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SUMMARY

Rationally designing drugs that last longer in the face of biological evolution is a critical objective 

of drug discovery. However, this goal is thwarted by the diversity and stochasticity of evolutionary 

trajectories that drive uncertainty in the clinic. Although biophysical models can qualitatively 

predict whether a mutation causes resistance, they cannot quantitatively predict the relative 

abundance of resistance mutations in patient populations. We present stochastic, first-principle 

models that are parameterized on a large in vitro dataset and that accurately predict the 

epidemiological abundance of resistance mutations across multiple leukemia clinical trials. The 

ability to forecast resistance variants requires an understanding of their underlying mutation 

biases. Beyond leukemia, a meta-analysis across prostate cancer, breast cancer, and 

gastrointestinal stromal tumors suggests that resistance evolution in the adjuvant setting is 

influenced by mutational bias. Our analysis establishes a principle for rational drug design: when 

evolution favors the most probable mutant, so should drug design.
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In Brief

Drug resistance is often addressed through next-generation drug design, but evolutionary diversity 

complicates these efforts. Here, Leighow et al. demonstrate that multi-scale models can 

quantitatively predict mutant frequency. We find that when heterogeneity is limited, analysis 

requires an understanding of substitution likelihood. We show that these models can inform 

evolutionarily optimized drug design.

INTRODUCTION

Since the time of Darwin, the most powerful demonstration of natural selection is the 

pervasiveness of genetic resistance following the adoption of new drugs for viruses, 

prokaryotes, eukaryotes, and cancers (Bonhoeffer et al., 1997a, 1997b; Goldberg et al., 

2012; Hastings, 2004; Iwasa et al., 2006; Pritchard et al., 2012, 2013). Thus, efforts to 

rationally design new drugs that are less susceptible to evolutionary change are urgently 

needed.

Foundational stochastic models of evolutionary dynamics in cancer and infectious diseases 

have focused on the probability that most drug resistance mutations pre-occur in large 

populations of tumors, bacteria, and viruses (Bozic et al., 2013; Coldman and Goldie, 1983; 

Goldie and Coldman, 1984; Iwasa et al., 2006; Komarova and Wodarz, 2005; Luria and 

Delbrück, 1943; Michor et al., 2005). These theoretical arguments led to the practical insight 

that non-cross-resistant drug combinations are needed to combat genetic diversity. They also 
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formed the basis for our current therapeutic regimens in HIV, tuberculosis, and cancer. 

However, despite this powerful example of evolution-guided therapeutic regimen design, 

drug resistance remains a problem. We posit that an important step forward involves using 

decades of improvements in evolutionary theory (Coldman and Goldie, 1983, 1986; Goldie 

and Coldman, 1979, 1984; Iwasa et al., 2006; Komarova, 2006; Lässig et al., 2017; Lind et 

al., 2019; Lobkovsky and Koonin, 2012; Lukačišinová and Bollenbach, 2017; Łuksza and 

Lässig, 2014) and population genetics (Gerrish and Lenski, 1998; LeClerc et al., 1996; 

Stoltzfus and McCandlish, 2017) to create additional design principles for drug discovery 

informed by evolution. We suggest that this might be achieved by expanding our ability to 

quantitatively predict which diverse resistance mutations can generate relapses in individual 

patients during treatment.

Recent and classic papers in cancer and bacteria have shown that biophysical methods and 

mutagenesis screens have great value in qualitatively identifying which mutations in a 

protein might lead to clinical resistance (Hall, 2004; Hauser et al., 2018; Rodrigues et al., 

2016). However, a long list of possible resistance mutations is challenging to incorporate 

into drug design. Which mutations will be most clinically abundant and thus constitute 

must-hit variants during drug development? To answer this question, we must go beyond 

qualitative predictions of possible resistant mutant identity to quantitative predictions of 

evolutionary outcomes. Recent progress in predictive evolution has shown that biophysical 

metrics can predict cellular fitness landscapes in antibiotic resistance (Rodrigues et al., 

2016) and that fitness effects can forecast seasonal flu trends (Lässig et al., 2017). These 

exciting steps forward led us to ask unanswered questions in drug resistance research: Can 

the diversity and distribution of mutations that contribute to resistance evolution be 

quantitatively predicted? And could those predictions guide drug discovery?

Two scales combine to quantitatively determine which drug resistance variants arise across a 

population: (1) the host-level variables affecting de novo resistance generation and (2) the 

community-level variables affecting the global spread of resistance. The de novo variables 

include growth rates in the presence and absence of drug (which are often measured), as well 

as mutation rate, codon structure, genetic context, and pharmacology (which are seldom 

measured). Human cancers offer a unique opportunity to investigate the process of parallel 

de novo resistance evolution in individual hosts, because they lack community-level 

variables that affect the spread of variants across a population (Figure 1A). Thus, predictive 

models of resistance to targeted cancer therapies are an interesting first test for evolutionary 

models of drug resistance variants across real-world populations.

The lack of a quantitative and predictive consideration of these evolutionary variables 

creates a gap in cancer patient care. In the targeted therapy of cancer, as first-generation 

drugs are used and resistance liabilities are identified, drug discovery scientists have raced to 

develop second-generation drugs that can target resistance mutations (Jabbour et al., 2015; 

Mok et al., 2017; O’Hare et al., 2009; Peters et al., 2017). Second-generation inhibitors can 

improve clinical outcomes in drug-resistant and drug-naive patients, but vulnerabilities 

persist because patient need drives rapid drug development in the face of immature clinical 

data (Jabbour et al., 2015; Mok et al., 2017; Peters et al., 2017). Thus, molecular design 

occurs before we know the true prevalence of specific mutations in the population, and 
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solutions are offered in the clinic before the full scope of the resistance problem is 

understood. Structure-based drug design is the industry standard to create potent second-

generation inhibitors and has succeeded in ABL1+ leukemias (O’Hare et al., 2009; Wylie et 

al., 2017), c-KIT/PDGFR-mutated gastrointestinal stromal tumors (GISTs) (Evans et al., 

2017), ALK/EGFR+lung cancers (Butterworth et al., 2017; Zhang et al., 2016), RET 

mutants/fusions (Subbiah et al., 2018), and TRK fusions (Menichincheri et al., 2016). 

Rational design is typically based upon the biophysics of binding to the target, not evolution. 

Using evolutionary theory to prospectively identify the residues and abundances that 

contribute to resistance following real-world drug use will improve pharmaceutical design 

(Hauser et al., 2018). By developing a broader picture of drug resistance evolution before 

clinical data have matured, evolutionary criteria may be combined with structure-function 

analysis to guide next-generation drug development.

In this study, we parameterize stochastic, first-principle models of drug resistance. By 

systematically studying multiple variables that could affect de novo resistance generation, 

we show that predictive evolutionary modeling can forecast population patterns of drug 

resistance without requiring clinical measurements of mutant-specific resistance parameters. 

Moreover, we show that multiple treatment scenarios and biological architectures create 

populations whose resistance evolution is sensitive to nucleotide substitution bias and codon 

usage. We posit that next-generation drug design could become more evolutionarily 

principled by adopting a simple design principle: when evolution favors the likeliest 

resistance mutation, so should drug discovery.

