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Abstract

Accurately predicting contact between our bodies and environmental objects is paramount
to our evolutionary survival. It has been hypothesized that multisensory neurons responding
both to touch on the body, and to auditory or visual stimuli occurring near them—thus delin-
eating our peripersonal space (PPS)—may be a critical player in this computation. However,
we lack a normative account (i.e., a model specifying how we ought to compute) linking
impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to
develop such a model and show that it recapitulates many of the characteristics of PPS.
Namely, a normative model of impact prediction (i) delineates a graded boundary between
near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming sti-
muli increases, (iii) shows stronger contact prediction for looming than receding stimuli—but
critically is still present for receding stimuli when observation uncertainty is non-zero—, (iv)
scales with the value we attribute to environmental objects, and finally (v) can account for
the differing sizes of PPS for different body parts. Together, these modeling results support
the conjecture that PPS reflects the computation of impact prediction, and make a number
of testable predictions for future empirical studies.

Author summary

The brain has neurons that respond to touch on the body, as well as to auditory or visual
stimuli occurring near the body. These neurons delineate a graded boundary between the
near and far space. Here, we aim at understanding whether the function of these neurons
is to predict future impact between the environment and body. To do so, we build a math-
ematical model that is statistically optimal at predicting future impact, taking into account
the costs incurred by an impending collision. Then we examine if its properties are similar
to those of the above-mentioned neurons. We find that the model (i) differentiates
between the near and far space in a graded fashion, predicts different near/far boundary
depths for different (ii) body parts, (iii) object speeds and (iv) directions, and (v) that this
boundary scales with the value we attribute to environmental objects. These properties
have all been described in behavioral studies and ascribed to neurons responding to
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objects near the body. Together, these findings suggest why the brain has neurons that
respond only to objects near the body: to compute predictions of impact.

Introduction

Predicting environmental impact on our body is a critical computation promoting our evolu-
tionary survival. Interactions between our body and the environment occur within the theater
of our peripersonal space (PPS; [1, 2]), the space immediately adjacent to and surrounding our
body. In turn, the brain has a specialized fronto-parietal circuit representing multisensory
objects and events in a body-centered reference frame when these are near the body [3-5].
There is strong experimental evidence demonstrating that PPS plays a key role in defensive
behaviors (see [6] for a seminal review) and initial evidence likewise suggests that PPS encod-
ing plays a role in impact prediction [4, 7, 8]. For instance, stimuli looming toward the body
enhance tactile sensitivity at the spatial and temporal location where observers expect impact
to occur [9], and PPS enlarges as the speed of incoming stimuli grows [10]. However, we lack a
normative account linking impact prediction and PPS.

Modeling efforts have accounted for a number of different aspects of PPS. Magosso and col-
leagues first introduced a biologically motivated neural network of PPS [11, 12]. This model
inherits much of its ability to distinguish between near and far spaces from its local connectiv-
ity patterns within unisensory areas. Variants of this model can account for PPS re-sizing after
tool use [12, 13], as well as its remapping as a function of the speed of approaching stimuli [14]
and recent stimuli statistics [15]. This model may also account for the inflexibility of PPS
remapping in autism [16]. Similarly, Bertoni et al. [17] developed a neural network model of
PPS, with the innovation that this latter one learns the statistical regularities between visual,
tactile, and proprioceptive inputs in order to construct a representation of PPS. In doing so,
Bertoni et al.’s model shows how PPS neurons may be anchored to body parts. Straka and
Hoffmann [18] have trained a neural network to integrate seen object position and velocity, as
well as to predict future tactile contact. However, this model’s predictions of tactile activation,
and thus impact, were trained in a supervised manner and the model did not explicitly calcu-
late the probability of future tactile contact. Roncone et al. [19] proposed a PPS model which
was trained using a humanoid robot, by nearing objects. The model estimated the likelihood
of future contact and used this prediction for avoidance behavior. Perhaps most related to our
model, Bufacchi et al. [20] used a 3D geometric model of defensive PPS to fit hand-blink reflex
data, assuming uncertainty about stimulus direction in all 3 dimensions and an infinite time-
limit.

These models have certainly advanced our understanding of PPS, but share a common limi-
tation in being non-normative. That is, they suggest how PPS and impact prediction could be
computed or learned from observations, as opposed to how it ought to be computed. Instead,
a wealth of evidence, across a wide variety of fields and tasks (e.g., [21-24]), have shown that
humans perceive and perform decisions (near) optimally. Thus, mechanistic models (e.g., neu-
ral networks) and human performance should be benchmarked against statistical optimality.
Similarly, a strong test of the hypothesis that a functional role of PPS is to perform impact pre-
diction [4, 8] is to build a normative model of the latter, and then contrast the behavior of this
model to known properties of PPS encoding.

