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Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine
Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently,
in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers,
including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT
depend on several cancer-associated signaling pathways and abnormal regulatory factors
in cancer cells. Moreover, emerging studies have reported several promising strategies to
enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using
ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of
ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting
anticancer effects on cells investigated in animal-based studies are also discussed.
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1 INTRODUCTION

Cancer is characterized by a very high incidence rate and fatality rate, and seriously affects human
health (Fidler et al., 2017). Cancer maintains the malignancy by affecting the development of the
embryo and destroying the repair mechanisms (Guan et al., 2020). It has been found that genomics-
based assays can be used in clinical therapy, such as targeted treatment and antitumor vaccines
(Berger and Mardis, 2018). Currently, surgical resection, radiotherapy, and chemotherapy are the
main effective modalities for curing cancers. Chemotherapy uses anti-cancer compounds and
medicine to attenuate cancer development (Seo et al., 2009). However, treatment failure and
side effects are common in chemotherapy. Therefore, new drugs with better therapeutic effects
and fewer adverse effects are needed for cancer treatment.

Nowadays, alantolactone (ALT), a natural herb compound derived from the traditional
Chinese medicinal Inula helenium L., has attracted extensive research attention because of the
therapeutic potential in cancer treatment (Mi et al., 2014). It has been revealed that ALT can
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exhibit anti-inflammatory and anti-tumor activities through
modulating the abnormal signaling pathways in cancer cells
(Gierlikowska et al., 2020; Babaei et al., 2021). For example,
mitogen-activated protein kinases (p38 MAPK) and NF-κB
signaling pathways are significantly attenuated by ALT,
inhibiting cell viability and promoting cell apoptosis in
lung cancer cell lines NCI-H1299 and Anip973 (Liu et al.,
2019). And a recent study firstly reported that ALT could
suppress the activation of YAP1/TAZ, leading to the
inhibition of cancer cell growth (Nakatani et al., 2021).
ALT could downregulate the serine/threonine kinase
Aurora-A through directly binding to the interface pocket
of Aurora-A-TPX2 complex, weakening several cancer-
associated biological behaviors, including centrosome
amplification, chromosomal instability and oncogenic
transformations (Bhardwaj and Purohit, 2020; Nadda
et al., 2020). Furthermore, with no obvious side effects,
ALT could synergistically enhance the cytotoxic effects
with other anti-cancer agents, such as oxaliplatin (Cao
et al., 2019) and olaparib (Wang et al., 2020) in vivo and
in vitro.

In this paper, the findings regarding the antagonistic effects of
ALT in various cancers are summarized, and the underlying
mechanism of ALT anticancer activity is explored (Figure 1,
Tables 1, 2). Besides, to explore the practical values of ALT in
future clinical applications, the safety and efficacy of ALT are also
discussed.

2 THE ACTION OF ALT AGAINST HUMAN
CANCERS

2.1 Lung Cancer
Lung cancer is one of the most frequent human malignancies
worldwide, causing about 1.6 million deaths annually. Risk
factors of lung cancer include second-hand smoking, air
pollution, genetic reason, etc. (Wu et al., 2020; Yang et al.,
2020). In addition, non-small cell lung cancer, accounting for
∼85% of lung cancer cases, is increasing in both incidence and
mortality. Non-small cell lung cancer is divided into two
histological subtypes, namely lung adenocarcinoma and lung
squamous cell carcinoma (Chen et al., 2020; Tubio-Perez
et al., 2020). Nowadays, the potential therapeutic effects of
traditional medicine, like ALT on patients with both subtypes
of non-small cell lung cancer have been studied. It has been found
that ALT effectively induces cell apoptosis in both lung squamous
carcinoma cells (SK-MES-1) and lung adenocarcinoma cells
(NCI-H1299 and Anip973) and the cytotoxic influence of ALT
is closely related to the improved treatment efficacy and
prognosis of patients with lung cancer (Zhao et al., 2015; Liu
et al., 2019). It has also been found that ALT could significantly
enhance the anticancer effects of chemotherapy drug gemcitabine
on lung adenocarcinoma cells A549 and lung squamous
carcinoma cells NCI-H520 cells through inhibiting the
activation of AKT/glycogen synthase kinase (GSK) 3β and

FIGURE 1 | Overview of the cytotoxic effects of the natural compound Alantolactone on cancer research and therapy.
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TABLE 1 | The anticancer activities and the underlying mechanisms of alantolactone in vitro.

