In
addition, our study was registered with INPLASY, number
INPLASY2021120095.

Study Selection

The following modified PICOS were used to guide study
eligibility screening: (1) participants: human adult subjects
(age >18) with DDR gene mutations; (2) intervention: none;
(3) comparisons: prostate cancer patients vs the general
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population, prostate cancer patients with DDR gene mu-
tations vs those without DDR gene mutations; (4) out-
comes: frequency (number of DDR gene mutation carriers
among prostate cancer patients), ratio (with or without
DDR genes between prostate cancer patients); (5) study
design: observational studies; (6) only prostate cancer
were included, other cancers and other prostate diseases
were excluded. DDR gene mutations included in our
analysis were pathogenic, deleterious (frameshift inser-
tion, deletion, nonsense mutation, or known pathogenic
splice-site alteration), truncation, or assumed loss of
function (in the pedigree analysis). Studies without ex-
plicit mention of clinical significance but with data on the
specific nucleotide change were included if the variants
were defined as pathogenic in ClinVar (http://www.ncbi.
nlm.nih.gov/clinvar/), a public archive of relationships
among sequence variation and human phenotype. We also
excluded editorials, letters, commentaries, conference
abstracts, and review papers, as well as publications re-
porting on prostate diseases other than prostate cancer,
studies with duplicate participants, and studies with in-
sufficient data to allow calculations.

Data Extraction

Four reviewers (Xinglin Chen, Xiaohan Ren, Xu Zhang, and
Yuang Wei) independently screened article titles and abstracts
for eligibility to reduce bias and improve reliability. Data were
extracted using a predeveloped worksheet: author; publication
date; study design; mutation type; study location; population;
description of cases and, as applicable, controls (eg, number,
recruitment method, matching, etc.); age and gender of sub-
jects; estimates of risk, frequency, or survival with corre-
sponding 95% confidence intervals (95% CI) or relevant
data to calculate such. If more information was required, the
authors were contacted. Disagreement was resolved by
consensus.

Quality Assessment

Four reviewers (Xinglin Chen, Xiaohan Ren, Xu Zhang,
Guangyao Li) independently assessed the quality of studies
using the Newcastle-Ottawa Scale (NOS), which consists of 8
items covering 3 domains: study group selection, exposure
and outcome determination, and group comparability. The
ratings are based on a five-star scale, with a maximum score of
9. Studies with 1 to 3 stars are considered low quality, studies
with 4 to 6 stars are considered moderate quality, and studies
with 7 to 9 stars are considered high quality.

Outcome Measures

We examined several genes associated with PCa DDR, in-
cluding ATM, BRCA1, BRCA2, BRIP1, CHEK2, MUTYH,
MSH2, MSH6, NBN, PALB2, PMS2, RAD51D, and TP53. The

mutation frequency of each gene in prostate cancer patients
were measured, and the frequency and 95%CI were calculated
directly from the data presented in this article.

Open-Access Data Acquisition

cBioPortal (cBio Cancer Genomics Portal, https://www.
cbioportal.org/) was used to obtain data of the expression,
mutation, and survival data of patients from multiple PCa
cohorts. As a public resource project, the cBioProtal integrated
multidimensional cancer genomics data from over 5000 tumor
samples from 20 cancer studies, which could assist researchers
in exploring genomic information in cancers intuitively.17 The
drug sensitivity data were obtained from the website of the
Genomics of Drug Sensitivity in Cancer (GDSC) project,
which is the l most comprehensive open-access resource for
drug sensitivity in cancer cells and molecular markers of drug
response.18

Data Synthesis and Analysis

All statistical analyses were performed in the R version 4.0.2
(R Foundation for Statistical Computing, Vienna, Austria;
http://www.R-project.org) and RevMan v.5.0 software (Co-
chrane Collaboration, Oxford, UK). Fixed effects models
(FEMs) and random effects models (REMs) were both fitted to
determine which model types were best suited to the data.
Heterogeneity was assessed by the Q test and the I2 statistic.
Statistical significance was set at a P-value <.05. Publication
bias was assessed using funnel plots for direct comparisons
with 10 or more studies. Sensitivity analysis was performed to
assess the influence of individual studies on the summary
effect estimate.

