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Resident memory CD8+ T (TRM) cells are a lymphocyte lineage distinct from circulating
memory CD8+ T cells. TRM lodge within peripheral tissues and secondary lymphoid organs
where they provide rapid, local protection from pathogens and control tumor growth.
However, dysregulation of CD8+ TRM formation and/or activation may contribute to the
pathogenesis of autoimmune diseases. Intrinsic mechanisms, including transcriptional
networks and inhibitory checkpoint receptors control TRM differentiation and response.
Additionally, extrinsic stimuli such as cytokines, cognate antigen, fatty acids, and damage
signals regulate TRM formation, maintenance, and expansion. In this review, we will
summarize knowledge of CD8+ TRM generation and highlight mechanisms that regulate
the persistence and responses of heterogeneous TRM populations in different tissues and
distinct microenvironments.

Keywords: tissue resident memory T cell, T cell differentiation, recall response, microenvironment,
transcriptional regulation
INTRODUCTION

Long-term memory to pathogens is a key feature of the adaptive immune system. The ability of
memory T cells to mount rapid and potent responses against previously encountered antigens
maintains human health by controlling infections and tumor growth; it also provides the rationale
for designing vaccines against pathogens and immune therapies to treat cancer. By recirculating
through blood and lymph, circulating memory T cells may provide broad tissue immune
surveillance. However, recent findings demonstrated that long after the resolution of infection,
the majority of memory CD8+ T cells are non-circulating (1). Rather, most CD8+ memory T cells
are stably maintained in tissues as tissue resident memory T cells (TRM) that exhibit transcriptional
and phenotypic characteristics distinct from circulating memory CD8+ T cells (2). Early studies
identified TRM within the epithelial compartment of barrier tissues including skin, lung, and
intestine (3–8). Later, TRM were identified in the tissue stroma as well as in non-barrier tissues such
as liver, brain, and secondary lymphoid organs including spleen and lymph nodes (LN) (9–12).
CD8+ TRM deliver highly effective, localized responses to pathogen challenge (4, 8). Additionally,
CD8+ T cells with a TRM phenotype are a target candidate for anti-tumor immunotherapy (13–15)
and predict an improved prognosis in several different cancers (16–23). Although TRM provide
potent protection against pathogens and tumors, TRM dysregulation has been linked to immune-
mediated diseases including psoriasis (24), vitiligo (24), and alopecia areata in the skin (25), and
inflammatory bowel disease in the intestine (26). Additionally, TRM develop following sensitization
to allergens and play a role in hypersensitivity reactions in allergic contact dermatitis (27, 28) and
asthma (29). Finally, TRM have been linked to fixed drug eruptions (30), as well as rejection of solid
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organ transplants (31). This review will discuss intrinsic and
extrinsic mechanisms that promote CD8+ TRM formation,
maintenance and function for defense against invading
pathogens, as well as mechanisms that limit TRM formation
and effector response to prevent excessive inflammation and
tissue damage (Figure 1).
STAGE 1: PRIMING AND PRECURSOR
FORMATION: CD8+ T CELLS, BORN OR
TRAINED TO BE TRM?

Following cognate antigen recognition, naïve CD8+ T cells
become activated, proliferate and give rise to heterogeneous
Frontiers in Immunology | www.frontiersin.org 2
progeny with distinct effector and memory cell fates. Recent
experimental evidence suggests that extrinsic signals can
influence CD8+ T cell fate even before antigen recognition (32)
(Box 1). After antigen activation, the majority of activated T cells
die by apoptosis during the contraction phase of the immune
response, but a small minority survive to become memory CD8+

T cells. Whether activated T cells survive may depend on external
signals, including growth factor availability, antigen, and
inflammation, as well as internal signals such as transcription
factor and growth factor receptor expression. Multiple, non-
mutually exclusive models have been proposed to explain the
development of diverse populations of effector and memory
CD8+ T cells (34). For example, the fixed lineage model
proposes that commitment to effector or memory T cell
lineages occurs soon after T cell stimulation, as early as the
FIGURE 1 | CD8+ TRM formation and anti-viral activity is tightly regulated in different stages. 1) Following pathogen infection, tissue dendritic cells (DCs) migrate to
the draining lymph nodes and present antigens to naïve T cells. Antigen-specific naïve T cells are activated, generating CD8+ TRM precursors. 2) CD8+ TRM
precursors migrate into peripheral tissues, following chemotactic signals. CD8+ TRM formation depends on tissue signals that activate a TRM transcriptional profile,
including the expression of adhesion receptors and inhibition of exit mechanisms. 3) CD8+ TRM are maintained in the tissue where they receive survival signals and
express inhibitory receptors to maintain tissue homeostasis. 4) During secondary infection, CD8+ TRM are activated, secrete effector molecules, and amplify the
immune response.
BOX 1 | Pre-Programmed Naïve CD8+ T Cells: The Existence of a Stage 0.

Although current models suggest that a single naïve T cell has the potential to differentiate into all effector and memory subsets depending on the antigen, costimulatory,
and cytokine stimulation they receive, recent experimental evidence suggests that extrinsic signals influence CD8+ T cell fate even before antigen recognition. Recent work
by Mani et al. demonstrated that extrinsic cytokine signaling can imprint naïve CD8+ T cells for subsequent TRM formation. Migratory DCs expressing TGF-b-activating
integrins in the LN activate TGF-b and epigenetically condition naïve CD8+ T cells, even before antigen stimulation, to form epithelial CD8+ TRM in the skin (32). These
results suggest that during immune homeostasis, the LN environment affects future T cell fate. In addition, research using a tamoxifen-inducible fate-mapping mouse
model to mark CD8+ T cells made in the thymus during fetal, neonatal, and adult stages, Smith et al. demonstrated that naïve CD8+ T cells generated during different
developmental stages, fetal vs. adult, acquire different phenotypes upon antigen encounter. These results suggest that CD8+ T cell fate may be controlled by the timing of
naïve precursor cell maturation in the thymus (33). These studies open the possibility of additional regulatory mechanisms and signals that impact future CD8+ TRM
generation even before inflammatory or antigen insult. Future studies are needed to better understand how intrinsic and extrinsic signals during naïve CD8+ T cell
generation and homeostasis influence CD8+ T cell fate.
March 2021 | Volume 11 | Article 624199
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first cell division and may result from the asymmetric division of
effector fate-associated factors. On the other hand, the decreasing
potential model posits that early effector cells have memory
potential that is lost with increased or prolonged stimulation
with antigen or cytokines. More recently, Rosato et al., have
proposed an expanded model of decreasing potential to include
CD8+ TRM. They propose that the differentiation of CD8+ T cells
along a continuous axis of decreasing memory potential is
irreversible. However, they also divide cells based on parallel
paths of migration status-stationary or migratory, that may be
altered by extrinsic stimuli including TCR signaling and
inflammation (35), reflecting the cells’ plasticity.