RESULTS

Analysis of a Single Salt Bridge in ABL1 Identifies Mutation Bias as a Correlate of Clinical 
Resistance Prevalence

We first examined two drug resistance mutations that exist at the same residue in the BCR-

ABL oncogene: E255. E255 forms a salt bridge interaction with K247, stabilizing the 

phosphate binding loop (P loop) that clamps over the ATP competitive inhibitor in the active 

site of the molecule (Figure 1B). E255 can mutate to become either E255V or E255K, both 

of which abolish the charge interaction and promote clinical resistance to imatinib (Figure 

1C), a BCR-ABL tyrosine kinase inhibitor (TKI) used to treat patients with chronic 

myelogenous leukemia (CML). Tallying the abundance of E255V and E255K mutations 

across clinical studies suggested that E255K was more prevalent (21 patients) than E255V 

(10 patients) (p < 0.05, chi-square test).

Next, we sought to examine why E255K might be more prevalent than E255V. We made 

BaF3 cells that harbored wild-type, E255V, and E255K BCR-ABL (a common model for 

BCR-ABL targeted therapies) (Shah et al., 2004), and we examined their relative sensitivity 

to imatinib. As expected, both mutations provided resistance to imatinib, but E255K 

provided significantly less resistance than E255V (Figure 1D). Importantly, this difference in 

phenotype occurs at clinically relevant concentrations of imatinib, which has a Cmax of 5.3 

μM and a Ctrough of 2.4 μM at steady state (Peng et al., 2004). Although further investigation 

into the biophysics of P loop dynamics could reveal the molecular mechanism behind this 

difference in drug resistance, we aimed to understand how a mutation that is worse at 
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conferring drug resistance might become more prevalent in humans. Because the less drug-

resistant variant appeared in the clinic more often, we examined the relative growth rate of 

E255V and E255K in the absence of drug. If E255V grows significantly slower before 

imatinib exposure, that might help to explain its lower incidence in a human population. 

However, the relative growth rates for E255V, E255K, and wild-type BCR-ABL cells were 

statistically indistinguishable (growth rate ± 95% confidence interval [CI] of 0.98 ± 0.075, 

1.03 ± 0.125, and 0.96 ± 0.075, respectively; Figure 1E), despite having 80% power to 

detect a 10% growth rate difference. However, we do not rule out drug-free fitness effects on 

the basis of this measurement alone. We include drug-free growth rates for all mutants as a 

potential explanatory variable during model selection in Figure 3.

Thus, we hypothesized that a mutation from E > K might be more likely to occur than a 

mutation from E > V. Examining the genetic code, E > K requires a transition from G > A, 

whereas E > V requires a transversion from A > T. No other single-nucleotide substitutions 

can cause these two mutations. Although transitions are usually more likely than 

transversions, mutation biases are known to vary across genes and cancer types. We sought a 

direct measurement of the mutation bias in ABL1 and CML. To do this, we turned to 

multiple datasets that have analyzed mutations in cancer and variation in the normal human 

exome. As an example, the Broad ExAC dataset of 100,000 human exomes (see STAR 

Methods; Data S1) can be used to estimate ABL1 mutation bias by focusing on the 

extremely rare variants that constitute 90% of the variation in the ExAC data. Using this 

dataset, we examined rare (<1/10,000) mutations in the ABL1 gene (Figure 1F, top). 

Splitting these mutations by nucleotide type on the transcribed strand to account for biases 

because of transcription, we quantified the nucleotide substitution biases in the ABL1 gene. 

The measured bias was consistent with a transition-transversion bias; i.e., G > A mutations 

were more likely than A > T mutations. Moreover, it was largely invariant depending upon 

the exact mutation types analyzed (synonymous, nonsynonymous, and intronic) and 

consistent with previous literature. This ABL1 mutation bias was also highly correlated with 

the mutation biases that were measured across the CML exome (Figure 1F, bottom).

We observed that the substitution likelihood of a given amino acid mutation (defined as the 

nucleotide substitution bias and the individual codon path) is correlated with the clinical 

prevalence of E255V versus E255K.

An Analytical Model of Stochastic Dynamics Identifies Parameter Regimes in which the 
Likeliest Mutations Can Predominate

Because E255K was more likely to occur than E255V, but not more fit in the presence or 

absence of drug treatment, we asked whether it makes theoretical sense that a more likely 

mutation can beat a more resistant one to create de novo drug resistance. To study this, we 

developed a probability model for the stochastic evolutionary dynamics of a hypothetical 

drug target with two possible resistance alleles. Allele A is more resistant (more fit in the 

presence of the drug) but less likely; allele B is less resistant but more likely (Figure 2A). 

The probability that either allele drives relapse was calculated from the allele-specific 

probabilities of seeding a detectable resistance clone. The probability that allele A is the 

dominant allele upon relapse is taken to be the sum of the probability that allele A is the 
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only mutant to spawn and the probability that allele A outcompetes allele B when both 

mutants spawn; the probability that allele B is the dominant allele upon relapse is similarly 

formulated.

The risk of mutation is modeled as a nonhomogeneous Poisson process in which the 

mutational hazard rate is a function of the size of the sensitive population responsible for 

seeding resistant clones. The overall probability of mutation to either resistance variant is 

given by the convergence of that allele’s cumulative distribution function (Figure 2B, top). 

When both alleles are present, the race to outcompete the other allele considers the allele-

specific fitness, as well as the time of mutation, as determined by the probability density 

function of mutational risk (Figure 2B, bottom). By considering the joint probability density 

function of mutation for the two alleles, it is possible to evaluate the probability that either 

allele drives relapse when both are present. From this model, we derived an asymptotic 

solution for the probability that either allele drives relapse. See STAR Methods and GitHub 

for complete descriptions.

We then evaluated these probabilities across a region of the effective population size/

mutation rate parameter space to identify parameter regimes in which allele B (the less fit, 

more likely allele) is more likely to drive relapse. We refer to this phenomenon as survival of 

the likeliest, and it is strongest in the region of the phase plane with low mutation rates and a 

small effective population (Figure 2C), corresponding to populations with low heterogeneity. 

Here, where the opportunity for mutation is limited, unlikely mutants may not spawn, 

regardless of their fitness. Thus, under these conditions, it is more important for a resistance 

mutant to be likely than to be fit. In contrast, as mutation rate and effective population size 

increase, allele A is more likely to dominate, reflecting a more standard “survival of the 

fittest” model. Although this theoretical model was parameterized using values relevant to 

E255V/E255K, the results were qualitatively similar for other ABL1 variants (Figure S1). 

Thus, the degree of heterogeneity, as shaped by population size and mutation rate, 

determines when substitution likelihood can play a driving role in drug resistance 

epidemiology.

These theoretical results point toward the correlation of mutation and codon biases observed 

in real-world CML resistance incidence. The population structure of CML includes a well-

characterized leukemic stem cell population of 105–106 cells that gives rise to peripheral 

differentiated leukemic cells (Figure 2D). This hierarchy effectively restricts the population 

size, because only resistance mutations that occur in leukemic stem cells have any clinical 

consequence (Figure 2F).

Thus, CML can be placed in the low-heterogeneity regime of the parameter space. 

Altogether, theory and empirical data support the idea that low-heterogeneity populations 

are most strongly influenced by mutational likelihood.

Epidemiological Incidences of ABL1 Resistance Mutations Are Best Predicted by How 
Likely They Are

To approach this problem more comprehensively, we gathered data from hundreds of 

parallel clinical evolution experiments in BCR-ABL+ leukemias across four continents over 

Leighow et al. Page 6

Cell Rep. Author manuscript; available in PMC 2021 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17 years (Data S2; Bengió et al., 2011; Branford et al., 2003; Cortes et al., 2007; Hochhaus 

et al., 2013; Hughes et al., 2015; Kim et al., 2009). Specifically, we identified clinical trials 

with clear clinical resistance criteria and codon-level resolution. 268 high-confidence 

clinical cases of imatinib resistance were identified in these studies. Tallying mutations at 

individual amino acid positions, we found that the 19 most abundant amino acid mutations 

account for ~95% of the resistance mutations identified (Figure 3A). Notably, 85% of the 

resistance is caused by a mutation other than the fittest (T315I; imatinib IC50 = 8,711 nM, 

where IC50 is defined as the concentration to reach 50% of maximum inhibition).