Cancers Cell lines Modulated factors Biological effects References

Liver cancer HepG2 cells Bcl-2, caspase-3, STAT3 Inducing apoptosis, inhibiting cell
proliferation, inducing G2/M phase arrest

Khan et al. (2013)
Bcl-2, NF-κB, p53, Bax, caspase-3/8/9, t-Bid Lei et al. (2012)
p21, cyclin A1 cyclin B1, caspase-3, PARP Kang et al. (2019)

Colorectal
cancer

SW480 and SW1116 cells,
non-cancer BEAS-2B and
L-O2 cells

Bcl-2, Bax, caspase-3, p21 Inducing G1 cell cycle arrest, inducing
apoptosis, inhibiting cell proliferation

Ding et al. (2016)

Murine CT26-FL3 cells,
Murine breast cancer 4T1
cells

Bcl-2, Bcl-xL Zhang et al. (2019a)

HCT116 and RKO cells JNK, p38, MAPK, Ki-67 Cao et al. (2019)
HCT-8, L02, HEK 293
T cells

Cripto-1, ActRIIA, activin, SMAD3, p21 Shi et al. (2011)

RKO cells MMP, Bcl-2, Bax, caspase-3/9, cytochrome c Zhang et al. (2013)
Breast cancer McF-7 cells Bcl-2, Bcl-2-associated X protein, p53, p65,

caspase-3, caspase-12, MMP-2, MMP-7, MMP-9,
p38, MAPK, NF-κB, Nrf2

Inhibiting cell proliferation, inducing
apoptosis, inhibiting motility, migration and
tube formation, causing cell cycle arrest

Liu et al. (2018a)

HUVECs, MDA-MB-231
cells

VEGFR2phosphorylation, PLCγ1, FAK, Src, Akt Liu et al. (2018b)

Triple-negative breast
cancer (TNBC) cells

Bcl-2, Bax, caspase-3, CyclinB1, Cdc2, ATF4,
CHOP, ki-67

Yin et al. (2019)

MDA-MB-231, MCF-7
cells

Bax/Bcl-2, MMP, cytochrome c, caspase 9/3,
PARP, MAPKs, p-NF-κB, p65, p-STAT3, NF-κB,
AP-1, STAT3

Cui et al. (2018)

STAT3, MAPKs, NF-κB, IL-6, EGFR, cyclin D1,
c-Rel, p65, p50, JNK/AP-1

Chun et al. (2015)

Lung cancer NCI-H1299 and Anip973
cells

Bcl-2, MMP-9, MMP-7, and MMP-2, β-actin,
p38MAPK, NF-κB

Inducing cell apoptosis, suppressing
migration, invasion, and colony formation,
inhibiting cell proliferation

Liu et al. (2019)

SK-MES-1 cells Caspases-8, -9, -3, PARP, Bcl-2, Bax, CDK4,
CDK6, cyclin D3, cyclin D1, p21, p27

Zhao et al. (2015)

A549 cells and NcI-H520
cells

Xiap, survivin, caspase-9, caspase-3, PARP, ATF4,
eIF2α, CHOP, Bcl-2, Bax, STAT3, iNOS, COX-2,
MMP-9

Maryam et al.
(2017)

PI3K/Akt, ER, p21, cyclin A2 Wang et al. (2019a)
Leukemia HL-60 cells Cytochrome c, Bax, caspase-3, PARP Inducing apoptosis, inhibiting cell

proliferation, inducing cell cycle arrest
Pal et al. (2010)

THP-1 cells STAT-3, survivin, Bcl-2, Bcl-xL, Bax, cl-caspase-3,
cl-PARP, cytochrome c

Ahmad et al. (2021)

K562 and K562r cells NF-κB, p65 Bcr/Abl protein, caspase-3, PARP-1 Wei et al. (2013)
CML blast cells
BV173 and NALM6 cells AP2M1, Beclin1, LC3-II/LC3-1, p62, Bax, cleaved

caspase 3, cytochrome C, Bcl-2
Shi et al. (2020)

B-ALL cell lines PARP-1, capase-3, caspase-8, caspase-9, NF-κB,
BCR-ABL, EGFR

Xu et al. (2019b)