CD8+ TRM Precursor Differentiation
Expression of KLRG1 and CD127 has been used to define the
memory potential of effector CD8+ T cells around the peak of
the immune response. Adoptive transfer studies suggest that
KLRG1+ CD127− short-lived effector cells (SLEC) tend to die
following clearance of antigen, whereas KLRG1− CD127+

memory precursor effector cells (MPEC) preferentially
survive to give rise to memory CD8+ T cells (36). Using a
single cell adoptive transfer approach, Stemberger et al. tracked
the progeny of individual naïve CD8+ T cells. Using CD62L
and CD127 as phenotypic markers, and IL-2, TNF-a, IFN-g
and CD107a expression as functional readouts, they
demonstrated that diverse effector and memory CD8+ T cells
can arise from the same naïve precursor T cell (37).
Additionally, single cell tracing experiments using adoptive
transfer of barcode labeled OT-I T cells and systemic or local
infection models, confirmed that both effector and memory
CD8+ T cell subsets derive from the same precursors in the
naïve T cell pool (38). Moreover, TCR repertoire analysis of
antigen-activated CD8+ T cells demonstrated that 35 days
post-immunization, CD8+ memory T cells recovered from
the skin share a common clonal origin with memory CD8+ T
cells isolated from draining and distant LNs, suggesting that
TRM and circulating memory T cells can develop from an
individual naïve T cell (39). Together, these results suggest that
memory T cell fate is not imprinted on naïve T cells, but rather
that individual naïve T cells can give rise to all effector and
memory CD8+ T cell subsets. However, recent data suggest that
although the majority of naïve T cells contribute to both
c ircu la t ing memory and CD69+ CD103+ TRM cel l
populations, the contribution of individual clones to each
memory pool varies (40). Additionally, analysis of individual
T cell families (a naïve T cell and its progeny) demonstrated
that clonal expansion and differentiation of T cells bearing the
same TCR are heterogeneous, and so the contribution of the
progeny of individual naïve T cells varies between primary
versus recall responses (41).

Substantial effort has focused on identifying CD8+ TRM

precursor cells and defining when CD8+ T cells commit to a
TRM fate (Supplementary Table 1). Like circulating memory
CD8+ T cells, CD8+ TRM can also differentiate from KLRG1−

precursor cells. Mackay et al. demonstrated that KLRG1−, but
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not KLRG1+, HSV-specific gBT-I effector T cells sorted from the
spleens of mice 6 days post-HSV infection, generated cutaneous
CD103+ TRM cells following their adoptive transfer into HSV-
infected recipient mice (42). Subsequent studies suggested that
CD8+ TRM are derived from MPEC after their entry into
peripheral tissues. For example, following infection with
Listeria monocytogenes (LM), splenic MPEC and SLEC lack
expression of the TRM receptors, CD69 and CD103. However,
MPEC but not SLEC recovered from the intestine express CD103
and CD69 (43). Additionally, elegant work performed by Kurd
et al. used single-cell RNA sequencing to define the gene
expression patterns of individual CD8+ T cells in the spleen and
small intestine intraepithelial lymphocyte (siIEL) compartments
over the course of lymphocytic choriomeningitis virus (LCMV)
infection. Four days post-infection, the earliest time-point that
virus specific CD8+ T cells are detected within intestinal tissue,
activated CD44hi small intestinal CD8+ T cells display a
transcriptional profile distinct from splenic CD44hi CD8+ T
cells. Even at day 3 following infection, splenic CD8+ T cells do
not resemble siIEL, suggesting that circulating precursors are not
committed to a TRM fate until after entry into the tissue (44). In
contrast, using lineage tracing and single-cell transcriptome
analysis, Kok et al. identified a subset of circulating effector
CD8+ T cells at the peak of effector T cell expansion after skin
DNA vaccination that are enriched for TRM fate-associated gene
expression and have a higher propensity to form TRM (40).
Because the clonal composition of TRM recovered from
anatomically separate skin immunization sites is similar, they
proposed that a committed TRM precursor pool exists in the
circulation, before entry into the tissue. Although the nature,
timing or location of the early signals that imprint the ability to
form TRM before tissue entry were not defined by this study, work
by Mani et al. suggests that during immune homeostasis, naïve
CD8+ T cells are epigenetically preconditioned for TRM formation
through their interaction with migratory dendritic cells (DCs)
expressing TGF-b-activating integrins (32).

Recent studies suggest that effector cells may maintain
plasticity to dedifferentiate and seed the memory pool. Using
a KLRG1Cre reporter system that allows tracking of KLRG1+ T
cells over time, Herndler-Brandstetter et al. demonstrated that
early post infection, KLRG1+ effector CD8+ T cells can
downregulate KLRG1 and differentiate into all memory T cell
lineages, including CD8+ TRM in the lung, intestine, and skin,
and mediate effective protective immunity (45). Additionally,
work by Youngblood et al. examined the transcriptional and
epigenetic changes in naïve CD8+ T cells during differentiation
to effector and memory cells over the course of an acute LCMV
infection. Whole genome bisulfite sequencing analysis
demonstrated that epigenetic repression of naïve-associated
genes in effector CD8+ T cells can be reversed in cells that
develop into long-lived memory CD8+ T cells, while key
effector genes including Gzmb and Prf1 remain demethylated
(46). These studies suggest that effector CD8+ T cells may not
have a fixed fate and contribute to the diversity of the memory
T cell pool.
March 2021 | Volume 11 | Article 624199

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mora-Buch and Bromley Regulating CD8+ TRM
Intrinsic Control of CD8+ TRM Precursor
Generation: TCR Affinity and
Signal Strength
The finding that CD8+ TRM and circulating memory CD8+ T
cells can express identical TCR sequences (37) counters the
hypothesis that TCR affinity or signal strength determines
CD8+ TRM differentiation. However, intrinsic signals, including
TCR signal strength and antigen affinity can influence CD8+

memory T cell development. For example, a study using OT-I
TCR transgenic mice with a point mutation in the conserved
antigen receptor transmembrane (CART) motif suggests that
effector and memory T cell differentiation require different
signals. Both WT and mutant T cells differentiate comparably
into effector T cells. However, mutant cells fail to polarize TCR to
the immunological synapse, have decreased NFKB induction,
and this impaired TCR signaling is correlated with decreased
memory CD8+ T cell differentiation (47). Additionally, studies
have demonstrated that higher affinity TCR interactions direct
CD8+ T cells to a CD62L− TEM fate, whereas lower TCR affinities
promote CD62L+ TCM formation (48). Several studies also
support the idea that TCR affinity and signal strength have a
direct and unique impact on CD8+ TRM formation. For example,
in a mouse model of persistent polyomavirus (MPyV) infection,
high-affinity CD8+ CD69+ TRM cells in the brain originate from
high-affinity CD62L− effector cells present in the tissue during
acute infection (49). In contrast, in a separate study again using a
model of MPyV, the data instead suggested that lower TCR
stimulation strength improves memory potential and generates
functional brain CD62L− CD69+ TRM cells (50). Similarly, in an
acute influenza infection model, lower affinity TCR stimulation is
more likely than higher affinity interactions to induce TRM

formation, suggesting that TCR affinity can influence TRM

differentiation (51) and may provide a mechanism to regulate
the diversity of antigen-specific TRM within tissues.