For each of these 19 amino acids, we generated three independent isogenic BaF3 cell lines 

and measured the IC50 of imatinib in each cell line in triplicate across 11 serial drug 

dilutions (Figure 3B). Although this set of 19 clinical point mutations in ABL1 is the most 

systematically assembled in vitro dataset to date, many of these mutations have had their 

IC50 values measured in other resistance studies in other labs. Thus, the literature presents us 

with an opportunity to estimate how genetic context and experimental conditions might 

affect drug response. Figure S2A shows that cross-study correlations are high (Pearson’s r = 

~0.9 or higher for four studies), but systematic shifts exist between studies. This might 

suggest that the genetic drift in cell lines in an individual lab can influence drug potency and 

is consistent with recent findings (Ben-David et al., 2018). Thus, we have an opportunity to 

account for the effects of genetic background upon drug resistance. To do this, we 

normalized all systematic differences between the datasets into one mean dataset and 

combined all data from the literature with our data (see STAR Methods; Data S3). This 

cross-study approach leverages the genetic drift across cell lines to get the best estimate of 

the average isogenic effect of BCR-ABL mutations.

Beyond genetic-background-normalized IC50 measurements, we measured the drug-free 

growth rates of all ABL1 mutants from 6–10 independent lentiviral infections (Figure S2B). 

Many independent infections were critical, because the growth rates of individual clonal 

selections exhibit high variance. We also measured the substitution likelihood of a given 

amino acid conditioned upon a resistance mutation event using the frequencies from the 

ExAC analysis (Figure 3C; see STAR Methods and GitHub).

Negative binomial regression was used to predict the incidence of individual resistance 

mutants across the human population (Figure S2C; .rmd file on GitHub). We identified the 

best N-variable model by leave-one-out-cross-validation (LOOCV). By this metric, a two-

variable model built on substitution likelihood and normalized IC50 values outperformed all 

others (Figure 3D). To verify the superior predictive power of these two variables, we also 

identified a likely independent dataset of different ABL1 mutation frequencies that is 

curated by the Sanger Institute. Although these mutations have a less clear clinical 

provenance than our analysis, we decided to use them as a test set, because they had 

considerably more data. Again, substitution likelihood and normalized IC50 outperformed all 

other combinations of predictor variables as evaluated by LOOCV (Figure 3E).

The two-variable model regressed on substitution likelihood and normalized IC50 values 

demonstrated remarkable accuracy, exhibiting a Pearson correlation between model-

predicted and observed values of r = 0.76 (Figure 3F). This model showed a marked 
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improvement over a two-variable model built on normalized IC50 values and drug-free 

growth rates (r = 0.27, Figure 3G). Although the statistical model in Figure 3F suggested 

that the degree of resistance and the substitution likelihood of a particular variant were both 

significant predictors of clinical abundance, substitution likelihood was the more significant 

(p = 3.3 × 10−5 for substitution likelihood versus p = 0.016 for IC50, .rmd file on GitHub). 

To verify that our result was not overfit, we evaluated our statistical model against the 

Sanger Institute test set and found that the same two variables exhibited predictive accuracy 

(Pearson correlation r = 0.74, Figure S2D). However, in case our data have overlap with the 

Sanger Institute data, we also verified that the results were similar when our counts were 

subtracted from the Sanger counts (r = 0.72, Figure 3H). In addition, we considered the 

possibility that a fraction of the observations in our meta-analysis were included in the 

Sanger dataset. Therefore, we resampled the Sanger data by removing random subsets of our 

own data. Models built on these resampled data continued to exhibit high correlation 

between observed and model-predicted counts (Figure S2E). The reproducibility in a second 

dataset highlights the significance of substitution likelihood as the most important predictive 

variable.

Thus, substitution likelihood, rather than drug resistance, is the more significant variable 

predicting the relative abundance of the 19 mutants that account for 95% of the clinical 

mutations in BCR-ABL for patients with CML.

A Stochastic, First-Principle Model of Resistance Predicts the Clinical Prevalence of 
Resistance Mutations across ABL1

Our experiments and epidemiological analysis indicated that an understanding of 

substitution likelihood is necessary to predict the clinically observed distribution of specific 

resistance mutations. Because of this, we wanted to know whether we could predict the 

frequency of mutations from a mechanistic model built from first principles.

We first identified a simple, clinically parameterized model of CML treatment that 

incorporates hematopoietic stem cell division and differentiation (Fassoni et al., 2018). To 

adapt the system to our question, we added our 19 resistance variants of interest to the model 

(Figure 4A). Each mutant was parameterized with an allele-specific substitution probability 

and a drug kill term. We used cell-based measurements in the presence of human serum to 

appropriately scale drug exposures to the effective in vivo levels (see STAR Methods).

Importantly, this methodology does not rely on fitting the model to the prevalence of specific 

resistance mutations. Therefore, it only requires a mechanistic model of treatment (i.e., birth/

death rates), a list of candidate mutations (which could be generated from structure-based 

design or mutagenesis) (Figure S3A), measurements of substitution likelihood, and a 

tractable in vitro system to measure the effects of putative resistance mutations.

We simulated this system of 60 differential equations stochastically (Figure 4B) for 10,000 

virtual CML patients treated with imatinib (see STAR Methods). Stochasticity allows the 

potential for random mutation to seed each resistant variant. Each patient was assigned a 

pharmacokinetic profile from clinically observed distributions of in vivo drug concentration 

(Peng et al., 2005). Similarly, patient-specific tumor detection sizes were drawn from real-
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world distributions (Stein et al., 2011). Across these 10,000 simulations, we totaled the 

number of in silico patients who relapsed with each mutation (see STAR Methods).

Importantly, we ran simulations for a null model without substitution likelihood, in which 

individual amino acid changes were assigned the same probability, and compared its 

predictive value to that of a model parameterized with substitution likelihood. In examining 

the distribution of mutations across the ABL1 kinase, a model that considered substitution 

biases was required to accurately predict the abundances of individual mutations (Figures 4C 

and 4D; r = 0.21 without versus r = 0.84 with substitution likelihood).

To appraise the predictive power of the model for other drugs, we repeated this process of 

measuring IC50 values for all 19 resistance variants, simulating pharmacokinetic profiles, 

and parameterizing an evolutionary model for second-generation BCR-ABL inhibitors 

nilotinib and dasatinib. Both TKIs have been previously evaluated in frontline clinical trials 

(Hochhaus et al., 2013; Hughes et al., 2015). However, the count data for clinical resistance 

to nilotinib and dasatinib are sparse (0–3 patients for most variants) and suffer from wide 

CIs. Thus, to more completely evaluate our models’ predictive power in the context of these 

two drugs, we examined categorical accuracy, i.e., the ability to say whether a mutation 

should or should not show up in a clinical trial. To do this, we downsampled our dasatinib 

and nilotinib simulations to reflect the size of the respective frontline trial. These virtual 

clinical trial results informed a binary classifier model—if a mutation was present, it was 

categorized as resistant; if it was not present, it was categorized as sensitive. We repeated 

this for 103 simulations, each time constructing a receiver operating characteristic (ROC) 

curve to quantify the accuracy of the binary classifier against the real-world clinical data. 