Pancreatic
cancer

MIA PaCa-2 and PANC-1
cells

TFEB, CTSB/CTSD Inducing apoptosis, improving
chemosensitivity, inhibiting proliferation,
inhibiting migration

He et al. (2018)

BxPC-3, AsPC-1, and
PANC-1 cell lines

STAT3 Zheng et al. (2019)

PANC-1 and SW1990 cells Caspase 3/7, Bak, Bcl-2, Mcl-1, XIAP, STAT3 Yan et al. (2020)
Gastric cancer SGC-7901 and BGC-823

cells
TrxR1, p38MAPK, p38, Ki-67, Bcl-2 Inhibiting proliferation, inducing apoptosis He et al. (2019a)
Bcl-2, Bax, cleaved PARP, cyclin D1, p21, p27,
AKT, cyclin-dependent kinase inhibitor 1, cyclin-
dependent kinase inhibitor 1B

Zhang and Zhang
(2019)

Bax, Bcl-2, p53, MMP-2, MMP-7, MMP-9, NF-κB,
p38MAPK, p65

He et al. (2019b)

Cervical cancer HeLa cells Bcl-2, Bax Inhibiting proliferation, inducing apoptosis Jiang et al. (2016)
Caspase-3, Bax, Bcl-2, NF-κB Zhang et al. (2019b)
TrxR, caspase 3 Zhang et al. (2019a)

Glioblastoma U87 and U251 cells IKKβ/NF-κB, p50, p65, p300, COX-2, cytochrome
c, cyclin D1, CDK4, MMP-2, MMP-9, caspase-3/9,
PARP, Bax, Bcl-2

Inhibiting cell growth, inducing apoptosis Khan et al. (2012),
Wang et al. (2017)

Osteosarcoma U2OS and HOS cells PI3K/AKT, cyclin D1, p27, Bcl-2, Bax, cleaved
caspase-3/8, MMP-2, MMP-9

Inhibiting proliferation, promoting apoptosis Zhang et al. (2019c)

Multiple
myeloma

RPMI8226, NCI-H929,
IM9, MM1R, MM1S, OPM2
and U266 cells

ERK1/2, IL-6, VEGF, caspase-3/8/9, Bcl-2, Bax,
survivin, cyclin D, cyclin E, CDK 2, CDK 4, MAPK

Inhibiting proliferation, inducing G1 phase
arrest, inducing apoptosis

Yao et al. (2015)
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endoplasmic reticulum (ER) stress pathways (Wang J. et al.,
2019). After treatment on A549 lung adenocarcinoma cells,
ALT performs the biological functions to trigger oxidative
stress mediated-cell apoptosis by abrogating the
glutathionylation-dependent STAT3 activation (Maryam et al.,
2017). The above studies show the molecular mechanism and
biological significance of ALT in the treatment of lung cancer.

2.2 Liver Cancer
Liver cancer, with a high death rate and poor 5-years survival, is
considered to be one of the most malignant cancers in the world
(Feng et al., 2020). The factors leading to liver cancer are as follows:
infection of hepatitis B virus (HBV), infection of hepatitis C virus
(HCV), alcohol abuse, and alternations of genetic and epigenetic
events (Zhang et al., 2020b). There are many strategies to treat liver
cancer, such as chemotherapy, radiotherapy, molecular targeted
therapy, surgical resection, and liver transplantation (Petrowsky
et al., 2020). However, the prognosis is unsatisfactory because of
the complex risks and pathological factors (Zhang et al., 2020a;
Ruan et al., 2020). Therefore, a new treatment is needed. A recent
study has explored the mechanism of ALT-mediated apoptosis in
liver cancer cells HepG2 and found that through down-regulating
reactive oxygen species (ROS)-mediated alpha serine/threonine-
protein kinase (AKT) activation and weakening PTEN induced
putative kinase 1 (PINK1)-mediated cell mitophagy, ALT
treatment could induce apoptosis in HepG2 cells (Kang et al.,
2019). It has also been shown that mitochondrial membrane in
HepG2 cells loses the potential when being exposed to ALT and
ALT induces apoptosis through modulating the levels of several
apoptosis-associated proteins, including Bax, Bak, caspases, etc.
(Lei et al., 2012). Another study has drawn a similar conclusion that
ALT treatment could enhance Bax/Bcl-2 ratio, promote caspase-3

activation and elevate ROS generation, contributing to inducing
apoptosis of HepG2 cells. The abnormally over-expressed and
activated signal transducer and activator of transcription 3
(STAT3) signaling pathway have also been proved to be
impaired by ALT in liver cancer cells (Khan et al., 2013). These
studies indicate that ALT has the potential to be a leading
chemotherapeutic candidate in the treatment of liver cancer.