Here, we use Bayesian Decision Theory [25-28] to propose a normative model of PPS as
performing prediction of impact which minimizes the loss/cost such an impact may incur to
the agent. We show that this normative model (i) delineates a graded boundary between near
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and far space [3], (ii) demonstrates a larger PPS as the speed of incoming stimuli increases [10,
14], (iii) shows stronger contact prediction for looming than receding stimuli—but critically is
still present for receding stimuli [6, 29, 30]—, (iv) scales with the values of objects (e.g., innocu-
ous vs. potentially dangerous; [31, 32]), and finally (v) can account for differing sizes of PPS
for different body parts [33]. Together, these results recapitulate a set of important features of
PPS and support the hypothesis that PPS neurons perform contact prediction.

Results

We developed a Bayesian observer inferring whether contact between an external object and
the body would occur within the next time step. An overview of the model is given in Fig 1
and S1 File (for full detail see the Materials and methods section). Briefly, at time T, an object
has position x7 and moves with velocity vr. The observer is tasked with predicting whether at
or before T + AT this object will make contact with the body. This prediction takes into
account two components. First, the probability estimation of the object making contact with
the body, given its perceived position and velocity, including its uncertainty. Second, the loss
(i.e., penalty) incurred if the prediction is incorrect. We denote the possible impact of the
object on the body as y € {0, 1}, which is a binary variable—either there is contact with the
body or there is not. Instead, y,,.q € [0, 1], a continuous value, is the prediction whether con-
tact will occur or not, taking into account the estimation of probability of contact and the loss
function. Optimal impact prediction is denoted by y; .

According to Bayesian Decision Theory (see e.g., [25, 26]) the optimal decision—in our
case the impact prediction y; ,—is

y;red = arg min L((&Tagx)v (f}T7o-v)7ypred) (1)

}’pwdqov]]

where

L((*T’ gx)7 (OT7 Gv)7ypred) = P()/ = 1|(5&T’ O-x)’ (flT7 O-v)) ' IOSS()’ = 17ypred)+
P(y = O‘(’ACT’ Gx)7 (f/Tv av)) : lOSS(y = O7ypred)

and X, ¥, are respectively the observer’s point estimates of the object position xr and velocity
vrat time T (see Fig 1). The estimates need not be the same as the actual object position and

(2)

velocity, given that perception may be distorted by observation noise (see Derivation of the
normative impact prediction model for details). Uncertainty about the position and velocity
are respectively expressed by g, 0,. Stimuli perceived less accurately (e.g., visual stimuli at low
contrast, or auditory localization as opposed to visual localization) result in greater o, and o,.
To include this uncertainty, position and velocity estimates are respectively encoded as normal
distributions N(pt = X,0 = 0,) and N(u = ¥, 0 = g,). Displacement of the object during
AT is encoded as normal distribution N(u = AT - ¥,,6 = AT - g,) (see Fig 1 or Derivation of
the normative impact prediction model for details).

Merging the position and displacement estimations, the probability P(y|(x;,d,), (¥,,0,))
of the external object making contact with the body (y = 1) at or before T + AT given the
agent’s observations at time T is estimated (see the calculation in Fig 1 or in Derivation of the
normative impact prediction model). Conversely, the estimated probability that the external
object will not make impact with the body is
P()/ = 0|(5€Tv O-x)’ (f/Tv av)) =1- P(y = 1|(5€T7 O-x)7 (OTa Gv))'

The second important component in computing the value associated with an object’s veloc-
ity and distance to the body is the utility function, loss(y, y,r.q). For a predicted value y,.y, it
enables to calculate the corresponding loss associated with y € {0, 1}. For a zero-one loss
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Fig 1. Schema and illustrative example of the contact prediction model. Say an object (black circle) is xr = 30cm
from the body (black head) and is approaching with velocity v = —=50cm/s. Perception with noise. The nervous system
estimates the position and velocity of the object with respect to our body with a given uncertainty. For instance, we
may estimate X, = 32cm and ¥, = —48cm/s. Assuming that the noise is Gaussian, the values X ., 7, are samples from
normal distributions N(u = x7, 0), N(u = v, 0,), where o, (here, for illustration o, = 4cm), 0, (here 0, = 5cm/s) reflect
the level of noise. Further, we assume the brain encodes not only point estimates (X, ¥,), but also their uncertainty—
the estimates are encoded as normal distributions N(¢t = %,,0 = ¢,) and N(u = ¥, 0 = 0,), respectively (see
Derivation of the normative impact prediction model for details). Displacement calculation. According to AT, the
object displacement distribution is N(it = AT - ¥, = AT - ¢,). Future position estimation. Knowing the current
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position and displacement during AT, the position at time T + AT is calculated as positiony,az = positionr +
displacement. Consequently, the distribution of possible future positions X ., , is