Results

Search Results

The database search yielded 2208 PubMed results, 104 Cochrane
results, 4350 Embase results. We discarded 4094 duplicates and
removed 1596 studies based on title and abstract screening.
Additionally, 177 studies were systematic reviews or case re-
ports, 374 studies did not provide indicators related to exposure
outcomes, and 312 studies focused on the related mechanism of
the DDR gene. We were unable to obtain the full text of 35
articles despite efforts to contact the investigators in 74 of in-
cluded studies.21-94 The frequency of DDR genes assessment
was the main objective of the study. Figure 1 summarizes the
study selection procedure and search results.

Description of Studies

The included studies were published between 1973 and 2021.
A total of 74 studies were included in the meta-analysis.
According to the DDR gene Classification of outline, we
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assessed 207655 participants. The DDR gene Classification
of outline included base excision repair (BER), Fanconi
anemia (FA) pathway, Checkpoint factors, homologous re-
combination (HR), mismatch excision repair (MMR), nu-
cleotide excision repair (NER), non-homologous end-joining
(NHEJ), and translesion DNA synthesis (TLS). In our meta-
analysis, we looked at the frequency of 13 DDR genes in
prostate cancer gene cells, including ATM, BRCA1, BRCA2,
BRIP1, CHEK2, MUTYH, MSH2, MSH6, NBN, PALB2,
PMS2, RAD51D, and TP53. 27 studies assessed the frequency
of ATM, 28 studies evaluated BRCA1, 38 studies evaluated
BRCA2, 6 studies assessed BRIP1, 21 studies assessed
CHEK2, 14 studies assessed MSH2, 14 studies assessed
MSH6, 6 studies assessed MUTYH, 9 studies assessed NBN,
13 studies assessed PALB2, 10 studies assessed PMS2, 5
studies assessed RAD51D, and 6 studies assessed TP53.

The Frequency of Main DNA Damage Response Gene
in Prostate Cancer Patients

BRCA2 gene had the highest possibility of occurrence (REM
Frequency = .0400, 95% CI .0299 - .0513), whereas BRIP1
gene had the lowest possibility of occurrence (REM Fre-
quency = .0016, 95% CI .000 - .0046) in PCA patients. The
overall results are shown in Figure 2. Furthermore, the mu-
tation frequency of CHEK2, ATM, and MUTYH in prostate
cancer patients was greater than 1%.

We conducted a subgroup analysis of the study and
evaluated the frequency of DDR genes in different country
PCa patients in order to investigate the causes of heteroge-
neity; the detailed information is provided below.

The frequency of ATM gene in prostate cancer patients. In ar-
ticles that explored patients with ATM gene mutation, 12
studies focused on American PCa patients, and the frequency
was .0126, heterogeneity estimates were reduced when par-
ticipants were selected from the USA (I2 = 51%) (Figure 3A),
ATM gene mutations occurred in prostate cancer for all dif-
ferent races. Sensitivity analyses demonstrated that the the
removal of Momozawa study influenced the observed pooled
effect size (Figure 5A). The funnel chart revealed a publication
bias (Figure 4A).

The frequency of BRCA1 gene in prostate cancer patients. The
BRCA1 studies demonstrated that the frequency of BRCA1
genes in prostate cancer patients in the USAwas .0070 (95CI
.0029 to .0123). Heterogeneity reduced when we conducted
subgroup analysis and decreased for the USA subgroup (I2 =
57%), for all different races, BRCA1 gene mutations occurred
in prostate cancer (Figure 3B). Sensitivity analyses dem-
onstrated that the removal of any of the studies had no
material effect on the observed pooled effect size
(Figure 5B). The funnel chart showed little publication bias
(Figure 4B).

The frequency of BRCA2 gene in prostate cancer
patients. BRCA2 gene mutations are also common in prostate
cancer patients; the results showed that the frequency of
BRCA2 gene in prostate cancer patients in the USA and UK
was .041 and .0393, respectively; BRCA2 gene mutations
occur in prostate cancer patients of all different races.
Heterogeneity remained high for the USA subgroup (I2 =
89%) and UK subgroup (I2= 85%) (Figure 3C). Sensitivity

Figure 1. Flow diagram of literature search strategy for the meta-analysis.
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analyses demonstrated that the removal of the Momozawa
study influenced the observed pooled effect size (Figure 5C).
The funnel chart revealed a publication bias (Figure 4C).