2.3 Colorectal Cancer
At present, colorectal cancer ranks as the fourth most deadly
cancer in the world. The incidence and mortality of colorectal
cancer are much higher in developing countries than in
developed countries because of the differences in medical
service quality (Suliman et al., 2019; Almatroudi, 2020). It has
been found that the incidence of colorectal cancer has a younger
trend (The Lancet, 2017; The Lancet Gastroenterology, 2018).
Colorectal cancer is a heterogeneous disease with manymolecular
subtypes, which is beneficial to the prognosis and
immunotherapy of cancer (Becht et al., 2016; Wirth and
Schneider, 2016). Nowadays, many traditional Chinese
medicines (TCM) have been applied to the clinical therapy of
cancers. Quercetin synergized with ALT could significantly
induce immunogenic cell death (ICD) in colorectal cancer
cells. This synergistic therapeutic effect is capable of reversing
the immune-suppressive tumor microenvironment, thereby
improving cell toxicity and antitumor immunity (Zhang
J. et al., 2019). Ding et al. have explored the underlying
molecular mechanism of ALT in human colorectal cancer cells
SW480 and SW1116 and found that after ALT treatment, the
accumulation of ROS causes oxidative DNA damage,
contributing to the intrinsic apoptosis pathway of cancer cells
(Ding et al., 2016). In addition to causing oxidative DNA damage,

TABLE 2 | The anticancer activities and the underlying mechanisms of alantolactone in vivo.

Cancers Animals Modulated factors Biological effects References

Colorectal
cancer

Six-week-old female Balb/c
mice female sprague-
dawley rats

HMGB1, CRT, MHCII, CD86, macrophages, MDSCs,
TNF-α, IFN-γ

Promoting antitumor response,
suppressing cell proliferation, inducing
apoptosis

Zhang et al. (2019a)

Five-week-old female
athymic BALB/c mice

JNK, p38, MAPK, Ki-67 Cao et al. (2019)

Breast cancer Chick embryo CAMBALB/c
nude mice

VEGFR2phosphorylation, PLCγ1, FAK, Src, Akt Inducing apoptosis, causing cell cycle
arrest suppressing growth of xenograft
tumors

Liu et al. (2018b)

MDA-MB-231 xenografts in
nude mice

Bcl-2, Bax, caspase-3, cyclinB1, Cdc2, ATF4, CHOP,
ki-67

Yin et al. (2019)

Female athymic BALB/c
nude mice

STAT3, MAPKs, NF-κB, IL-6, EGFR, cyclin D1, c-Rel,
p65, p50, JNK/AP-1

Chun et al. (2015)

Leukemia BV173 xenograft nude
mouse model

AP2M1, Beclin1, LC3-II/LC3-1, p62, Bax, cleaved
caspase 3, cytochrome C, Bcl-2

Inhibiting cell proliferation, inducing
apoptosis, inducing cell cycle arrest

Shi et al. (2020)

B-ALL mice model (NOD-
SCID mice)

PARP-1, capase-3, caspase-8, caspase-9, NF-κB, BCR-
ABL, EGFR

Xu et al. (2019b)

Pancreatic
cancer

Female nude BALB/c mice TFEB, CTSB/CTSD Inducing apoptosis, improving
chemosensitivity

He et al. (2018)
Female Wild-type BALB/c
mice

STAT3 Zheng et al. (2019)

Gastric cancer Athymic BALB/c nu/nu
female mice

TrxR1, p38MAPK, p38, Ki-67, Bcl-2 Inhibiting proliferation, inducing
apoptosis

He et al. (2019a)

Glioblastoma BALB/c nu/nu male nude
mice

IKKβ/NF-κB, p50, p65, p300, COX-2, cytochrome c,
cyclin D1, CDK4, MMP-2, MMP-9, caspase-3/9, PARP,
Bax, Bcl-2