Additional intrinsic CD8+ T cell characteristics may also
affect CD8+ T cell fate. For example, variation in expression
levels of signaling proteins including CD8, ERK-1 and SHP-1
generates a range of CD8+ T cell responsiveness to antigen
stimulation. However, co-regulation of signaling proteins limits
this variability, potentially providing a mechanism to diversify
cell fate, but control self-reactivity (52). Similarly, Marchingo
et al. used a high-throughput clonal assay to simultaneously
measure the expansion fate of multiple clonal families expressing
identical TCR in a single culture well. Their results demonstrate
that following stimulation, progeny from clonal families stop
dividing and return to quiescence at or near the same generation,
suggesting that regulation of CD8+ T cell expansion fate is at the
level of the individual clone (53). Stochastic variation in
costimulatory and cytokine receptor expression by naïve CD8+

T cells, for example differences in CD28 receptor expression,
influences the generation at which an initial individual activated
cell reverts to a quiescent state (53). Future in vivo research is
required to determine whether stochastic variation in protein
expression by naïve T cells, either before or during early priming,
has an effect on subsequent T cell fate, including CD8+

TRM differentiation.
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Extrinsic Control of CD8+ TRM
Precursor Generation
Antigen and Antigen Presentation During Priming
Contact between DCs and antigen-specific CD8+ T cells can
influence the fate of responding T cells (54–57). DCs carrying
pathogen-derived antigens migrate to draining LN and prime
naïve CD8+ T cells. The interaction between DCs and T cells
within the LN occurs in three stages initiated by brief
encounters, followed by more stable contacts and concludes
with a return to brief contacts and rapid T cell migration,
accompanied by the commencement of T cell proliferation (58).
Multiphoton intravital microscopy (MP-IVM) allowed for the
analysis of how and when the interactions between naïve CD8+

T cells and DCs determine effector and memory CD8+ T cell
differentiation, and suggested that stable contacts and a high
antigen concentration are critical to induce memory T cell
generation (59). Additionally, Ballesteros-Tato et al. showed
that more abundant influenza epitopes are preferentially cross-
presented at late times in the primary response, and responding
T cells are favorably programmed toward a memory cell fate
(60). More recently, studies have identified specific cross-
priming DC populations that favor CD8+ TRM precursor
differentiation. In a mouse model of vaccinia virus (VACV)
infection, DNGR-1+ Batf3-dependent DCs prime naïve CD8+ T
cells within the LN to form TRM within skin or lung (61).
Further, human studies and experiments using a humanized
mouse metastatic lung model identified a subset of activated
CD88−CD1c+CD163+CD14+/− DCs, or DC3s, that prime
naïve CD8+ T cells and induce TGF-b-triggered CD103
expression (62).
Route of Entry and Inflammatory Milieu
The gene expression profile and half-life of activated CD8+ T
cells are determined by many signals during pathogen invasion,
such as antigen presentation by mature DCs, T cell stimulation
by receptor ligands and inflammatory cytokines (63). During T
cell priming, different LN environments direct expression of
distinct T cell homing receptors (5, 64, 65). For example, oral, but
not intranasal mouse infection with LM induces efficient homing
and precursor development of CD8+ TRM in the intestinal
epithelium (43). In contrast, CD8+ T cells lodge within the
skin following infection with herpes simplex virus (HSV) via
either skin scarification or subcutaneous injection after
controlling for priming efficiency (66).

Distinct patterns of cytokine expression within the LN
environment during priming also modulate precursor
formation and program CD8+ T cell fate (67, 68). For instance,
IL-12 produced during LCMV infection induces T-bet
expression in CD8+ T cells in a dose-dependent manner, and
favors the development of SLEC over MPEC (69, 70). On the
other hand, IL-10 plasma levels early following immunization
with peptide antigen and adjuvant strongly correlates with the
frequencies of antigen specific TRM in the lung of mice and non-
human primates at a memory time point. Production of IL-10 by
monocytes acts in an autocrine manner to release TGF-b during
March 2021 | Volume 11 | Article 624199
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priming, increasing CD8+ T cell responsiveness to subsequent
TGF-b stimulation, and thereby favors the formation of CD8+

CD103+ TRM (71).
STAGE 2: MECHANISMS THAT
ENCOURAGE CD8+ TRM TO SETTLE IN
PERIPHERAL TISSUES

CD8+ TRM Phenotype and
Transcriptional Regulation
Following CD8+ T cell activation and clonal expansion within
draining LN, TRM precursors migrate to non-lymphoid tissues.
Entry into peripheral tissues induces a unique TRM phenotype
that promotes CD8+ T cell retention and prevents egress
(Supplementary Table 2). More than a decade ago, Masopust
et al. demonstrated that as early as 7 days following intestinal
LCMV infection, the gut microenvironment induces a unique
CD8+ T cell differentiation program; CD8+ IELs express both
CD69 and CD103, while splenic circulating memory CD8+ T
cells do not (72). Similarly, Ray and colleagues found that within
8 days following influenza infection, flu-specific CD8+ T cells
recovered from the lung were predominantly CD49a+, while
those recovered from the mediastinal LN were CD49a− (7). This
phenotype persisted at memory timepoints. More recently,
Mackay et al. performed microarray analysis of CD103+ CD8+

TRM isolated from the skin, gut, and lungs of mice and
determined that CD8+ TRM express a unique TRM

transcriptional signature that is distinct from circulating
memory CD8+ T cells. This analysis identified 37 transcripts
commonly regulated by TRM from all three tissues, including
S1pr1, Itga1 and Itgae, encoding sphingosine 1-phosphate
receptor-1 (S1P1), CD49a and CD103, respectively (42). A
similar human CD8+ TRM core transcriptional profile was also
later defined (73, 74).

CD69 is perhaps the most ubiquitous marker for CD8+ TRM

cells in mouse and human tissues (74, 75). CD69 forms a
complex with the chemoattractant receptor S1P1, inducing
S1P1 internalization and thereby impairing S1P-directed
lymphocyte exit via afferent lymphatic vessels (42, 75, 76). In
parallel, downregulation of kruppel-like factor 2 (KLF2), the
transcription factor that drives S1P1 gene expression, is
necessary for the establishment of CD8+ TRM in tissues (77,
78). CD69 expression by CD8+ T cells is necessary for the
generation of CD8+ TRM in the kidney (79) and skin (75).
However, recent work demonstrated that CD69 expression is
dispensable for the formation of CD8+ TRM in small intestine,
lung, and female reproductive tract (79). Like CD69, the
integrin, CD103 has also been used extensively as a marker
for CD8+ TRM. CD103 is expressed by CD8+ TRM in the
epithelial compartment of multiple tissues (4, 42, 80, 81) and
is thought to mediate TRM retention through its interaction
with e-cadherin. However, although CD103 is necessary for
CD8+ TRM accumulation within epithelium, it is dispensable
Frontiers in Immunology | www.frontiersin.org 5
for TRM persistence in other tissue compartments (42, 43). For
instance, Bergsbaken et al. demonstrated that following
Yersinia pseudotuberculosis (Yptb) infection, a CD103− CD8+

TRM cell population persists long-term in the intestinal lamina
propria (82). Additionally, CD49a, the a chain of integrin
a1b1, is expressed by CD8+ TRM and promotes their
accumulation within multiple mouse and human tissues (4,
7, 24, 74, 83, 84).