Averaging the ROC curves across all simulations (Figures 4E and 4F), we found that 

substitution likelihood considerably improved the models’ ability to classify a variant as a 

resistance mutation (area under the curve AUC = 0.79 without versus 0.91 with mutation 

bias for dasatinib; AUC = 0.65 versus 0.82 for nilotinib). Given that these predictive models 

were not fit to patient data, they could be used to forecast which resistance mutations will be 

identified in a CML clinical trial a priori.

These results demonstrate that a first-principle, mechanistic model can predict the 

distribution of mutations seen in the clinic if it contains parameters that account for 

substitution likelihood. This improvement is consistent across imatinib, dasatinib, and 

nilotinib and underscores the importance of substitution likelihood in these models.

Evolution-Guided Drug Design Could Inform Principled Decisions between Mutational 
Vulnerabilities during Drug Development

To further investigate how an evolutionarily informed approach to drug design might affect 

the clinical prevalence of resistance, we conceived of a hypothetical BCR-ABL TKI, which 

we call maxitinib, designed with mutational liabilities in mind. Given the same number of 

mutational vulnerabilities in a target (here we use five), maxitinib would be designed via 

structure-based drug design to target the five most likely mutants. If this could be achieved, 

how would that alter the overall incidence of resistance that arises in the clinic?
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To test this, we simulated a cohort of in silico frontline CML patients for several target 

profiles of our hypothetical drug maxitinib; we name these distinct versions of maxitinib K1 

to K15. Each of the hypothetical drugs, K1-K15 denote a version of maxitinib that was 

designed to target a different set of five of the 19 previously discussed imatinib-resistant 

mutants. The top five most likely mutants are sensitive to maxitinib K1, the second through 

sixth most likely mutants are sensitive to maxitinib K2, and so on (Figure 4G; see STAR 

Methods and GitHub for a model description).

The model predicts a 67% reduction in resistance incidence relative to imatinib for maxitinib 

K1, the hypothetical chemotype that targets the five most likely mutants (Figure 4H). This 

reduction is larger than either nilotinib or dasatinib (even though at least as many mutations 

confer resistance to maxitinib K1 as to nilotinib or dasatinib), and predicts that the 

evolutionarily optimal chemotype would prevail in the clinic. At the same time, maxitinib 

K15, which targets the five least likely mutants, offers virtually no advantage over imatinib. 

To be sure that the most prevalent resistance allele, T315I, was not dominating the observed 

effect, we removed T315I from the model and reperformed the simulations. Under these 

conditions, there was still high agreement between resistance incidence and mutational 

liability across the various chemotypes (Figure S3B).

Considerations relating to structure, conformation, and intermolecular interactions 

complicate drug design and would likely preclude the development of a drug that targets 

exactly the N most likely resistance mutants. However, as small molecules are screened and 

tradeoffs are identified, evolutionary models could choose a molecular profile that predicts 

less resistance when used in the clinic. Our models suggest that designing molecules in this 

way could create second-generation inhibitors that minimize drug resistance across a 

population (Figure S3C).

Mutation Biases Can Affect the Epidemiology of Resistance for Diseases Treated in the 
Adjuvant Setting

Predictive modeling of resistance in pathologies beyond CML requires an understanding of 

what evolutionary forces determine the resistance allele prevalence in disease-specific 

settings. Although CML is a dramatic example in which substitution likelihood plays a 

dominant role in resistance evolution, a small-tumor-initiating population is not the only 

condition that restricts effective population sizes in cancer. In adjuvant therapy, a large tumor 

is surgically debulked before systemic treatment is initiated. Population bottlenecks created 

by surgical resection can considerably reduce the genetic diversity of tumor cells. We 

therefore hypothesized that mutation bias could shape the development of resistance to drugs 

used in the adjuvant setting.

Using a mechanistic model of tumor evolution, we simulated tumors treated with adjuvant 

therapy (see STAR Methods). In the model, a tumor grows (until 109–1012 cells, modeling a 

range of dissemination), at which point most of the tumor is excised and the remaining 

population (105–108 cells, modeling completeness of excision) is treated with an inhibitor. 

During division events, sensitive cells can spawn one of ten resistant alleles, each with 

randomly preassigned allele-specific resistance and mutational probability parameters. For 

each combination of tumor size pre- and post-surgery, 50,000 patients were simulated, and 
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their dominant resistance alleles were tallied upon relapse. The Spearman rank correlation of 

allele frequency with the degree of drug resistance (Figure 5A, top) and allele frequency 

with substitution bias (Figure 5A, bottom) were calculated for each combination of 

population size pre- and post-surgery. The simulation results show that when 107 or fewer 

cancer cells remained following resection, the allele frequency at relapse was more highly 

correlated with substitution bias than the degree of drug resistance conferred (Figure 5B).

To evaluate our theoretical results, we turned to clinical data for indications for which 

adjuvant therapy is often used. In particular, we analyzed on-target resistance mutations in 

the androgen receptor (AR) for prostate cancers with AR antagonists, in ESR1 for breast 

cancers treated with estrogen receptor (ER) antagonists, and in c-KIT for GISTs treated with 

imatinib (Figure 5C; Data S4). Some characteristics of the available clinical data complicate 

the analysis. Resistance data for these diseases were generally not delimited by whether the 

drug was administered adjuvantly, though we know based upon patient selection criteria that 

adjuvant patients were included in our cohorts. This ambiguity gives rise to a less pure, and 

likely more conservative, dataset, because our meta-analysis likely includes some patients 

with advanced metastatic disease. This uncertainty, combined with drug fitness data being 

unavailable for most resistance variants in the three drug targets, currently precludes an 

analysis identical to the one made in CML described in Figures 1, 2, 3, and 4.

We first noted that in vitro drug-sensitivity data are available in the literature for the most 

abundant resistance mutations for the three adjuvant diseases. The single-most clinically 

abundant allele was not the most drug resistant, contrary to what would be expected under a 

pure “survival of the fittest” model of evolution. Furthermore, there was poor correlation 

between the available IC50 data and the population allele frequency for these cancers (Figure 

S4A). This suggests that evolutionary forces beyond degree of resistance may shape the 

distribution of resistance alleles. We performed a similar analysis for on-target resistance 

mutations in ALK+ non-small-cell lung carcinoma (NSCLC) patients treated with crizotinib 

and in EGFR+ NSCLC patients treated with erlotinib or gefitinib. In NSCLC, targeted 

therapy is generally administered in the absence of surgical resection; thus, we would expect 

the larger effective population size to favor fitness over substitution likelihood (Figure 2F). 

For these two indications, the most frequent variant was also the most drug-resistant, and 

there was higher correlation between IC50 and clinical abundance (Figure S4B). Although 

these data are suggestive of complexity, they are not direct evidence that mutation bias 

influences resistance evolution in diseases treated in the adjuvant setting.

Given the constraints of the clinical data, we turned to an established technique for detecting 

mutational biases. The method has been used previously in cases of adaptive evolution 

within and across species (Payne et al., 2019; Stoltzfus and McCandlish, 2017). Specifically, 

the statistical test was developed to detect a simple case of mutation bias: transition-

transversion bias. The approach involves aggregating observations of parallel evolution—in 

this case, drug resistance in cancer patients—and tallying the number of patients who 

develop each resistance mutation to determine the distribution of mutations (as in Figure 

S5A). Each mutation is classified according to the underlying nucleotide substitution type 

(transition or transversion), and the observed patient-level transition frequency is noted. 