Inhibiting cell growth, inducing
apoptosis

Khan et al. (2012),
Wang et al. (2017)
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ALT could strengthen the effects of oxaliplatin in HCT116 and
RKO cells by inducing the activation of MAPK-JNK/c-Jun
pathway, deactivation of the JNK pathway, inhibition of p38
MAPK pathway and decrease of intracellular ROS, as has been
suggested by two independent studies. The two studies suggest
that ALT could suppress cell proliferation and exhibit anticancer
effects on colorectal cancer HCT-8 cells and HCT-116 cells (Shi
et al., 2011; Babaei et al., 2021; Ren et al., 2021). Besides, ALT
could exert the dose-dependently cytotoxic effects on RKO
human colon cancer cells and induce cell apoptosis through
modulating ROS-mediated mitochondria-dependent pathway
(Zhang et al., 2013). The above studies show that ALT
treatment could be clinically applied for patients with
colorectal cancer in the future.

2.4 Breast Cancer
Breast cancer is a common cancer in women (Liu Y. et al., 2020;
Wan et al., 2020). Although the diagnosis strategies like the
mammogram, have been developed in recent years, the
mortality rate of breast cancer is still high (Ranjkesh et al.,
2020; Xu et al., 2020). As a result, innovative alternatives are
needed to improve the therapeutic outcome of patients with
breast cancer Studies have shown that ALT changes the cell
morphology and decreases the cell viability of MDA-MB-231 and
MCF-7 breast cancer cells (Liu J. et al., 2018; Cui et al., 2018).
Administration of ALT can promote apoptosis and suppress
migration of MCF-7 cells, which may be due to the decrease
of p38 MAPK, NF-κB and nuclear factor E2-related factor 2
(Nrf2) signaling pathways (Liu J. et al., 2018). Liu et al. have
revealed that ALT treatment is effective in inhibiting the motility,
migration, and tube formation of human umbilical vein
endothelial cells (HUVEC), which promote tumor
angiogenesis. Besides, ALT impairs the angiogenesis and
tumor growth by down-regulating vascular endothelial growth
factor receptor 2 (VEGFR2) phosphorylation level and its
downstream protein kinases, including phospholipase C
gamma 1 (PLCγ1), protein tyrosine kinase 2 (FAK), SRC, and
AKT (Liu Y. R. et al., 2018). Triple-negative breast cancer is one of
the most challenging subtypes of breast cancers with a high
probability of relapse, distant metastasis, and poor survival
(Kim et al., 2018; Garrido-Castro et al., 2019). Therefore,
analyzing the correlation of ALT and the anti-tumor potential
in TNBC is potentially important. Yin et al. have shown that ALT
promotes cell death and inhibits cell proliferation of triple-
negative breast cancer cells by inducing ROS generation and
subsequent ROS-dependent ER stress. Further analyses have
shown that thioredoxin reductase 1 (TrxR1) expression and
activity are weakened by ALT (Yin et al., 2019). Furthermore,
other studies have demonstrated that ALT, serving as a STAT3
inhibitor, suppresses cell migration and the growth of triple-
negative breast cancer cells both in vitro and in vivo (Chun et al.,
2015; Kim et al., 2017), highlighting the therapeutic potential in
breast cancer treatment.

2.5 Leukemia
Leukemia is a malignant progressive disease characterized by
abnormal proliferation of haemopoietic stem cells (Abdellateif