Comparison of CD8+ TRM and circulating memory CD8+ T
cells transcriptomes has identified several transcription factors
that are differentially expressed between memory CD8+ T cells
subsets. Expression of Zfp683, encoding homolog of Blimp1 in T
cells (Hobit) is upregulated in CD8+ TRM and is necessary for
CD8+ TRM cell development in the skin, gut, liver and kidney of
mice (83). Interestingly, Hobit has been described in several
other cell lineages, including CD4+ T, Natural killer (NK), NKT,
and Mucosal-associated invariant T (MAIT) cells, and acts as a
transcriptional regulator of residency (83, 85–87). Hobit,
together with the transcription factor Blimp1 coregulate genes
required for tissue egress (83). In the absence of Hobit and
Blimp1, Klf2, S1p1, and CCR7 are de-repressed. However,
although human lung and liver CD69+ CD8+ T cells express
Hobit, so do human circulating CD45RA+ CD27− and
CD45RA−CD27− CD8+ T cells, suggesting that Hobit may not
specifically promote human CD8+ TRM differentiation (88).
Additionally, the requirement of Hobit for TRM differentiation
may be tissue-specific. In the lung, Blimp1, but not Hobit, is
required for the formation of virus-specific CD8+ TRM in a mouse
influenza infection model (89). Moreover, Milner et al. used single-
cell RNA sequencing (scRNA-seq) analysis to characterize CD8+

siIEL populations over time following LCMV infection. They
demonstrated heterogeneity in the CD8+ siIEL TRM and identified
distinct resident memory CD8+ T cell populations based on their
expression of the transcription factors Blimp1 and Id3. Previous
studies demonstrated that Blimp1hi expression favors an effector T
cell fate (90). Accordingly, Milner et al. showed that compared to
Blimp1lo Id3hi siIEL, Blimp1hi Id3lo siIEL CD8+ T cells dominate the
early response and express increased effector-associated genes.
Nonetheless, lower numbers of Blimp1hi Id3lo siIEL CD8+ T cells
are still present in the tissue at memory timepoints. Although
Blimp1 was expressed by a subset of CD8+ T cells across multiple
non-lymphoid tissues, expression of Id3 was more restricted, raising
the possibility that TRM transcriptional programs may be regulated
by the local tissue microenvironment (91).

Two T-box transcription factors, Eomesodermin (Eomes)
and T-bet, control CD8+ CD103+ TRM cell formation in lung,
skin, and brain. Although TCM express both Eomes and T-bet
(92), expression of these transcription factors must be
downregulated for CD8+ TRM development . While
extinguishment of Eomes expression is required for CD8+

CD103+ TRM cell formation (93, 94), residual T-bet expression
maintains CD8+ T cell IL-15Rb expression and IL-15
responsiveness for long-term TRM survival within lung and
skin (94, 95). Additionally, recent data generated using ATAC-
seq and transcriptional profiling identified the transcription
March 2021 | Volume 11 | Article 624199
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factor, Runx3 as a central regulator of CD8+ TRM differentiation
(32, 44, 73, 96). Runx3, previously described as a transcriptional
regulator of CD8+ effector T cells (97), promotes expression of
tissue residency genes while suppressing genes involved in tissue
egress. Runx3−/− CD8+ T cells have elevated T-bet levels,
suggesting that Runx3 represses T-bet expression; knockdown
of T-bet expression in Runx3−/− CD8+ T cells increases CD8+

TRM numbers and restores CD69 and CD103 expression. Runx3
deficiency results in loss of CD8+ TRM in barrier (skin and lung)
as well as non-barrier (salivary gland and kidney) tissues,
suggesting that Runx3 may regulate CD8+ TRM formation
independent of the local tissue milieu (96).

CD8+ TRM generation and long-term maintenance are also
regulated by nuclear receptor subfamily 4 group A member 1
(NR4A1) (44, 98). Nr4a1, also known as Nur77, is rapidly
induced following TCR stimulation and regulates CD8+ T cell
proliferation and effector function (99). In a mouse model of
influenza infection, similar numbers of co-adoptively transferred
Nr4a1−/− and wild-type antigen-specific CD8+ TRM are recovered
at the effector phase. However, fewer Nr4a1−/− CD8+ T cells are
recovered from the liver and intestine at a memory time point,
although similar numbers are recovered from lung (98). Finally,
scRNA-seq analysis of siIEL and splenic CD8+ T cells over the
course of LCMV infection demonstrated increased expression of
Nr4a2, Junb proto-oncogene (Junb) and FOS-like 2 (Fosl2) in
siIEL relative to splenic CD8+ T cells. Knockdown of these genes
results in impaired formation of siIEL CD8+ TRM compared to
circulating memory CD8+ T cells, although the mechanisms were
not determined (44).
In Situ Antigen Dependence
Following vesicular stomatitis virus (VSV) infection, local
antigen presentation is required to drive CD103 expression by
infiltrating CD8+ T cells that promotes their persistence within
brain (9). Similarly, local antigen recognition is required for TRM

formation in the lung (100, 101). Following influenza infection,
viral antigen-bearing pulmonary monocytes interact with
influenza-specific CD8+ T cells in vivo and can induce CD103
expression by CD8+ T cells in vitro (102). While localized
inflammation can recruit CD8+ T cells into the lung, in the
absence of local antigen recognition, memory CD8+ T cells fail to
express the retention receptors CD69, CD103, and CD49a or
persist long-term (103). However, the requirement of antigen
recognition within peripheral tissues for CD8+ TRM formation is
not absolute. CD8+ CD103+ TRM can be generated in the absence
of antigen recognition in barrier tissues, including skin, intestine,
and female reproductive tract (104–106). Nonetheless,
subsequent studies demonstrated that local recognition of
antigen dramatically increases the formation of CD8+ TRM in
VACV-infected skin (107, 108). Moreover, local competition
between CD8+ T cells of different specificities for different viral
epitopes shapes the repertoire of cutaneous CD8+ TRM cells
following VACV infection (107), underlining the importance
of local antigen recognition in regulating the establishment of
CD8+ TRM.
Frontiers in Immunology | www.frontiersin.org 6
Tissue-Derived Signals: Cytokines,
Inflammatory Molecules, and Other
Immune Cells Signals
The local tissue cytokine microenvironment influences CD8+