Then, this distribution of mutations is simulated under the null assumption that mutation 
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bias does not influence evolution. That is, the dataset is simulated to reflect the expected 

outcome when variation in mutation frequency is decoupled from mutation bias. To do this, 

we reassign each mutation as a transition or a transversion according to its expected 

probabilities given no bias in mutation, and then we calculate the patient-level transition 

frequency. If the observed transition frequency is more extreme than those generated by the 

model, there is evidence that mutation bias influences evolution in the case at hand.

Although this statistical analysis is the literature standard for detecting mutational biases in 

parallel adaptive evolution (Payne et al., 2019; Stoltzfus and McCandlish, 2017), we noted 

that it had not previously been validated with simulated data. Therefore, we revisited our 

stochastic model of adjuvant therapy, for which we know that for small post-surgery 

population sizes, allele frequency is more correlated with mutation bias than with resistance. 

We considered the case with 1010 cells pre-resection and 106 cells post-resection, and then 

we simulated these conditions with and without mutation bias. For the virtual cohort 

generated by simulations that included mutation bias, we found that the statistical test 

detected an overabundance of transitions (p = 0.001, Figures S5A-S5C). Conversely, the 

results of our control case simulated without mutation bias were not significant (p = 0.53, 

Figures S5D-S5F). Thus, our simulations confirmed the utility of the null model in detecting 

mutation bias, even with other confounding factors such as fitness.

We then turned to our meta-analysis for diseases treated with adjuvant therapy. The 

resampling technique indicated that the observed transition-transversion ratio (Figure 5D) 

exceeded those generated under the null model (p = 0.008, Figure 5E), suggesting that 

mutation bias influences the evolution of resistance in these diseases. We then expanded the 

resampling technique to develop a model of mutation bias that was more similar to our CML 

analysis by considering the six possible pyrimidine substitutions (C > A, C > G, C > T, T > 

A, T > C, and T > G, hereafter called mutation classes). We performed this similar analysis 

of simulating the resistance distribution by randomly reassigning the mutation class 

associated with each variant and tallying the number of patients in each class (simulated data 

in Figures S5G-S5N). We then calculated the Mahalanobis distance from the mean for both 

the simulated and the observed data (Figure S5O) and found that the observed data were 

more extreme than those simulated under the null model (p = 0.045, Figure 5F). See STAR 

Methods for more details.

This effect, although significant, is still not as strong as in ABL1+ CML (p = 0.018, Figure 

S5P). As previously noted, the data gathered across clinical trials likely include patients who 

did not receive adjuvant care, diluting the effect of restricted population sizes. Furthermore, 

even for those tumors that were treated in the adjuvant setting, it is likely that the effective 

population size and mutation rates in these diseases place them closer to the border of the 

phase change in Figure 2F. Given the understanding that mutation bias is likely to play a 

somewhat weaker role in resistance evolution for adjuvant diseases, we had aggregated the 

observations from prostate cancer, breast cancer, and GISTs to maximize our power to detect 

an effect. Prior studies that use this resampling technique also aggregated their data 

(Stoltzfus and McCandlish, 2017), combining observations across many taxa, mutation rates, 

and putative fitness effects. Even so, we wanted to confirm that our rejection of the null 

hypothesis was not an artifact of a large, aggregated dataset. To address this, we considered 
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the distribution of resistance mutations in ALK+ and EGFR+ NSCLC, two nonadjuvant 

indications, as well. The aggregated NSCLC data are not significant on their own (p = 0.45). 

Furthermore, combining the NSCLC counts to our dataset for adjuvant diseases does not 

simply make the results more significant (p = 0.44 for all diseases versus p = 0.045 for 

adjuvant diseases alone, Figure 5G). This suggests that for the adjuvant diseases, the 

observed significance was not an artifact of aggregated data and increased sample size. This 

result is supported by a forward selection method used to determine the combinations of 

disease that show significant evidence of mutation bias. Such an approach identifies the most 

significant aggregated dataset as the one that includes the adjuvant diseases and excludes the 

nonadjuvant diseases (Figure S5Q; see STAR Methods for details).

These results indicate that the approach outlined here is a sensitive and specific method to 

identify cases in which substitution likelihood shapes drug resistance evolution. Such cases 

represent indications for which next-generation drug design could be informed by analysis 

of mutation biases and substitution likelihood.

DISCUSSION

In this study, we demonstrate the ability to accurately predict real-world resistance evolution 

with amino-acid-scale resolution. In cases of restricted genetic diversity, such as in 

populations with small effective sizes, this predictive power requires an understanding of the 

likelihood of substitutions that generate the variation upon which selection acts. To be clear, 

it is inaccurate to say that drug selection is unimportant. A variant that grows out during 

treatment must still harbor a drug resistance phenotype, and our analysis of CML 

epidemiological data (Figure 3) indicates that the degree of resistance is still a significant 

predictor of clinical prevalence. However, in CML and other mutation-limited diseases, the 

ability to forecast amino acid prevalence requires a quantitative understanding of the 

stochastic molecular events that underlie resistance evolution. Beyond CML, our theoretical 

and empirical analyses (Figure 5) indicate that drugs used in the adjuvant setting provide 

multiple additional examples in which resistance evolution is influenced by substitution 

likelihood.

Beyond the retrospective analyses of molecular evolution, our study highlights the ability to 

prospectively forecast macroscopic evolutionary outcomes. Recent studies have shown the 

power of multi-scale modeling in forecasting the evolutionary trajectories of influenza 

evolving immune escape (Łuksza and Lässig, 2014) and predicting fitness landscapes of 

bacteria evolving resistance against trimethoprim (Rodrigues et al., 2016). Our work builds 

on these findings by predicting epidemiology-scale resistance from molecular insights. 

Although in vitro parallel evolution experiments have been able to qualitatively nominate 

resistance variants (Figure S4A), we demonstrate the ability to quantitatively predict 

interpatient heterogeneity with a completely mechanistic model of intratumoral 

heterogeneity.

Despite their power, our predictions are an imperfect step forward. Although the accuracy of 

these models is surprisingly high given their simplicity and that none of the mechanistic 

parameters were fit to clinical data, there are other variables that could explain the small 
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amount of residual variance. The first is that the genetic background outside of ABL1 can 

alter the level of phenotypic drug resistance. Furthermore, although fitness in the absence of 

drug was not a predictor of epidemiological abundance in our statistical models, it is still 

possible that drug-free fitness in vivo is distinct from our measurements in vitro. Despite 

these caveats, our work fits most variance in the data. This highlights the promise of 

evolutionary forecasting and emphasizes how predictive models enable a deeper 

understanding of evolution.

The basic concept of evolutionarily informed treatment regimens that minimize drug 

resistance is not new. Theoretical evolutionary models (Bozic et al., 2013; Goldie and 

Coldman, 1984) support empirical clinical evidence (Frei, 1985) that non-cross-resistant 

combination therapy can result in durable responses for some patients. However, effective 

non-cross-resistant drug combinations are not available for many cancers, and multiple 

drugs can cause overlapping off-target toxicities. In this study, we introduce a quantitative 

evolutionary design principle for single-agent therapy. When effective population sizes are 

small, evolution favors the most likely resistance mutation, and so should drug discovery 

(Figures 4G and 4H). This is not simply a matter of trying to reduce the absolute number of 

mutational paths to drug resistance. Prospective therapeutic leads can be prioritized for 

evolutionary optimality. Importantly, favoring either substitution likelihood or fitness alone 

would only be useful in isolation in extreme cases. There is a continuous spectrum of 

relative importance for both fitness and mutation bias as a disease transitions from low to 

high mutational complexity parameter sets. In all cases, we believe that rational drug design 

may be synonymous with evolutionarily informed drug design. Predictive evolutionary 

models like the ones presented here will enable precision medicines that are more 

efficacious and longer lasting in the face of biological change.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Justin Pritchard (jrp94@psu.edu).