N(u =%, +AT-9,,6 = /(AT - 6,)* 4 2). Hit probability estimation. As the body position is at x = 0, the object
will hit the body if its position is equal or smaller than zero (see the green part of the distribution). Therefore, the

estimated probability of body hit (i.e., y =1) is P(y = 1|(%,,0,), (V,0,)) = P(X;, oy < 0). The probability estimation
of no contactis P(y = 0|(%,,0,), (¥,0,)) =1 — P(y = 1|{(X;,0,), (¥1,0,)), which corresponds to the crimson part
of the distribution. Bayesian decision/prediction. Following Eq (1), a prediction y; ,,—which minimizes the expected
loss—is calculated. See S1 and S2 Files for details of the computation.

https://doi.org/10.1371/journal.pcbi.1010464.g001

function—loss is 0 if the prediction y,,.; equals y, 1 otherwise—the optimal prediction (i.e.,
minimizing expected loss) is to predict the state with the highest probability. More generally,
however, a number of different loss functions could be used. Here, we define a fairly general
loss function as,

loss(y7ypred) = FP max (07ypred _)/)2 + FN max (an _ypred)27 (3)

where FP, FN € [0, co] are respectively the false positive and false negative factors, and max(0,
x) is a function which outputs x for x > 0 and 0 for x < 0. In other words, FP determines the
penalty, or cost, associated with predicting impact when none occurs, and FN determines the
penalty associated with not predicting impact when one does occur.

Throughout the article, we typically assume FN > FP, as we focus on defensive PPS and
given that it is arguably better to erroneously predict tactile activation (FP) than it is to experi-
ence impact on our bodies without predicting it (FN) (see The Precautionary Principle). In this
case an impact prediction minimizing the expected loss is performed. We typically use FN = 5;
FP = 1. This choice is arbitrary and was chosen experimentally. The effect of different choices
(1, 5, 100) is illustrated in Section A graded PPS “boundary”—Effect of sensory uncertainty
and cost of false negative prediction. We did not study the case where FN < FP, which may
correspond to appetitive actions like reaching or grasping (see also [34]), but such values can
be readily tested with the current model. Furthermore, for the special case when FP = FN, the
model performs optimal impact prediction—the error between the prediction and the actual
state is minimized. In this case, the optimal prediction is equal to the hit probability estima-
tion. In what follows, we complement every graph in the main body of the article (with FN = 5;
FP = 1) with a twin figure in the S1-S5 Figs where FN = FP = 1.

Putting the above together (estimated probability of touch and loss function), we may write
the full expression (see Eq (6) for the derivation),

L((&Ta 6x)7 (OTv av)?)}pred) = P(y = 1|(5€T7 Jx)’ (f}Tv O-v)) ’ 1055()’ = 17ypred)+
P(y =0|(x,0,), (Vr,0,)) - loss(y = 07ypred) = (4)
Ply =1/(%7,0,), (71,6,))EN(1 = 3,.,,)" + (1 = P(y = 1|(%;,0,), (V1. 0,) FPy,,.,

In what follows, we perform simulations to compare properties of this normative model of
impact prediction with known properties of PPS encoding.

A graded PPS “boundary”—Effect of sensory uncertainty and cost of false
negative prediction

The study of PPS was jump-started by the realization that the primate brain has a set of neu-
rons encoding multisensory objects when these are near from the body [2, 6, 10, 30, 35, 36].