et al., 2020) and can be divided into four subtypes, namely acute
myeloid leukemia, acute lymphoblastic leukemia, chronical myeloid
leukemia, and chronical lymphoblastic leukemia. Chronical
lymphoblastic leukemia is the most common one that occurs in
adults (Hallek et al., 2018; Bosch and Dalla-Favera, 2019), whereas
acute lymphoblastic leukemia is most commonly observed in
children (Nordlund and Syvanen, 2018). Recently, the biological
activities of ALT against THP-1 leukemia cells have been investigated
and the results show that ALT plays an important role in inhibiting
cell viability and inducing mitochondrial apoptosis in THP-1 cells by
provoking ROSproduction and interfering in STAT3, survivin, c-Jun,
and p38 MAPK signaling pathways (Ahmad et al., 2021). Shi et al.
have also demonstrated that ALT could promote the expression level
of adaptor-related protein complex 2 subunit mu 1 (AP2M1) and
inhibit cell proliferation, colony formation, and autophagy of acute
lymphoblastic leukemia cells in a dose-dependent manner through
up-regulating AP2M1 signaling (Shi et al., 2020). Moreover, the
n-hexane fraction extracted from Inula racemosa Hook. f., a mixture
of active ingredients mainly consisted of ALT, displays an inhibitory
effect on leukemia HL-60 cells through enhancing the intrinsic and
extrinsic apoptosis pathways without side effects to normal cells (Pal
et al., 2010). ALT also induces cytotoxicity on B cell acute
lymphoblastic leukemia in vivo and in vitro by prompting ROS
overload and subsequently resulting in ROS-mediated DNA damage
(Xu X. et al., 2019). After the evaluation about the potential activity of
ALT in imatinib-sensitive and -resistant cells, Wei et al. have
concluded that ALT treatment contributes to significant cell
apoptosis in both imatinib-sensitive and -resistant leukemia cells,
as indicated by the increase of caspases activation and poly (ADP-
ribose) polymerase-1 (PARP-1) cleavage (Wei et al., 2013). These
studies strongly support the application of ALT in leukemia
treatment.

2.6 Pancreatic Cancer
Pancreatic cancer is the second leading cause of cancer death in
Western countries, especially in the United States (Neoptolemos
et al., 2018; Collisson et al., 2019). The treatment of pancreatic
cancer is not easy as early diagnosis is hard (Moore and Donahue,
2019) and there are few effective clinical treatment approaches
(Halbrook and Lyssiotis, 2017). It has been revealed that the
bioactive mixture of ALT and the analogues (allo-ALT and iso-
ALT) could exert significant anti-proliferation and anti-
migration effects on PANC-1 and SW1990 pancreatic cancer
cells (Yan et al., 2020). It has also been shown that the
combination of ALT and other treatments could exert
synergized cytotoxic effects on pancreatic cancer. For example,
when combined with the chemotherapy drug oxaliplatin, ALT
might play a crucial role in deducing tumor-killing effects on
pancreatic cancer cells through blocking cathepsin B/cathepsin D
activation (He et al., 2018). Similarly, Wang et al. have revealed
that ALT triggers synergistic lethality with simultaneous PARP-1
inhibition in homologous recombination-proficient cancer cells
(Wang et al., 2020), and promotes the therapeutic sensitivity of
pancreatic cancer cells to the anti-cancer drugs, including
oxaliplatin (He et al., 2018), PARP inhibitor (olaparib) (Wang
et al., 2020), epidermal growth factor receptor (EGFR) inhibitors
(erlotinib and afatinib) (Zheng et al., 2019), and so on. Therefore,
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the combination of natural compound ALT and specific anti-
cancer agents is a safe and effective strategy for pancreatic cancer
treatment.

2.7 Other Tumors
Many studies have suggested that ALT could also exhibit
cytotoxic effects on other types of cancers. It has been shown
that ALT induces apoptosis and triggers cell-cycle arrest in gastric
cancer cells through ROS generation and modulation of several
ROS-dependent kinase signaling pathways, such as AKT, p38
MAPK, and NF-κB (He W. et al., 2019; He Y. et al., 2019; Zhang
and Zhang, 2019). Furthermore, combined treatment of ALT and
ferroptosis inducer erastin could exert a synergistic effect on
inducing the death of gastric cancer cells (He W. et al., 2019). It
has also been demonstrated that ALT exerts concentration-
dependent effects on inhibiting proliferation and inducing
apoptosis of cervical cancer cells through regulating the Bcl-2/
Bax radio, NF-κB pathway, and thioredoxin reductase (TrxR)
activation (Zhang J. et al., 2016; Jiang et al., 2016; Zhang Y. et al.,
2019). Furthermore, a newly study have reported that ALT could
inhibit the progression of HeLa cells via suppressing the
expression of BMI1(Sun et al., 2021). Through down-
regulating the NF-κB/COX-2-mediated signaling cascades or
triggering the cofilin/G-actin signaling, ALT inhibits the
growth and induces apoptosis of glioblastoma cells both in
vivo and in vitro (Khan et al., 2012; Wang et al., 2017; Wang
X. et al., 2021). The similar tumor-inhibition effects of ALT,
accompanied by apoptosis promotion and growth depression,
could also be observed in osteosarcoma (Zhang Y. et al., 2020),
esophageal cancer (Wang Z. et al., 2021), multiple myeloma (Yao
et al., 2015), etc. The above studies explore the underlying
molecular mechanism of the biological activity of ALT,
contributing to the application of ALT as a promising
chemotherapeutic candidate for different kinds of cancers.