All unique/stable reagents generated in this study (including BCR-ABL BaF3 cell lines) are 

available from the Lead Contact with a completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

BaF3 Cells—BaF3 cells were ordered from DSMZ (catalog number: ACC-300). BaF3 

cells are a male mouse pro B cell line. BaF3 cells are maintained in 1640 (Sigma Aldrich) 

+10%FBS(Fisher)+1%Penn/Strep (Life Technologies) and 10ng/mL IL-3 (PeproTech).

CML Clinical Data—Clinical resistance data used in our meta-analysis was identified 

from six studies of frontline imatinib use with clear clinical resistance criteria and codon 

level resolution (Data S2; Bengió et al., 2011; Branford et al., 2003; Cortes et al., 2007; 

Hochhaus et al., 2013; Hughes et al., 2015; Kim et al., 2009). Across the six studies, we 

identified 268 cases of imatinib resistance. We similarly collected ABL1 resistance 

mutations reported in frontline clinical trials of second-generation inhibitors nilotinib (27 
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resistance cases; Hochhaus et al., 2013) and dasatinib (14 resistance cases; Hughes et al., 

2015). Clinical resistance data for CML was also identified from a dataset curated by the 

Wellcome Trust (1322 resistance cases). The Sanger Wellcome Trust download was as of 

12-01-2017. (https://cancer.sanger.ac.uk/cosmic/csamples/details).

Clinical Data Used in Adjuvant Therapy Analysis—Clinical data of high confidence 

resistance cases was collected from trials with clear criteria for resistance and amino acid 

resolution of target mutations for three diseases often treated in the adjuvant setting (AR+ 

prostate cancer, ER+ breast cancer, and KIT+ GIST) and two diseases generally treated with 

an inhibitor alone (EGFR+ and ALK+ NSCLC). Mutation counts for each disease are found 

in Data S4. In cases where the reported amino acid change was insufficient to infer the base 

pair mutation and nucleotide-level mutations were not reported, the count was omitted from 

mutation class analysis.

METHOD DETAILS

Construct Generation—Following recombination-based cloning into pLVX-IRES-Puro, 

site directed mutagenesis was utilized to make the correct mutation in BCR-ABL. Mutation 

identity was confirmed by Sanger sequencing.

Lentiviral Transduction—Lentiviral constructs were co-transfected in HEK293T cells 

(ATCC catalog number CRL-3216) using calcium phosphate alongside third-generation 

packaging vectors that were pseudotyped with VSV-G. Viral supernatant was collected at 24 

hours (Gozgit et al., 2018). All BCR-ABL mutations were infected at limiting MOI to 

achieve the lowest viral titer required to produce IL-3 independence. After selection in the 

absence of IL-3, we tested for puromycin resistance. All engineered cell lines were 

sequenced in the BCR-ABL kinase domain to confirm their identity.

IC50 Measurements—Eleven serial dilutions were performed. Imatinib, dasatinib and 

nilotinib were all obtained from Selleck Chem. Starting points for dilutions were 10uM, 

100nM, and 1uM respectively. 3000 BaF3 cells with the indicated mutation were seeded into 

a 96 well plate in 150ul of RPMI 1640 (Sigma Aldrich) +10%FBS (Fisher)+1%Penn/Strep 

(Life technologies). After addition of the drugs, cells were left in the incubator for 72 hours. 

At 72 hours Cell Titer Glo (Promega) was added at 1:4. This is less than the manufacturer’s 

instructions, because we have verified the sensitivity of the assay with this reduced protocol. 

Plates were read via a luminescence plate reader at 72 hours.

Serum Protein Shifts—HSA-AAG containing medium is RPMI 1640 growth medium 

with the addition of 341 mM HSA (human serum albumin, Sigma, Cat # A9511) and 1 

mg/ml AAG (human a1-acid glycoprotein, Sigma, Cat # G9885). All medium is sterilized by 

filtration through a 0.22mm membrane. Following the formulation of HSA-AAG media, 

identical IC50 curve experiments are performed. The fold change of the IC50 across 3 

mutants of varying affinities (M244V, E255V, and WT BCR-ABL were used). Serum protein 

binding decreases the free drug concentration and shifts IC50 values to numbers that are 

directly comparable to measured in vivo pharmaceutical exposures.
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Exome Data Analysis—Data from the broad ExAC consortium (http://

exac.broadinstitute.org/) for ABL1 was downloaded as of 11-17-2017. Raw data and 

processing code are available in Figure 3 in our GitHub repository: https://github.com/

pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure3/Mutation

%20probabilities

We tallied each of the 12 possible nucleic acid substitutions (not six) because transcription 

coupled repair has been shown to cause biases in the mutational spectrum of the transcribed 

strand, and ABL1 is widely expressed. We also compared the distribution of substitutions 

across ABL1 in the ExAC data to genome-wide mutation biases measured in CML exomes, 

as well as simple transition/transversion biases from the literature, and we did not observe 

significant differences.

Theoretical Model of Competing Resistance Alleles—We developed a probability 

model of two competing resistance alleles. The model considers a population of sensitive 

cells that expand and then contract under drug treatment. During the lifetime of the sensitive 

cells, a division event may result in mutation to one of the two resistance alleles, each with 

allele-specific drug growth rates and mutational probabilities that govern their population 

dynamics. We are interested in determining the probability that either allele is detected first, 

because we are interested in explaining the clinical data and the first mutant to detection is 

generally the one reported in a frontline clinical trial. We consider the probability that allele i 
is detected first to be the sum of the probability that allele i is the only one to spawn and the 

probability that allele i reaches detection first when both alleles spawn. We model mutation 

as a nonhomogeneous Poisson process (dependent on the size of the sensitive population 

responsible for seeding resistance); we model outgrowth to detection as an exponential 

process. These two quantities determine the probabilities of when and if either allele reaches 

detection. From these probabilities we derive an asymptotic solution for the probability that 

either allele is dominant upon relapse. For a complete discussion of the analysis, see the 

Appendix S1 LaTeX file on GitHub: https://github.com/pritchardlabatpsu/

PredictiveResistanceEvolution/tree/master/SuppAppendices/SuppAppendix1

CML Stochastic Model—We developed a stochastic model of evolutionary dynamics in 

chronic myelogenous leukemia. Specifically, we expanded the clinically-parameterized 

model in Fassoni et al. (2018) to include the 19 resistance mutants analyzed in this study. 

The mutants were parameterized with allele-specific mutational probabilities and degrees of 

resistance. Mutational probabilities were measured from the ExAC data as described. To 

appropriately parameterize drug kill rates, we simulated pharmacokinetic profiles using 

distributions of clinical exposure reported in Peng et al. (2004) and translated drug exposure 

to drug killing using the serum-shifted dose response curves. Another significant model 

parameter, tumor burden upon initial detection, was drawn from the distribution reported in 

Stein et al. (2011). The model was simulated for 10,000 virtual patients using MATLAB. For 

a complete description of the model, see the Appendix S2 LaTeX file on GitHub: https://

github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/SuppAppendices/

SuppAppendix2
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Adjuvant Therapy Stochastic Model—We developed a stochastic model of resistance 

evolution for a theoretical tumor treated with adjuvant therapy. To do this, we modeled a 

small, sensitive initial population that expanded until detection at a population size of Mpre 

cells. Upon detection, the tumor is surgically debulked (reduced to a population size of Mpost 

cells) and drug treatment is initiated, under which the sensitive population has a negative 

growth rate. During the lifetime of the sensitive population, division of sensitive cells could 

spawn resistance mutants. A resistance mutation could give rise to one of ten alleles, each 

with randomly pre-assigned allele-specific substitution likelihoods and degrees of resistance. 