TRM phenotype. TGF-b is critical for the formation of CD103+

CD8+ TRM in several tissues, including the siIEL compartment,
skin epidermis, lung, and kidney (105, 109–111). CD8+ T cells
expressing mutant TGF-b receptors fail to express CD103 or
persist within multiple peripheral tissues (42, 43, 81, 105, 109).
Recent data suggest that epidermal CD8+ TRM cells require
transactivation of autocrine TGF-b for their long-term
persistence, and competition for limited TGF-b influences
which clones persist within the epidermis (112). CD8+ T cell
TGF-b responsiveness is controlled by the transcription factors
EOMES and T-bet, and downregulation of Eomes and T-bet is
required for CD8+ T cell TGF-b responsiveness and CD8+ TRM

formation (94). Additionally, recent research has identified a role
for the transcriptional cofactor, SKI, in regulating CD8+ T cell
CD103 expression. Using an LCMV infection model, Wu et al.
demonstrated that ectopic expression of SKI proto-oncogene
restricts CD103 expression by CD8+ T cells in vitro and in vivo.
SKI is recruited to the Itgae locus to suppress CD103
transcription by preventing histone acetylation in a Smad4-
dependent manner. Moreover, in the absence of Smad4,
CD103 is constitutively expressed by CD8+ T cells even in the
absence of TGF-b signaling, suggesting that modulation of TGF-
b-SKI-Smad4 pathway could determine CD8+ CD103+ TRM

generation (111).
Inflammatory cytokines produced in response to local

infection, and the chemokines they induce also regulate TRM

formation and phenotype. IFN-g and the IFN-g-induced
chemokines, CXCL9 and CXCL10 have been shown to
orchestrate CD8+ TRM precursor migration and localization
within tissues in multiple infection models. For example,
following influenza infection, IFN-g produced by CD4+ T cells
promotes the localization of CD8+ T cells to the airways, thereby
controlling their exposure to TGF-b (95). Similarly, following
genital HSV-2 infection, IFN-g induces local expression of the
CXCR3 ligands, CXCL9 and CXCL10 that promotes CD8+ T cell
localization and long-term persistence within the tissue (113).
Furthermore, local application of these chemokines is sufficient
to recruit CD8+ T cells into the genital tract where they are
retained long-term and enhance memory response to reinfection
(106). Similarly, keratinocytes express CXCL9 and CXCL10
during HSV skin infection. KLRG1− CD8+ TRM precursors
show preferential migration to these chemokines ex vivo
compared to KLRG1+ effector CD8+ T cells. Moreover,
following intradermal injection, CXCR3−/− CD8+ T cells
generate fewer CD103+ TRM than adoptively transferred WT
CD8+ T cells, suggesting that CXCR3 mediates TRM precursor
entry into the epidermis where locally activated TGF-b may
promote subsequent epidermal CD8+ CD103+ TRM generation
(42, 114). Additionally, CXCR3-directed localization of type I
Treg expressing the TGF-b activating integrin, avb8, within local
inflammatory sites promotes CD8+ TRM generation in the
intestine, liver, and lung. Positioning of these Treg adjacent to
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effector CD8+ T cells promotes CD8+ TRM generation via
activated TGF-b availability (115). In contrast, generation of
CD8+ CD103− TRM following oral Yptb infection is independent
of TGF-b signaling, but requires CXCR3-dependent clustering of
effector CD8+ T cells with CXCL10-producing CX3CR1+

intestinal cells in areas of inflammation within the intestinal
lamina propria, suggesting that the microenvironment formed
by immune cell aggregates supports CD8+ TRM formation (116).
Indeed, IL-12 and IFN-b produced by intestinal macrophages
during Yptb infection prevents TGF-b-induced CD103 expression
by CD8+ T cells, favoring the differentiation of CD8+ CD103− TRM

cells (82). Thus, inflammatory cytokines not only function to
induce local chemokine expression to promote the recruitment of
TRM precursors into tissues, but also influence the differentiation
of CD8+ T cells within the tissue, providing a mechanism to
promote TRM phenotypic diversity.

Several additional chemokine receptors may also participate
in the formation of CD8+ TRM within peripheral tissues. For
example, expression of the intestinal homing chemokine
receptor CCR9 by CD8+ siIEL is increased compared to their
circulating counterparts throughout their differentiation (5, 44).
Additionally, expression of CXCR6 and CCR10 by mouse CD8+

T cells are required for optimal CD8+ TRM formation in the skin
(117). Although CD8+ TRM formation in mouse skin appears to
be CCR8-independent (117), human cutaneous CD69+ CD103+

TRM express CCR8, raising the possibility that CCR8 and its
ligands may regulate human cutaneous CD8+ TRM generation or
function (118, 119).

Competition for survival cytokines may also impact CD8+

TRM accumulation within tissues. A recent report using an
LCMV infection model demonstrated that NK1.1+ innate
lymphoid cells (ILCs) control the accumulation of memory
CD8+ T cells in salivary glands. Specifically, establishment of
CD8+ TRM is enhanced in anti-NK1.1+ antibody pretreated mice.
The authors propose that ILCs might compete for survival
signals such as IL-7, although no specific mechanism was
determined (120). Similarly, following HSV skin infection,
CD8+ TRM formation is accompanied by a concomitant local
decrease in dendritic epidermal gd T cells, suggesting possible
competition for survival cytokines within the epidermal niche.

Costimulatory signals also play a role in the establishment of
CD8+ TRM within tissues. During influenza infection, Zhou et al.
showed that interaction of the costimulatory molecule, 4-1BB
with its ligand 4-1BBL is necessary for the induction of long-lived
lung-resident CD103+ and CD103− memory CD8+ T cell
populations (121). In addition, glucocorticoid-induced TNFR-
related protein ligand (GITRL), expressed by lung monocyte-
derived inflammatory antigen presenting cells, provides a
costimulatory signal for lung CD8+ T cells expressing GITR
during influenza infection. GITRL/GITR interaction in the LN
and lung is required for the differentiation of CD8+ TRM

precursors and the formation of CD8+ TRM within the lung
parenchyma (122).