The frequency of CHEK2 gene in prostate cancer patients. The
subgroup analysis revealed that the frequency of CHEK2 gene
mutations in prostate cancer patients in the USA was .0253,
and heterogeneity was modestly reduced (I2 = 67%) across all

races (Figure 3D). Sensitivity analyses demonstrated that the
removal of the Momozawa study influenced the observed
pooled effect size (Figure 5D). The funnel chart showed a
publication bias (Figure 4D).

The frequency of MSH2 gene in prostate cancer patients. The
frequency of MSH2 genes in prostate cancer pa-
tients varied by country, ranging from .0022 to .0083.

Figure 2. Forest plots of the DDR genes mutation rate in patients with prostate cancer (A) BRCA2 (B) CHEK2 (C) ATM (D) MUTYH
(E) BRCA1 (F) TP53 (G) PMS2 (H) MSH2 (I) PALB2 (J) NBN (K) MSH6 (L) BRIP1 (M) RAD51D.
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Subgroup analysis showed that heterogeneity was de-
creased in the USA subgroup (I2 = 36%), China sub-
group (I2 = 0%) (Figure 3E). Sensitivity analyses
demonstrated that removing Nicolosi’s study reduced
the observed frequency to .0020 (Figure 5E). The funnel
chart demonstrated that there is no publication bias
(Figure 4E).

The frequency of NBN gene in prostate cancer patients. The
subgroup analysis revealed that the frequency of NBN genes
in prostate cancer patients from the USA was .0017, and
heterogeneity decreased when subgroup analysis was per-
formed (I2 = 0%), and NBN genes mutations were widely
observed across all races (Figure 3F). Sensitivity analyses
revealed that when the Momozawa study was removed, the
observed frequency increased to .0017 (Figure 5F). The funnel
chart demonstrated that there is no publication bias
(Figure 4F).

The Risk Estimates of DNA Damage Response Genes
Between Normal People and PCa Patients

A total of 33 articles compared the risk estimates of DDR
genes in healthy subjects and PCa patients; DDR genes are
more likely to be found in prostate patients than in healthy
subjects (OR = 3.6293 95% CI [2.4992; 5.2705]). Sub-
group analysis revealed that the BRCA2 subgroup ex-
hibited high heterogeneity; however, when BRCA2
related research was excluded, the heterogeneity de-
creased from 74% to 0%. Subgroups analyses also re-
vealed that the incidence of BRCA2 in prostate cancer
patients was significantly higher than in healthy subjects
(OR = 6.4010 95% CI [2.6177; 15.6524]) (Figure 6A).
The funnel chart demonstrates that the results had a
certain publication bias (Figure 6C). Sensitivity analyses
demonstrated that the removal of any studies had no
significant effect on the observed pooled effect size
(Figure 6B).

The Association of DNA Damage Response With
Patient Survival

As of October 2020, cBioportal had a total of 22 PCa
cohorts, 3 of which are TCGA cohorts (TCGA, Cell 2015;
TCGA, Firehose Legacy; TCGA, PanCancer Atlas). Fi-
nally, with the exception of TCGA Cell 2015 and Pan-
Cancer Atlas, we included 20 PCa cohorts in our survival
analysis. The findings showed that patients in the mu-
tated group had a worse prognosis (OS and DFS) than those
in the unmutated group in multiple DDR pathways
(Figure 7A, Base Excision Repair; Figure 7B, Checkpoints
factor; Figure 7C, Fanconi anemia pathway; Figure 7D,
Homologous recombination; Figure 7E, Homologous

Figure 3. Forest plots of the 6 DNA damage response genes
mutation rate in patients with prostate cancer regarding each country
(A) ATM (B) BRCA1 (C) BRCA2 (D) CHEK2 (E) MSH2 (F) NBN.
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recombination repair; Figure 7F, Mismatch Repair;
Figure 7G, Nucleotide Excision Repair; Figure 7H, Non-
homologous End-joining; Figure 7I, Translesion DNA
synthesis factor).

The Association of DNA Damage Response Genes
With Olaparib Sensitivity

We first investigated the IC50 difference of Olaparib in
multiple cancer tissues (Figure 8A) and the relationship
between some DDR genes and Olaparib sensitivity by in-
teracting with the website. The findings revealed that the
mutation population of ATR, BLM, and MLH1 appears more
sensitive to Olaparib (Figure 8B). Moreover, unlike POLR2L,
tumor cells with high expression of PMS1, FANCE, WRN,
RAD54L2, HMGB1, and DNTT are resistant to Olaparib
(Figure 8C).