Thus, first and foremost, if the impact prediction model accounts for PPS, it ought to differen-
tiate between near and far spaces. In addition, more recently authors have highlighted that this
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Table 1. Baseline model parameters. Negative values for velocity vrindicate objects approaching the body, while posi-
tive values would indicate objects receding from the body. In simulations we manipulate each of these parameters,
except for o, and FP.

velocity vy =—25cmls
velocity estimation uncertainty 0, = 20cm/s
position estimation uncertainty 0, =2.5cm
false negative factor FN=5

false positive factor FP=1
prediction time step AT =0.5s

https://doi.org/10.1371/journal.pcbi.1010464.t001

PPS “boundary” is not all-or-none, but graded [37]. Thus, in a second step we question if and
how the impact prediction model allows for graded PPS “boundaries”.

First, we build a baseline model with the parameter values listed in Table 1.

As shown in Fig 2, the model generates predictions of contact y; , that grow gradually with
object proximity to the body. Further, it differentiates between a “far space” where touch is not
likely to occur, and a “near space” where touch is highly likely to occur. If we consider the PPS
“boundary” as the first value of predicted impact where mean(y,,,) > 0.01 (see [14], Fig 17 &
18 for a similar approach). With this basal configuration the impact prediction model specifies
a “boundary” between far and near space at about 50cm from the body.

An alternative operationalization of the PPS “boundary” used in the literature is the mid-
point of a sigmoid function (e.g., [29, 33, 38]). Interestingly, close examination not solely of
the mean response (solid line), but also of the variability (blue dots) with the model (Fig 2)
seems to indicate that impact prediction estimates are most variable near the PPS “boundary”
region. We examined if this property was apparent in empirical data by re-analyzing data from
[39]. In this study, human observers (n = 19) were asked to respond to touch as quickly as pos-
sible as task irrelevant visual stimuli approached their body in virtual reality. In Fig 3A we
show that reaction times to visuo-tactile stimuli were faster than to tactile stimuli alone. Fur-
ther, this multisensory facilitation was most apparent as visual stimuli were near the body—

0 20 40 60
Distance (in cm)

Fig 2. PPS as optimal impact utility prediction for baseline parameters. Blue dots—20 for each distance—are
individual predictions (samples) of y; .. Blue line—mean of 20 repetitions. Parameters used are in Table 1. See S1 Fig
for a version with FN = FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.9002
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Fig 3. Variability in multisensory facilitation as a function of distance from the self-empirical data. New evaluation of data from Masson et al. [39]. (A) Visuo-tactile
facilitation of reaction times (RT) as a function of distance to the body—means and standard errors across subjects. (B) Within-subject variability of reaction times. (C)
Aggregate subject, combining visuo-tactile RT facilitation across all subjects.

https://doi.org/10.1371/journal.pcbi.1010464.9003

indexing the encoding of PPS. In this dataset, the PPS “boundary” was located between the
first and second visuo-tactile distance indexed. Most importantly, in Fig 3B we quantified vari-
ability in reaction times, at a single subject level. That is, while reports (e.g., [15, 16, 40, 41])
typically illustrate between-subject variability (for instance by showing standard errors of the
mean across subjects), there is no quantification of within-subject variability. Here, for each
subject we measure the range between the 25th and 75th percentile of their reaction times, for
a given subject and distance. Fig 3B depicts the mean of these ranges across subjects, and
shows that within-subject variability peaked at the second distance indexed. In Fig 3C we show
all reaction times measured, again showing the largest range at the second distance index.
Altogether, the empirical results concur with the modeling prediction that within-subject vari-
ability is largest near the PPS “boundary”.

Next, we questioned if and how this model may account for steepness in the PPS boundary,
as well as for changes in its size—the most common experimental finding (e.g., PPS expanding
with tool use [42], or during walking [40], or bodily illusions [41]). Conveniently, this norma-
tive model of impact prediction in essence has two degrees of freedom: (1) the uncertainty
associated with perceptual observations, and (2) the ratio of FP, FN, dictating an appraisal of
the danger associated with the objects approaching the body. For simplicity, we refer to these
degrees of freedom respectively as a ‘sensory’ and ‘cognitive’ node, yet it is well established that
socio-emotional contexts and motor constraints/possibilities impact our appraisal of the value
of objects in our environment (e.g., see [4, 5, 37]). One additional parameter is the AT. This is
the prediction time step of the model—a time interval for which contact estimation is per-
formed. The object may hit the body at any moment within this interval. Its effects will be
studied in Section PPS shape modulated by prediction time step. The rest of parameters (e.g.,
x1, vr) depend on the physical state of the world.