Additional microenvironmental cues may also regulate the
generation of CD8+ TRM. For example, microRNA-155 is
upregulated during infection in response to TLR signaling and
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inflammatory cytokines (123). CD8+ TRM are established in the
brain following infection of mice with neuroinvasive LM, and
their accumulation is decreased in the absence of miR-155 (124).
Also, CD8+ T cells require P2RX7 expression for CD8+ TRM

formation in the siIEL, female reproductive tract, kidney, salivary
glands, and liver. Extracellular ATP is released during
inflammation and injury, and is sensed by the purinergic
receptor, P2RX7. Upon CD8+ T cell activation, expression of
TGF-b receptors is transiently down-regulated. Extracellular
ATP derived from intestinal microbiota, activated cells and/or
damaged tissue restores TGF-bRII expression and TGF-b
responsiveness, resulting in CD8+ T cell CD103 upregulation,
KLF2 downregulation, enhanced mitochondrial function and
TRM formation (125). On the other hand, microbiota depletion
by antibiotic treatment increases the antigen load following LM
infection and promotes CXCR3-directed CD8+ T cell
accumulation within the large intestinal lamina propria,
resulting in increased mucosal CD8+ TRM accumulation and
response (126).
STAGE 3: CD8+ TRM MAINTENANCE IN
PERIPHERAL TISSUES

In Situ Antigen Dependence
CD8+ TRM persist long-term within several tissues, including
intestinal IEL (105), vaginal mucosa (106), and skin (104, 127)
independent of cognate antigen recognition. In contrast, lung
CD8+ TRM are rapidly lost from the tissue. Several studies suggest
that cognate antigen recognition is required for the persistence of
lung CD8+ TRM. Residual local antigen persistence may promote
continuous development of lung TRM and allow for the
maintenance of CD8+ TRM within the tissue (128). Following
influenza infection, CD8+ TRM receive chronic local TCR
stimulation even weeks after the clearance of infectious
influenza virus. Furthermore, tamoxifen-inducible H-2Db

depletion or B7-CD28 blockade starting at least three weeks
post-infection results in impaired maintenance of CD8+ TRM

cells within the lung (129). Based on these findings, novel
methods are being developed in attempt to prolong the
persistence of CD8+ TRM within the lung. Combined
subcutaneous and intranasal vaccination of mice with an
adenovirus vector expressing influenza antigen is reported to
induce persistent antigen expression in the lungs and maintains
TRM within the lung for at least one year post-vaccination (130).
Continual recruitment of circulating CD8+ TEMmay convert into
TRM following antigen recognition and help to sustain TRM

within the interstitium.
However, the requirement of circulating memory CD8+ T cell

recruitment for the long-term maintenance of lung CD8+ TRM

has been questioned by a recent study using parabiosis and
intravascular staining to exclude analysis of CD8+ T cells within
the circulation. Takamura et al. demonstrated that CD8+ TRM

can be retained in specific niches created at sites of tissue
regeneration within the lung parenchyma, distant from lymph
vessels, and independent of CD8+ T cell recruitment from the
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circulation (100). Still, the half-life of CD8+ TRM within lung
airways is less than 14 days (131), and so they propose that
maintenance of airway memory CD8+ T cells may require
residual antigen-driven reactivation of CD8+ TRM in the lung
parenchyma and recruitment into the airways (100, 132). More
recently, an additional mechanism has been proposed to
maintain regional immune memory specific for lung
pathogens. Stolley et al. demonstrated that following influenza
infection, CD8+ T cells migrate to draining mediastinal LN via
lymphatic vessels. These cells express CD103 and CD69, are
maintained long-term within the LN in an antigen-independent
manner and maintain effector molecule expression. As such,
repositioning and persistence of CD8+ TRM within the draining
mediastinal LN may provide a means to maintain regional
immune memory despite rapid attrition of lung CD8+ TRM (133).

CD8+ TRM Receptors and
Transcriptional Regulators
Maintenance of CD8+ TRM is thought to require expression of
retention receptors that act as adhesive anchors (Formation
markers and transcript ional regulators in stage 2,
Supplementary Table 2, and Supplementary Table 3). CD103
binds to E-cadherin, which is expressed in skin epidermis (134)
and intestinal epithelium (5, 105). This interaction is thought to
anchor CD8+ TRM within the epithelial compartment of tissues
and facilitate their long-term residence (135). Similarly, CD49a
binds collagen type I and IV, and also facilitates CD8+ TRM

persistence within skin, lung, and intestine (7, 84, 136). In
addition to its adhesive function, CD49a may also provide a
pro-survival signal, limiting CD8+ memory T cell apoptosis (7).

Although CD69 is required for CD8+ TRM establishment in
several tissues, it may not be required for their long-term
maintenance. Following mouse influenza infection, CD8+ TRM

are retained long-term within the lung independent of CD69
expression. Early after infection, CD69 is important for the
accumulation of CD8+ T cells within the airways to inhibit
strong S1P1-mediated exit signals. However, once CD8+ TRM

are established, CD69 is dispensable even though the cells
maintain residual S1P1 reactivity (100). Downregulation of
KLF2, the transcription factor that drives S1P1 expression, may
preclude the need for continued CD69 expression in TRM to
inhibit any S1P-mediated exit signal. Moreover, physical
separation of TRM from lymphatic vessels by their positioning
within lung niches or within the epidermis may also facilitate
their retention within tissues independent of CD69.

The expression patterns of several transcription factors that
regulate CD8+ TRM formation are maintained long-term in
established TRM (Transcriptional regulators in stage 2,
Supplementary Table 2 and Supplementary Table 3).
However, Milner et al. found divergent transcription factor
expression patterns in CD8+ T cells with distinct phenotypic
properties during different stages of TRM formation and
maintenance. Specifically, while Blimp1hi Id3lo siIEL CD8+ T
cells are abundant at the effector phase of the immune response,
Blimp1lo Id3hi siIEL CD8+ T cells progressively accumulate over
time, and are more abundant at the memory phase of the
Frontiers in Immunology | www.frontiersin.org 8
response. Moreover Blimp1lo Id3hi siIEL CD8+ T cells have
higher recall proliferative capacity and multipotency than
Blimp1hi siIEL CD8+ T cells (91). Additionally, Aryl
hydrocarbon receptor (AhR) also regulates CD8+ TRM

maintenance. Expression of AhR is increased in skin CD8+

TRM compared to naïve or circulating memory T cells. While
Ahr−/− CD8+ T cells initially enter into sites of DNFB-induced
skin inflammation, over time, they disappear from the skin but
not spleen (134), suggesting that AhR is required for the long-
term persistence of cutaneous CD8+ TRM. Accordingly, AhR
expression is increased in mouse intestinal TRM compared to
circulating memory CD8+ T cells following LCMV infection
(44), as well as in human lung CD8+ CD103+ TRM compared to
circulating memory T cells (73). Finally, Notch signaling
regulates the maintenance of CD8+ CD103+ TRM in the lung
by regulating both CD103 expression and CD8+ TRM

metabolism (73).

Tissue-Derived Signals: Cytokines,
Inflammatory Molecules, and Other
Immune Signals.
TGF-b is not only required for the establishment of CD8+ TRM in
multiple barrier tissues, but also to preserve their phenotype and
long-term persistence in the intestine (109). Similarly, after
cutaneous CD103+ CD8+ TRM have been established,
neutralization of the TGF-b-activating integrin, avb6, results
in reduced numbers of TRM in the epidermis but not LN or
spleen over time (114). These results suggest that continuous
TGF-b signaling is required for the long-term persistence of
epidermal CD8+ TRM.