These randomly assigned parameters were identical across all simulations. Upon relapse 

(defined as disease progression to initial detection size), the dominant allele upon relapse is 

tallied. This system was simulated stochastically for a range of Mpre and Mpost values, and 

for each combination 50,000 virtual patients were analyzed using MATLAB. For a complete 

description of the model, see the Appendix S3 LaTeX file on GitHub: https://github.com/

pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/SuppAppendices/

SuppAppendix3

QUANTIFICATION AND STATISTICAL ANALYSIS

BCR-ABL BaF3 Fitness Analysis—The drug-free growth rates and drug-dose response 

for BCR-ABL BaF3 variant was measured. For each variant, N = 3 independent infections 

were conducted. For drug-dose response experiments, 11 serial dilutions of drug were dosed 

in triplicate for each independent infection of all variants. For more information, see the 

Figure 3 legend. For drug-free growth rate experiments, N = 11-14 biological replicates were 

used due to the high fitness variability for low-titer infections. Error bars in figures are mean 

± standard deviation. Growth rates across variants were compared using Student’s t test. For 

more information, see the Figure 1 legend.

CML Epidemiological Analysis—Negative binomial regression was used to construct 

models for resistance count data. The best model (using our meta-analysis and the Sanger 

dataset) was identified using LOOCV. Variable significance is calculated using R’s glm 

function for negative binomial regression (Wald’s chi-square test). For a complete analysis, 

see supplemental R markdown files and code repository for Figure 3. Code was written in R 

markdown. Raw data and analysis code (.Rmd and knitted .html files) are provided on 

GitHub: https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/

Figures/Figure3

Clinical Adjuvant Therapy Analysis—We compiled data for resistance variants in AR, 

ESR1, and c-KIT for prostate cancer, breast cancer, and GIST, respectively, and classified 

each count by the associated mutation type (transition or transversion) and pyrmidine 

substitution (C > A, C > G, C > T, T > A, T > C, and T > G; mutation class). For cases when 

an amino substitution could be caused by multiple single nucleotide mutation paths, we 

classified them when nucleotide substitution resolution was available in the literature and 

excluded the counts otherwise. Under the null model, these variants were randomly 

reassigned mutation classes and the sum of all counts for each mutation class was noted. 

Since our data only considers mutations that result in an amino acid change, the mutation 

class assignments were weighted by the number of mutations in each class that are 
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nonsynonymous (116 transitions and 276 transversions; 68 C > A, 76 C > G, 58 C > T, 64 T 

> A, 59 T > C, 68 T > G). 10,000 replicates were simulated for each dataset. The 

Mahalanobis distance of each simulation from the mean of all simulations was calculated; 

the Mahalanobis distance of the observed mutation class counts from the simulation mean 

was also determined. An empirical p value was obtained as p = r/n, where n is the number of 

simulations and r is the number of simulations with a Mahalanobis distance greater than or 

equal to that of the observed data. Code was written in R markdown. Raw data and 

processing code are available in our GitHub repository: https://github.com/pritchardlabatpsu/

PredictiveResistanceEvolution/tree/master/Figures/Figure5

Forward Selection of Diseases for Analysis—In order to verify that aggregating 

counts from adjuvant diseases was not artificially creating significance, we evaluated the 

significance yielded by several combinations of diseases, both adjuvant (AR+ prostate 

cancer, ER+ breast cancer, and KIT+ GIST) and non-adjuvant (ALK+ and EGFR+ NSCLC). 

To do so, we considered a stepwise approach analogous to forward feature selection in 

regression. We began by analyzing each disease individually to identify the one with the 

most significant mutational signature. We then appended data from the remaining diseases 

individually to determine the most significant paired dataset. We repeated this to identify the 

most significant K-disease dataset for K = 1 to K = 5. This forward selection technique 

identified the most significant combination to be the 3-disease dataset that included our 

adjuvant diseases (prostate cancer, breast cancer, and GIST). See Figure S5R for results. 

Code was written in R markdown.

DATA AND CODE AVAILABILITY

The datasets and code generated during this study are available at GitHub. Specifically, 

results from the BCR-ABL BaF3 experiments (including data on dose response and drug 

free growth rates) can be found at https://github.com/pritchardlabatpsu/

PredictiveResistanceEvolution/tree/master/Figures/Figure3. Code used to execute the CML 

stochastic simulations can be found at https://github.com/pritchardlabatpsu/

PredictiveResistanceEvolution/tree/master/Figures/Figure4. Code used for the adjuvant 

therapy model and code used to detect mutation bias in allele distributions can be found at 

https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/

Figure5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multi-scale, mechanistic models can predict drug resistance epidemiology

• For low-heterogeneity diseases, substitution likelihood is a significant 

predictor

• Resistance to adjuvant therapy drugs may be shaped by substitution likelihood

• Drugs that prioritize must-hit variants can reduce the incidence of resistance
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Figure 1. A Salt Bridge in ABL1 Suggests that Clinical Abundance May Not Be Predicted by the 
Amount of Drug Resistance Conferred
(A) Schematic of factors affecting the evolutionary dynamics of drug resistance. Without 

transmission, intra-tumoral variables are the only factors involved in cancer evolutionary 

dynamics and are limited to the host level.

(B) ABL1 crystal structure. Ribbon diagram of secondary structure is shown. Image is 

zoomed in on the kinase P loop. Loss of the E255-K247 salt bridge is associated with 

imatinib resistance.
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(C) Prevalence of E255K/E255V mutations in six imatinib clinical trials. A cross-trial sum is 

included; the p value is for the chi-square test.

(D) Imatinib IC50 curves for BCR-ABL-transformed BaF3 cells. Relative viability is 

measured by Cell-Titer Glo relative to a DMSO control. n = 3 biological replicates per 

concentration; error bars are SDs.

(E) Relative growth rates of BCR-ABL BaF3 variants. Each dot is an independent 

transduction and selection. n = 11–14 biological replicates; error bars are SDs.

(F) Top: codon structure of E255 and various measurements of nucleotide substitution 

frequencies. These measurements include counts of all rare substitutions across the ABL1 

gene identified in the Broad ExAC database, rare noncoding substitutions in ABL1 

identified in the Broad ExAC database, and substitutions across the exome in CML patients. 

Lower: different measurements of substitution likelihood were highly correlated.
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Figure 2. An Analytical Model of Stochastic Dynamics Identifies in which Resistance Evolution 
Favors More Likely Alleles
(A) Evolutionary landscape for a theoretical drug target gene with two potential resistance 

alleles. Allele A is assigned high fitness and low probability; allele B is assigned low fitness 

and high probability.

(B) Cumulative distribution function (CDF) (top plot) indicates the probability that a 

mutation has occurred by time t. As t approaches infinity, the CDF approaches the overall 

probability of mutation used in the two-way table. The probability density function (PDF) 

(bottom plot) indicates the instantaneous risk of mutation at time t. This is used to determine 

the dominant allele in competition, when both alleles are present. The time T indicates the 

time of detection and treatment initiation. See STAR Methods for more details.

(C) Parameter space indicating the results of our probability model across many mutation 

rates and effective population sizes. Color indicates whether allele A (dark blue) or allele B 

(red) is more likely to drive relapse. In regions where allele B is more dominant, we expect 

mutation bias to be a primary evolutionary force.