The Association of DNA Damage Response Genes
With Rucaparib Sensitivity

Similarly, the IC50 overview of Rucaparib in multiple cancer
tissues was shown in Figure 9A. We found that mutation
population of MLL2 appears more sensitive to Rucaparib
(Figure 9B).

Discussion

Despite the high long-term survival of localized prostate
cancer, the therapeutic effect of metastatic prostate cancer
is still insufficient, even following combined treatment.
Recent evidence shows that DDR-related gene mutation
is tightly associated with PCa progression, particularly
in metastatic castration-resistant prostate cancer
(mCRPC).95 Currently, approximately 20-25% of mCRPC
patients have germline or somatic DDR gene mutations,
and this defect has been shown to influence PCa cell
sensitivity to PARP.96 As a result, it is highly imperative to
investigate the underlying relationship between DDR
genes and PCa patient prognosis.

We systematically investigated the role of DDR genes in
PCa progression and prognosis using integrated meta and
bioinformatics analysis. In our analysis, we found that DDR
gene mutations, particularly BRCA1, were more common in
tumor patients than in healthy males and that patients with
DDR gene mutations had poorer OS. Moreover, some DDR
genes were linked to the sensitivity of Olaparib, a PARP
inhibitor approved for treating advanced ovarian cancer pa-
tients with BRCA gene deficiency. In addition, Olaparib is
now approved for homologous recombination repair mutated
mCRPC as well.97

Figure 4. Funnel plots of effect estimates on DNA damage response genes mutation rate in patients with prostate cancer (A) ATM
(B) BRCA1 (C) BRCA2 (D) CHEK2 (E) MSH2 (F) NBN.
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Figure 5. Forest plots of the key factors in each analysis rate
(A) ATM (B) BRCA1 (C) BRCA2 (D) CHEK2 (E) MSH2 (F)
NBN.

Figure 6. (A) Forest plots of the DNA damage response genes
mutation rate between patients with prostate cancer and normal
population (B) Forest plots performed the Key factors (C) Funnel
plots performed effect estimates of each study.
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Findings from the present investigation revealed that the
frequency of mutations in BRCA2 was the highest of any
DDR genes, accounting for approximately 3.98% of all
mutations. We hypothesize that the prevalence of BRCA2

mutations in the population is unknown; meanwhile, when
compared to healthy males, PCa patients may have a sixfold
increase in BRCA2 mutation frequency. This result cor-
roborates the findings of a large body of research on DDR

Figure 7. Kaplan-Meier curves showing that the patients with DNA damage response mutations may have a worse prognosis (A) BER
pathway (B) Checkpoint factors (C) FA pathway (D) HR pathway (E) HRR pathway (F) MMR pathway (G) NER pathway (H) NHEJ
pathway (I) TLS pathway.
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Figure 8. (A) The IC50 of Olaparib in multiple cancers (B) The mutations of ATR, BLM, and MLH1 could improve the sensitivity of patients to
Olaparib (C) The volcano plot of the association between gene expression with Olaparib sensibility. The blue dot could decrease the
sensibility of Olaparib and the red dot could increase the sensibility of Olaparib.
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genes. For example, Lecarpentier and colleagues demon-
strated that BRCA1/2 mutation could increase the risk of
breast and prostate cancer in men based on the genotyping
data from 1989 males with a BRCA1/2 mutation. Further-
more, Patel and colleagues analyzed a large sample data of
6333 patients and found that specific BRCA2 mutations may
be associated with a higher risk of PCa status.98 Another
multicenter study conducted by Bancroft and colleagues
found that people with BRCA1/2 mutation have a higher risk
of developing PCa in 2481 male cohorts and that this
germline mutation could be a useful marker for disease
screening.99 It should be noted that the BRCA2 mutation in
PCa patients was also closely related to the sensitivity of
platinum chemotherapy and PARP inhibitors, which may be
an underlying therapeutic target in PCa.100 Aside from
BRCA1/2, other DDR genes with high mutation rates in the
PCa cohort included ATM, CHEK2, and RAD51D. Southey
and colleagues concluded that the CHEK2mutation serves as
reliable evidence for PCa risk in African men based on
clinical analysis of 22 301 cases and 22 320 controls.101