Survival cytokines also provide for the long-term sustenance
of tissue-resident CD8+ T cells. Both IL-7 and IL-15 are required
for the persistence of CD8+ TRM in the skin (94, 137). In contrast,
maintenance of TRM in the lung and intestine is IL-15-
independent (138, 139). On the other hand, IL-12 regulates
Bcl-2 expression to promote the survival of CD8+ CD103−

TRM within the intestinal lamina propria (82).
Although P2RX7 promotes CD8+ TRM formation within the

intestine (125), Stark et al. demonstrated that sterile tissue
damage led to loss of established WT, but not P2rx7−/− CD8+

TRM from the liver (140). They found that TCR triggering
downregulates P2RX7 expression, and so proposed that tissue
damage-induced depletion of established TRM might free space
for the formation of new CD8+ TRM with infection-relevant
specificities. In contrast, Wakim et al. determined that persistent
expression of the anti-viral transmembrane protein, IFITM3 by
lung CD103+ CD8+ T cells promotes the survival and
maintenance of CD8+ TRM at sites of viral infection. Following
influenza infection, cognate antigen induces persistent IFITM3
expression preferentially by lung CD8+ TRM compared to splenic
memory CD8+ T cells. CD8+ TRM that lack IFITM3 expression
exhibit increased susceptibility to influenza infection compared
to IFITM3+ CD8+ TRM, and are selectively lost following virus
challenge (141).

Finally, CD8+ TRM long-term survival and protective
function require lipid uptake and oxidative metabolism.
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Fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5) are
required for the long-term maintenance of CD8+ TRM within
the skin following VACV infection, and for CD8+ TRM-
mediated protection from viral challenge (142). However,
CD8+ TRM exhibit distinct patterns of FABP gene expression
depending on their tissue of residence. An additional study
demonstrated that following HSV infection, skin CD8+ TRM

express Fabp4 and Fabp5, but lack expression of other FABP
isoforms. However, following LCMV infection, liver CD8+ TRM

highly express Fabp1, some Fabp4, but no Fabp5. In contrast,
siIEL CD8+ TRM express Fabp1, Fabp2, and Fabp6, but
negligible Fabp4 and Fabp5. These differences in FABP
expression are determined by tissue-derived signals, and by
altering FABP expression, CD8+ T cells can adapt to different
host tissues (143).
STAGE 4: PATHOGEN CHALLENGE

Location and Relocation
CD8+ TRM are positioned to provide a first line of host defense
in response to pathogen challenge. Recognition of cognate
antigen stimulates CD8+ TRM to rapidly secrete cytokines that
induce expression of anti-viral and anti-bacterial genes, activate
innate immune cells, and enhance chemokine and adhesion
receptor expression for increased recruitment of circulating
immune cells (144–146). Following tissue entry, circulating
memory CD8+ T cells can undergo antigen-dependent CD69+

CD103− TRM differentiation (147) as well as antigen-
independent CD69+/− CD103+/− TRM differentiation (148,
149) in situ. Additionally, intravital microscopy studies
revealed that established CD8+ TRM proliferate within the
female reproductive tract and skin upon cognate antigen
encounter. These cells dominate the recall response and
contribute more than circulating memory CD8+ T cells to the
pool of secondary TRM cells (148, 149).

At homeostasis, CD8+ TRM persist long-term within
peripheral tissues, separate from the circulation. However,
following antigen reencounter, CD8+ TRM exhibit plasticity.
Beura et al. determined that CD8+ CD69+ TRM in the draining
LNs derive from cells present in the upstream nonlymphoid
tissue (11). Complementary studies by Behr et al. used Hobit
reporter mice to demonstrate that CD69lo Hobit+ antigen specific
T cells accumulate in the draining LNs in the effector phase after
reinfection, and upregulate CD69 expression in the secondary
memory phase, forming LN TRM. Virus challenge not only
induces local proliferation of CD8+ TRM cells in peripheral
tissues that can participate in the accumulation of secondary
TRM in the draining LN, but also, formation of circulating
memory CD8+ T cells downstream of CD8+ TRM. Studies using
Hobit lineage tracer mice revealed that Hobit+ CD8+ TRM can
downregulate Hobit expression upon antigen encounter and
form KLRG1+ CXC3CR1+ circulating TEM with enhanced
capacity to protect against reinfection (150). Similarly, Fonesca
et al. demonstrated that following challenge, small intestinal iEL
Frontiers in Immunology | www.frontiersin.org 9
TRM give rise to circulating TCM and TEM. These ex-TRM cells are
epigenetically poised for migration back to the tissue of origin
and TRM re-differentiation (151).

CD8+ TRM Antigen Reencounter:
Dependence on CD11c+ DCs
Intravital confocal microscopy illustrated that CD8+ TRM actively
patrol skin epithelium in search of cognate antigen, raising the
possibility that TRM within barrier tissues do not depend on
antigen delivery by professional APCs (152). In line with this
hypothesis, Masopust et al. demonstrated that following
depletion of ~90% of host DC in CD11c-DTR bone marrow
chimeric mice, TRM still proliferate in response to challenge with
cognate peptide antigen (149). In contrast, in the vaginal mucosa,
TRM reactivation following HSV-2 challenge depends on
CD301b+ DCs (153). In addition, transplantation of the dorsal
root ganglia of HSV-infected mice under the kidney capsule of
naive mice induces viral reactivation. Here, the CD8+ TRM

proliferative response is initiated by recruitment of CD11b+

CD11c+ DCs. Together, these results suggest that the DC
requirement for CD8+ TRM response to antigen challenge may
be context dependent. Indeed, in models of LCMV and influenza
infection, cDCs are dispensable for lung CD8+ TRM reactivation.
Rather either hematopoietic or non-hematopoietic antigen
presenting cells are sufficient, but they induce different TRM

functional outputs. Whereas antigen presentation by
hematopoietic cells reduces gene transcription of chemokines
and cytokines such as Ccl1, Ccl3, Ccl9, and Ifng, activation by
nonhematopoietic cells promote transcription of genes involved
in cell cycle and proliferation but curbs type I interferon
stimulated genes (154).

Patrolling the Tissue: Surveillance
and Motility
Although TRM remain resident long-term in peripheral tissues,
they are not sessile cells; TRM continuously patrol the local area
for invading pathogens. Upon cognate antigen recognition,
CD8+ TRM become rounded and arrest their migration before
undergoing proliferation in situ (148, 149). However, intravital
microscopy studies demonstrated that depending on their tissue
of residence, TRM display different migration speeds and
morphologies. TRM migrate within skin epidermis, albeit slowly
at a rate of ~1.3 µm/min, and extend dendrites laterally to probe
their surroundings for cognate antigen (134). Imaging of the
mouse uterus after acute LCMV infection revealed that CD8+

TRM migrate at different rates within the stroma of the female
reproductive tract and this migratory speed correlates with
collagen density. TRM within the collagen-rich perimetrium
migrate more slowly than in the less collagen-rich
myometrium where TRM exhibit motility rates that are similar
to those of circulating lymphocytes in LNs (149). Interestingly, a
recent study in influenza-infected mice suggests that the collagen
receptor, CD49a promotes CD8+ T cell motility within the
trachea to facilitate tissue surveillance (155). In contrast,
CD103 restrains TRM motility in both trachea and skin (117,
155). How changes in the local microenvironment following
March 2021 | Volume 11 | Article 624199
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challenge with distinct pathogens might affect CD8+ TRM

phenotype and migratory behavior requires additional study.