(D) Schematic of general leukemic cell population hierarchy. Only mutations in leukemic 

stem cells can form stable resistance clones, effectively limiting the population size to 105–

106.
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Figure 3. Epidemiological Incidences of ABL1 Resistance Mutations Are Best Predicted by How 
Likely They Are
(A) Crystal structure ribbon diagram of the ABL1 kinase domain and distribution of the 19 

most prevalent BCR-ABL resistance mutants. These 19 variants account for approximately 

95% of resistance mutations observed clinically in the six studies from Figure 1C.

(B) Drug-dose response was measured by Cell-Titer Glo and is plotted in the heatmap. n = 3 

independent infections for all 20 cell lines (wild type [WT] and mutants). Each BCR-ABL 

BaF3 line was dosed with 11 serial dilutions of imatinib in triplicate. All cell lines are 

ordered by sensitivity. For each line, three biological replicates were conducted, each with 

two technical replicates.
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(C) Table that includes values used to build the final regression models: the frequency of 

each resistant mutant as determined by our clinical meta-analysis, imatinib IC50 values (in 

nanomolar) normalized for genetic background, and substitution likelihood calculated from 

analysis of the Broad ExAC data in Figure 1F.

(D) Model selection for negative binomial regression. LOOCV was used to estimate the test 

error of the N-variable model with the lowest Akaike information criterion (AIC) for each N. 

The N = 1 model includes substitution bias, the N = 2 model includes substitution bias and 

IC50, and the N = 3 model includes substitution bias, IC50, and growth rate in the absence of 

drug. The N = 2 model had the lowest estimated mean square error. See .rmd on GitHub for 

more details.

(E) Model selection for regression (as in D) using the Sanger dataset.

(F) Observed versus predicted plot for a regression model of clinical mutation prevalence 

(determined by our clinical meta-analysis) regressed against growth rate in the presence of 

drug and substitution likelihood (which is the final model). Points are specific ABL1 

mutations; x values are their observed frequency, and y values are their frequency predicted 

by the model. The Pearson correlation for observed and predicted prevalence is 0.76.

(G) Observed versus predicted plot (as in F) for the regression model of clinical mutation 

prevalence built only on the growth rates in the presence and absence of imatinib. The 

Pearson correlation is 0.27.

(H) Observed versus predicted plot (as in F) using the Sanger data with the counts from our 

meta-analysis omitted, to consider the possibility that the Sanger data included all counts 

from our curated dataset. The Pearson correlation is 0.72.
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Figure 4. A Stochastic, First-Principle, Multi-mutation Model of Imatinib Treatment Predicts the 
Clinical Prevalence of Resistance Mutations across ABL1
(A) Schematic of a stochastic CML evolutionary dynamic model. The initial deterministic 

model of three differential equations (shaded in light blue) is from Fassoni et al. (2018) and 

is fit to phase III clinical data. We reformulated a stochastic version of 60 differential 

equations parameterized from Fassoni et al. (2018) and our clinical data. Leukemic stem 

cells alternate between the proliferating state (P-LSC) and the quiescent state (Q-LSC). P-

LSCs give rise to differentiated leukemic cells (DLCs). P-LSCs may also spawn a resistant 

subclone P-LSCi when dividing. The allele-specific mutational probability is given by ρi. 
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We added the ability for all resistance mutations to occur, such that there are 20 sets of 

differential equations with three populations per mutant. The system is solved stochastically.

(B) Example stochastic simulation of the model described in (A).

(C) Simulation results for the stochastic model without mutation bias (uniform ρi). The 

Pearson correlation between observed and predicted prevalence is r = 0.21.

(D) Simulation results for the stochastic model with mutation bias (allele-specific ρi). The 

Pearson correlation is r = 0.84.

(E) ROC curves indicating the accuracy of simulation results for the stochastic model using 

parameters for dasatinib. The model-predicted allele frequency was used to train a binary 

classifier of clinical resistance, and its predictive power was evaluated against the true 

positive and negative classes as identified in a frontline dasatinib clinical trial. The stochastic 

model that included mutation bias (AUC = 0.92) outperformed that without bias (AUC = 

0.79).

(F) ROC curve for simulations using parameters for nilotinib, as in (E). Again, the model 

with mutation bias was more predictive than the one without mutation bias (AUC = 0.82 

with bias versus AUC = 0.65 without bias).

(G) Resistance profiles for versions of a hypothetical drug, maxitinib. Maxitinib K1 targets 

the first through fifth most likely mutants, K2 targets the second through sixth most likely 

mutants, and so on.

(H) Maxitinib simulation results. Orange bars represent the resistance incidence of each 

maxitinib chemotype relative to imatinib. Red points indicate mutational liability, defined as 

the sum of conditional substitution likelihoods of mutations that confer resistance to each 

chemotype.
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Figure 5. Mutation Bias Affects the Epidemiology of Resistance for Diseases Treated in the 
Adjuvant Setting
(A) Adjuvant therapy evolutionary model example results. Simulation results for population 

before resection Mpre = 109 and after resection Mpost = 105 (left) and for Mpre = 1012 and 

Mpost = 108 (right). Points represent specific resistance variants, and p values are the 

Spearman rank correlation between frequency and degree of resistance (top) and frequency 

and substitution likelihood (bottom).

(B) Summary of simulation results for various values of Mpre and Mpost. Colors represent 

the difference in Spearman correlation (substitution likelihood ρ — resistance –) for each set 

of parameters.

(C) Schematic detailing clinical meta-analysis. For drug targets in GISTs, prostate cancer, 

and breast cancer, acquired resistance mutations were tallied and classified by pyrimidine 

substitution.

(D) Observed resistance allele distribution for the three cancer types. Colors indicate 

whether the nucleotide substitution associated with each mutation is a transition or a 

transversion.

(E) Distribution simulated by reassigning the transition-transversion class of each variant. 

The transition frequency in each simulation was calculated. The histogram shows the 

distribution of those frequencies. The red arrow indicates the transition frequency for the 

observed data (0.6). The associated empirical p value is 0.008, suggesting that the observed 

data cannot be explained by a null model with no differences in probability between 

transitions and transversions.
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(F) Distribution as in (E), but with mutation classes (e.g. C > A, C > G, etc.).

(G) Combining the counts from the three adjuvant diseases with those of ALK+ and EGFR+ 

NSCLC (two nonadjuvant indications) decreases the significance detected by the model. 

This suggests that the observed significance in the adjuvant diseases is not an artifact of 

aggregating data and large sample size.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

CellTiter Glo Promega G7570

Deposited Data

BCR-ABL BaF3 IC50 - data for each replicate This Paper https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/
blob/master/Figures/Figure3/Heatmaps/IC50HeatMap.csv

BCR-ABL BaF3 drug free growth - data for each 
replicate

This Paper https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/
blob/master/Figures/Figure3/Heatmaps/GrowthCurveHeatMap.csv

Experimental Models: Cell Lines

BaF3 Cells DSMZ ACC 300

Recombinant DNA

pLVX-IRES-Puro Clontech Catalog number: 632183

BCR-ABL Gene Synthesis Genscript Accession number: EU216071.1

Software and Algorithms

Code for CML stochastic model This Paper https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/
master/Figures/Figure4/Figure4CDEF

Code for adjuvant therapy stochastic model This paper https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/
master/Figures/Figure5/Figure6AB

Code for mutation bias detection from allele 
distribution

This paper https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/
master/Figures/Figure5/FigureDE
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