In turn, in Fig 4A and 4B we respectively manipulate o, (5, 20, and 35 cm/s) and FN (1, 5,
and 100). As shown in Fig 4A, changes in sensory uncertainty lead to concurrent increase in
PPS size (i.e., the first distance at which y; , is higher than 0.01 being farther and farther in
space), and a decrease in the sharpness of its boundary. On the other hand, increasing FN
(while maintaining FP constant at 1), Fig 4B, increases the size of PPS while leaving the shape
of its boundary virtually unchanged. Together, these results demonstrate that the normative
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Fig 4. Effect of stimulus uncertainty and the False Negative (FN) penalty parameters. Dependency between the mean of 1000 predicted tactile

«,»

activations y;, ., (for each distance) and distance xr (in centimeters) of the stimuli from the body. The symbols “+” indicate 25th and 75th percentiles
which are calculated from 1000 predicted values Ve for each distance. (A) The size of PPS and slope of its boundary are modulated by ,. (B) The

size of PPS, but only minimally the slope of its boundary, are modulated by FN. Parameters used are in Table 1 (except for ¢, in (A) and FN in (B)).
See S2 Fig—the right upper panel—for a version of subfigure A with FN = FP = 1.

https://doi.org/10.1371/journal.pcbi.1010464.9004

model of impact prediction not only differentiates between a near and far space but also shows
that both sensory and higher-level value attributes [37] may impact the size and shape of PPS.
In S6 Fig we explore how o,, AT and FN may simultaneously impact the gradient of the PPS
boundary and PPS size.

Finally, note that the observed effect that increasing perceptual uncertainty increases the
PPS size is apparent when the PPS boundary is operationalized as the farthest distance for
which mean(y;,,,) > 0.01. If instead the midpoint of a sigmoid function is estimated and used

as a proxy for PPS size, the effect is significantly smaller. For the special case where FP =
EN =1, S2 Fig, top panels, there is no effect on “PPS size” at all.

PPS encoding and object velocity

In addition to defining a graded separation between near and far spaces, PPS encoding is also
modulated by the characteristics of nearby external objects, such as their velocity [10, 14],
movement direction [6, 29, 30], and valence [31, 32]. In the next three sections we tackle each
of these properties in turn.

PPS size expands with the increasing velocity of incoming stimuli [10, 14]. Hence, we ques-
tioned whether our model recapitulates this finding. The simulation setup mimicked the set-
ting from [14], with an object approaching the observer with a fixed velocity v equal to -25 or
-75 cm/s (looming toward the subject). As shown in Fig 5, the impact prediction model inher-
ently shows the dependency between distance of the object to the observer and impact predic-
tion y; , for both velocities. In fact, if we again operationalize the PPS “boundary” as the

farthest distance for which mean(y;,,,) > 0.01, our simulation roughly corresponds to the size

of PPS empirically measured around the face (i.e., 52 cm for 25 cm/s and 77 cm for velocity 75
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——25 cm/s model

25 cm/s PPS
— =beginning data
1 (Noel et al. 2018)
{ =——75 cm/s model

75 cm/s PPS
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(Noel et al. 2018)

Distance (in cm)

Fig 5. Comparison of PPS sizes for object velocities of -25 and -75 cm/s. Dependency between the mean of 1000
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) > 0.01—roughly corresponds to the PPS beginning around the face determined by [14]. Except for the

cm/s; [14]). Thus, while Noel et al. [14] hypothesize that the enlargement of PPS during
increasing object velocity is due to neural adaptation (i.e., progressively stronger inputs are
needed to drive a neuron that has been active for a given time), here we are agnostic about the
neural implementation and instead show that the physics of our environment naturally leads
to an enlargement of PPS with increased object velocities under a framework of impact predic-
tion (see [17] for a similar demonstration that PPS encoding results from the physics of the
environment wherein touch is more likely to occur when objects are near the body).

PPS encoding and looming versus receding objects

PPS encoding is also modulated by the movement direction of objects in the external environ-
ment. Namely, neurons mapping PPS are most readily driven by looming, as opposed to
receding sensory stimuli [6, 30]. Here we replicate this situation by simulating objects moving
with negative (toward the body) or positive (away from the body) velocities. Further, to extend
on the empirical data and generate predictions for further experiments, we also simulate
objects moving at different speeds (v = 12.5cm/s or 25cm/s) and with different levels of sen-
sory uncertainty (o, = 5cm/s, 20cm/s, or 35cm/s), both while approaching or receding from
the observer.