3 CLINICAL PERSPECTIVE OF ALT

As an important sesquiterpenoid extracted from a frequently
utilized traditional herbal medicine, ALT has been confirmed to
possess a broad spectrum of pharmacological properties,
including anti-tumor, anti-fungal, and anti-inflammatory
activities. Up to now, many studies have reported the
anticancer effects of ALT in vitro and in vivo. However, the
biological actions of ALT are easily influenced by some factors,
like bioavailability.

Recently, a pharmacokinetics study has suggested that the oral
bioavailability of ALT is quite low, which is one challenge in
clinical trial design to explore the biological actions. Some defects
of ALT, such as low water solubility, limit the absorption and
bioavailability in vivo (Xu et al., 2015). Low oral bioavailability
probably results from intestinal metabolism, poor permeability,
and low aqueous solubility (Zhou et al., 2018). However,
according to the compatibility principle in the Prescription
Dictionary of Chinese Medicine, the combination of ALT and
other herbs could effectively reduce the toxicity and enhance
intestinal absorption, contributing to stronger bioavailability and

therapeutic actions (Xu R. et al., 2019). It is well known that
evaluation of intestinal bacteria is one challenge in clarifying the
metabolism of oral drugs (Zimmermann et al., 2019). A
biotransformation strategy based on the anaerobic culture of
intestinal bacteria has been developed by Yao et al. for
identifying ALT metabolites (Yao et al., 2016). In addition,
ALT-entrapped nanostructured carriers have been developed
to improve the bioavailability and potential cytotoxicity
efficacy of ALT against cancers (Zhang J. et al., 2019). These
studies are beneficial for the evaluations of ALT application in the
future. Unfortunately, until now, there are no clinical trials to
explore the bioavailability and anti-tumor effect of ALT in cancer
patients. Therefore, to verify the pharmacological activities of
ALT, more investigations, especially well-designed clinical trials,
remain to be determined in the future.

4 IMPLICATION OF ALT FOR
CANCER-ASSOCIATED SIGNALING
PATHWAYS
As shown in previous studies, ALT has good clinical prospects as
therapeutic agents for human cancers. It has been found that ALT
exerts high cytotoxicity effects, such as anti-proliferation, anti-
metastasis, and pro-apoptotic cascades on many human cancer
cell lines through interfering with several molecular events
(Zhang J. P. et al., 2016; Nadda et al., 2020).

Previous studies have illustrated the important roles of ROS in
maintaining the stable microenvironment of tissues and affecting
the genesis and development of malignant tumors (Ippolito et al.,
2020; Shen et al., 2020). If the ROS production is not in balance,
the extensive damage response in cells caused by oxidative stress
would result in higher risks of diseases, like diabetes,
cardiovascular disease, cancers, etc. (Tavares and Seca, 2019).
Therefore, keeping the balance of ROS levels is beneficial for
regulating cancer treatment efficacy (Jiang et al., 2019; Zhou et al.,
2020). It has been found that ALT could increase the
concentration of ROS and trigger the intrinsic apoptosis
pathway of colorectal cancer cells (Ding et al., 2016). Kang
et al. have reported that ALT could induce cell-cycle arrest
and cell apoptosis in HepG2 cells by regulating intracellular
ROS accumulation, which provides a new strategy to treat
liver cancer (Kang et al., 2019).

In addition, as a transcription factor, NF-κB is related to the
regulation of carcinogens, such as promoting cell proliferation,
regulating apoptosis, facilitating angiogenesis, and stimulating
metastasis (Liu Z. et al., 2020; Espinosa-Sanchez et al., 2020). NF-
κB also modulates the immune and inflammatory responses,
influencing cancer cell growth (Fusella et al., 2017; Taniguchi and
Karin, 2018). Effective regulation of the activation of the NF-κB
signaling pathway is significant in developing chemotherapies. It
has been found that ALT-targeted NF-κB and the downstream
signaling pathways inhibit themigration of breast cancer cells and
trigger the apoptosis of chronical myeloid leukemia cells (Wei
et al., 2013; Liu J. et al., 2018). It has also been demonstrated that
ALT promotes cell apoptosis in acute lymphoblastic leukemia
and gastric cancer through inhibiting NF-κB activation (He Y.
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et al., 2019; Xu X. et al., 2019). Besides, ALT significantly delays
the cell proliferation of HeLa cells in a dose-dependent manner
through targeting NF-kB signaling pathways (Zhang Y. et al.,
2019).