Antiviral Activity: Effector
Molecule Expression
CD8+ TRM provide immediate effector functions against
secondary infections (Supplementary Table 4). The
transcriptional profiles of both mouse and human CD8+ TRM

exhibit higher expression of effector molecules compared to
circulating memory CD8+ T cells (73, 74, 93, 105, 156).
Constitutive expression of mRNAs encoding effector molecules
may facilitate rapid TRM response. For example, notch signaling
contributes to the maintenance of constitutive Ifng expression by
lung TRM (73). Notch signaling transactivates Ifng, increasing
Ifng expression by TRM independent of TCR stimulation.
Following recognition of cognate antigen, CD8+ TRM secrete
IFN-g, IL-2 and TFN-a, inducing a rapid recall response at the
site of pathogen invasion (146, 156–158). IFN-g induces vascular
cell adhesion molecule 1 (VCAM-1) expression by endothelial
cells, as well as production of inflammatory chemokines that
recruit circulating immune cells, resulting in amplification of the
memory response (146). Additionally, resting lung CD8+ TRM

constitutively express CCL3, CCL4, CCL20 and XCL1 (73), and
intestinal CD8+ TRM express Ccl3 and Ccl4 (44), suggesting that
CD8+ TRM themselves express genes to rapidly amplify the
memory immune response.

CD8+ TRM targeted secretion of the cytotoxic proteins,
perforin and granzyme B, destroy target cells. While circulating
memory CD8+ T cells lack cytotoxic protein expression, TRM that
form within intestinal IEL, liver, and brain following LCMV
infection express granzyme B during quiescence (72, 156, 159).
Constitutive expression of granzyme B might promote rapid
control of pathogen infection. In contrast, airway CD8+ TRM are
reported to be poorly cytolytic, even in the presence of antigen
stimulation (157). The nutrient-poor airway environment
induces cellular stress, limiting TRM effector function and
survival at homeostasis, and perhaps providing a mechanism
to prevent unnecessary epithelial damage (160).

Controlling TRM Activity: Inhibitory
Molecules and Metabolic Arrest
Inhibitory molecule expression may be critical to prevent TRM-
mediated damage in barrier tissues. The inhibitory surface
protein programmed death protein 1 (PD-1), upregulated by
exhausted T cells and tumor infiltrating lymphocytes (TILs), is
also expressed by CD8+ TRM in mouse and human tissues (74,
161). Multiple studies suggest that PD-1 may provide TRM

functional restraint. For example, PD-1 expression by T cells
correlates with response to anti-PD-1 blockade treatment in
patients with cancer (162). Additionally, CD8+ PD-1hi TRM

cells in human pancreas may maintain immune homeostasis
through interactions with resident macrophages; in samples
from chronic pancreatitis, CD8+ T cells exhibit reduced PD-1
expression (163). Moreover, following influenza infection,
antigen specific CD8+ T cells in the lung acquire both a
memory and exhausted phenotype, including PD-1 surface
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expression. Blocking PD-1 ligand (PD-L1) promotes
exhausted-like TRM cell expansion, and augments TRM cell
function, enhancing TRM-mediated protection from reinfection.
However, anti-PD-L1 treatment also causes chronic tissue
fibrotic sequelae, suggesting that inhibitory receptors are
important for balancing immune protection and fibrotic
processes (129). Similarly, CD8+ TRM that form in the
epidermis following acute contact hypersensitivity reaction
express inhibitory checkpoint receptors that limit TRM

reactivation. Treatment with inhibitory molecule antagonists
increa ses the magni tude and seve r i ty o f eczema
exacerbations (27).

Human lung CD8+ TRM express not only PD-1, but also genes
encoding inhibitory molecules such as CTLA4, BTLA, LAG3,
SPRY1, and the adenosine receptor A2AR (73). Similarly, a
recent study using sc-RNA seq demonstrated that inhibitory
receptors including Ctla4, Lag3, Cd101, and Tigit, are
upregulated early during formation of intestinal IEL CD8+ T
cells in an acute LCMV infection model, suggesting a possible
role in TRM differentiation (44). Moreover, following influenza
infection, differences in TRM inhibitory molecule expression are
observed depending on the T cell epitope, suggesting that initial
TCR-MHCp interactions may determine not only T cell
activation, but also inhibitory programs (161).

The balance between CD8+ TRM-mediated immune response
and immune pathology may also be regulated by alterations in
mitochondrial membrane composition. CD8+ TRM express early
activation markers, contain cytolytic proteins, and have the
capacity to release cytokines. However, epithelial TRM are
metabolically arrested in a semi-activated state. Alterations in
the mitochondrial membrane, including the cardiolipin
composition, regulate IEL proliferation, and effector
functions (164).

Finally, CD8+ TRM adaptation to the environment is regulated
by mitochondrial gene expression. The transcription factor,
Bhlhe40 is highly expressed in mouse and human CD8+ TRM

compared to circulating memory CD8+ T cells (44, 165), and
promotes TRM mitochondrial gene expression. Bhlhe40−/− CD8+

TRM exhibit decreased oxygen consumption and enhanced
mitochondrial damage. Additionally, Bhlhe40 deficiency results
in reduced acetyl-CoA and histone acetylation of TRM effector
loci. Lack of Bhlhe40 reduces the production of IFN-g, granzyme
B and TNF by CD8+ TRM, suggesting that Bhlhe40 promotes
epigenetic programs permissive for effector gene expression. PD-
1 signaling inhibits Bhlhe40 expression. Importantly, however,
targeting downstream epigenetic machinery rescues CD8+ TRM

mitochondrial function and cytokine production in the absence
of Bhlhe40, suggesting a possible mechanism for improved
immunotherapy (165).
DISCUSSION

Over the last decade, scientists around the globe have
contributed to the study of CD8+ TRM. Rapid progress has
been achieved in understanding the generation, regulation, and
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protective or pathogenic functions of T cells that reside within
tissues. Since the discovery of CD8+ TRM, much effort has
focused on elucidating the transcriptional networks and
mechanisms that regulate these cells. These studies have
identified core transcriptional signatures for both mouse and
human CD8+ TRM that promote their long-term retention and
maintenance. However, with increasing data examining TRM

formation and function in multiple tissues and infection models, it
has become increasingly clear that TRM are a heterogeneous pool of
cells with plastic properties. TRM formation and phenotype are
influenced by extrinsic signals such as antigen, cytokines, nutrients,
costimulatory, and inhibitory signals within the LN and tissue
microenvironments, as well as by intrinsic receptor and signaling
protein expression. These factors can shape TRM differentiation,
maintenance and response, and their variability in different tissues
and inflammatory settings promotes TRM diversity between organs,
and even within the same tissue. Although a great deal has already
been learned, an improved understanding of the mechanisms that
regulate TRM formation and/or function in varied tissue
environments is necessary not only to prevent autoimmune
diseases, but also to improvecancer treatments andvaccine strategies.
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