Furthermore, in another meta-analysis, researchers assessed
the radiation toxicity of PCa using 8 toxicity scores and
found that the ATM rs1801516 SNP may be associated with
increased toxicity reaction induced by radiation.102

We investigated the impact of mutations in the DDR
pathway on PCa prognosis, including OS and DFS, using data
from the cBioportal website. To the best of our knowledge, this
is the first study that comprehensively examined the role of
DDR mutation in PCa survival. Nearly all DDR pathway
mutations were associated with a poor prognosis. In contrast to
normal cells, cancer cells share the trait of genome instability
caused by DDR defects. Meanwhile, men with genome in-
stability, particularly shorter telomere lengths in somatic cells,
appeared to have a poor prognosis and were more likely to
develop PCa.103 Activation of cancer signaling is thought to
increase DNA damage through increased genome instability

and cancer progression.104 In the ATM knockout mice model,
Liyanage and colleagues demonstrated that tumor tissue de-
veloped in mice had an increased copy of chromosome 15,
where the c-Myc is located.105 Indeed, c-Myc has been im-
plicated in the development and progression of PCa, and these
studies established a link between the DDR gene and c-Myc.106

Undeniably, some DDR genes were rarely found in PCa pa-
tients, as such, few studies focused on them. However, based on
our findings, any DDR pathway mutation could significantly
worsen the prognosis of PCa patients. Subsequently, in clinical
practice, it is critical to pay close attention to the disease status
of PCa patients with DDR genes mutations.

Two members of the PARP family, PARP1 and PARP2, are
known to be the key enzymes in repairing DNA single-strand
breaks via the BER pathway. Olaparib, as a PARP inhibitor,
can causing strong killing effects in HR-deficient cells by
simultaneously blocking these 2 molecules, but not in cells
with a normal HR system.107 Our findings suggest that some
DDR genes such as POLR2L, PMS1, FANCE, WRN, and
others, may influence Olaparib sensitivity in PCa patients.
Similarly, our findings also suggest that the DDR gene MLL2
may influence Rucaparib sensitivity in PCa patients. Patients
with different levels of expression of these genes may have
different sensitivity to Olaparib or Rucaparib, which could be
useful for individualized treatment.

Our study has some limitations despite the high-quality
data and rigorous analysis process. First, our meta-analysis
had a level of heterogeneity that was not significantly re-
duced after subgroup analysis. Second, the cBioportal only
provides data on patient survival in the DDR mutation and
wild groups. If clinical information such as TNM classifi-
cation, age, and so on had been made public and available,
the conclusions would have become more believable. Fi-
nally, due to a lack of data, the prognosis analysis of a single
DDR gene was not completed, which may have resulted in
latent bias.

Figure 9. (A) The IC50 of rucaparib in multiple cancers (B) The mutations of MLL2 could improve the sensitivity of patients to Olaparib.
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Conclusion

Following the analysis of large sample data from multiple
studies, the highest frequency of BRCA2 mutation was found
in the PCa cohort. The mutation of ATM, BRCA1, BRCA2,
CHEK2 and RAD51D genes was more common in PCa patients
than in healthy males. Furthermore, it should be noted that
mutations in any DDR pathway have been linked to a poor
prognosis in PCa patients. Intriguingly, we discovered that the
expression of POLR2L, PMS1, FANCE, WRN, and other genes
was closely related to Olaparib sensitivity, suggesting that these
genes may be underlying therapeutic targets in clinical practice.

Appendix

Key of Definitions for Abbreviations

DDR DNA damage response
ATM ataxia telangiectasia-mutated gene
BRCA1 breast cancer gene 1
BRCA2 breast cancer gene 2
BRIP1 BRCA1 interacting protein C-terminal helicase 1
CHEK2 checkpoint kinase 2
MUTYH MutY DNA glycosylase
MSH2 MutS homologue 2
MSH6 MutS homologue 6
NBN nibrin
PALB2 partner and localizer of BRCA2
PMS2 PMS1 homolog 2
RAD51D RAD51 paralog D
TP53 tumor protein 53
BER base excision repair
CHEK checkpoints factor
FA fanconi anemia pathway
HR homologous recombination
HRR homologous recombination repair
MR mismatch repair
NER nucleotide excision repair
NHEJ nonho-mologous end-joining
TLS translesion DNA synthesis factor
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