It is well-known that clarifying the underlying functions of
VEGFR contributes to the understanding of the angiogenesis and
therapeutic response of cancer cells (Haibe et al., 2020; Kratzsch
et al., 2020). Furthermore, VEGF plays a crucial role in the
development of molecular-targeted treatment or other novel
anti-cancer drugs in clinical practice (Apte et al., 2019). Liu
et al. have uncovered that ALT inhibits VEGFR2
phosphorylation, and impairs VEGF-VEGFR2 signaling in
HUVECs (Liu Y. R. et al., 2018). ALT could also reduce
VEGF secretion, thereby suppressing the adhesion of multiple
myeloma cells (Yao et al., 2015). These findings suggest that ALT
may be a promising agent to fight against angiogenesis and
invasion in cancers through intervening in VEGF-VEGFR
pathways.

The aberrant activation of the p38 MAPK signaling pathway is
involved in various biological processes, facilitating the
development and treatment of cancer (Wang K. et al., 2019;
Reger deMoura et al., 2020). As an essential regulating factor, p38
MAPK participates in many cellular activities, making cancer
cells perceive and adapt to environmental stress signals (Low and
Zhang, 2016; Martinez-Limon et al., 2020). Studies have shown
that deactivating the p38 MAPK pathway could facilitate the
ALT-mediated cell apoptosis in colon cancer cells and breast
cancer cells (Liu J. et al., 2018; Cao et al., 2019). Moreover, ALT
exerts attractive pharmacological activities on lung cancer cells by
blocking the p38 MAPK pathway (He W. et al., 2019; Liu et al.,
2019). He et al. have further revealed that ALT modulates the
ROS-mediated p38 MAPK pathway and induces cell apoptosis in
gastric cancer. More importantly, ALT treatment markedly
enhances the cell sensitivity to the ferroptosis inducer erastin
(He W. et al., 2019).

In addition, there are a few studies concerning about the
correlation between ALT administration and cell autophagy in
cancer cells. ALT could play a significant role in promoting
impaired autophagy, facilitating to allay osteoarthritis and
strengthen pancreatic cancer cells’ chemosensitivity (He et al.,
2018; Pei et al., 2021). Another two studies have demonstrated
that treatment with ALT could significantly downregulate the cell
autophagy in ALL and liver cancer cells, implying that ALT have
the potential to kill cancer cells through modulating autophagy
(Kang et al., 2019; Shi et al., 2020).

Taken together, accumulating reports have showed that ALT
exerts anticancer effects on various kinds of cancers, such as liver
cancer, colorectal cancer, breast cancer, etc. And the potential
molecular mechanisms involved in ALT’s anticancer activities are

inhibiting JNK and p38 MAPK pathways, PI3K/AKT/GSK3β
pathways, NF-κB/COX-2 pathways and promoting cell
apoptosis-associated signalings. These findings above-
mentioned demonstrate that ALT may be a potent therapeutic
candidate for cancer reseach and treatment. However, more
comprehensive studies are still needed to further explore the
detailed functions of ALT.

5 CONCLUSION

In summary, the exploration of agents from plants will help to
develop new therapeutic strategies and drugs in future clinical
treatment. ALT possesses superior anti-tumor properties
besides anti-inflammatory and antimicrobial activities and
can be a potential drug candidate for cancer therapy. From
some experiments of ALT in vivo and in vitro, we can know that
ALT can synergize with chemical drugs to enhance their
anticancer effects, such as Quercetin and oxaliplatin.
Additionally, it was reported that ALT could enhanced the
therapeutic sensitivity on cancer treatment. Although there
are some studies concerning the cytotoxic effects of ALT in
vivo and in vitro, more profound investigations are still needed
to clarify the underlying mechanisms of ALT in the treatment of
human malignancies. Besides, accurate and reliable clinical
research, for example, randomized controlled trials, are
needed to prove the effectiveness of ALT as a therapeutic
agent for cancers.
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