As expected, the results demonstrate that when objects loomed toward the body, the pre-
dicted tactile activation was higher than when it receded from the body—see Fig 6 and com-
pare the curves corresponding to the same speed v and uncertainty o, but with opposite
directions. Most importantly, our model still generated non-zero y; ,, when the object recedes

from the body. This is due to object position and velocity estimations having non-zero uncer-
tainties o, g,. Namely, predicted contact for a receding stimulus would be zero if the location
and velocity of stimuli were known without any uncertainty (i.e., 0, and o, were zeros). The
fact that the current simulations and Bayesian Decision Theory are able to recapitulate not
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only a response to looming, but also to receding stimuli, supports the hypothesis that PPS
reflects a stochastic computation of impact prediction.

Further, we can use this framework to make specific predictions for future empirical work.
Namely, according to this model, when looming stimuli increase in speed, PPS expands (see
above). However, when receding stimuli increase in speed, there is a negligible probability that
at the next time-point the object will make contact with the body (i.e., increased velocity away
from the observer offsets the effect of object position being uncertain). Thus, while PPS should
expand with increasing velocity of looming stimuli [6, 29, 30], there should be no discernible
PPS gradient with fast receding stimuli. Similarly, the ability to delineate a PPS boundary
should decrease with increasing sensory uncertainty during looming object trajectories (i.e.,
the boundary becomes shallower). To the best of our knowledge, these experimental condi-
tions (looming and receding object trajectories during different velocities and uncertainty)
have not been tested, and will constitute an important future test in ratifying PPS as predicting
future impact.

PPS encoding and object value

The approach of dangerous objects leads to an expansion of PPS (see e.g., [31, 32, 38, 43]).
Within our normative impact prediction model, this effect would a priori seem most naturally
accommodated by a change in FN. However, it may also be argued that greater encoding
resources may be attributed to the encoding of dangerous objects, for instance via attentional
mechanisms (see [44]), and hence reduce o,.

As demonstrated above (Fig 4), these competing hypotheses conveniently lead to different
predictions. If the expansion of PPS during approach of dangerous objects is due to an increase
in FN (Fig 4B), we should observe a change in PPS size, with nearly no corresponding change
in its gradient. On the other hand, if o, decreases (Fig 4A), the PPS “boundary” becomes
sharper, and importantly, this leads to shrinking rather than expansion of the size of PPS.

Taffou and Viaud-Delmon [43] used ecological auditory stimuli (dog growling vs. sheep
bleating) and reported that PPS expanded in the dog condition, specifically in subjects scared
of dogs. They did not explicitly report on the gradient of PPS, yet visual examination suggests
no difference between dog and sheep conditions. This—PPS expansion and no apparent
change in gradient—putatively suggests that the effect reported in [43] is “cognitive” in nature
(i.e., originates from the loss function, FN) Importantly, this effect, as interpreted under the
current modeling framework also highlights a critical element of the Bayesian observer per-
forming contact prediction; namely that beyond optimizing the prediction of the probability
that touch will occur, PPS encoding also ought to optimize the utility associated with impact
prediction.

Ferri et al. [38] ratify the conclusion from [43], while also directly comparing ecological and
artificial stimuli. In a first experiment, the authors present artificial sounds associated with
negative and neutral valence—broadband Brown and White noise, respectively (see [38]). The
results show both an expansion and sharpening of PPS during the negative-valence condition.
Our model would predict that this may be a simultaneous “sensory” effect driving the change
in PPS boundary steepness and a “cognitive” effect driving the PPS expansion and overriding
any shrinking due to the new shape of the PPS boundary as a result of decrease in o,.

Together, this pattern of results highlights the importance in fully characterizing changes in
PPS encoding (only when size and gradient are quantified, one can attribute these effects to
“sensory” vs. “cognitive” in nature). Further, they suggest that when using ecologically valid
sounds—but not artificial stimuli—, enlargements of PPS are most likely due to modulations
in the loss function and not low level sensory components. Lastly, these results highlight that,
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according to the current framework, not all previously reported characteristics of PPS encod-
ing may be explained by either environmental factors or changes in the probability of touch
occurring. Instead, impact prediction must also account for the value attributed to environ-
mental objects [37].

PPS size across different body parts

Beyond defining a graded boundary between near and far space that is modulated by context,
another important characteristic of PPS is that it is dependent on body-part, with PPS growing
in size from hand to face to torso [33]. The differing size of PPS across body parts is unlikely
due to modulations in the sensory uncertainty associated with object position or velocity (o,
and o,) given that approaching objects are perceived by exteroception (i.e., vision or audition)
which is common across body parts. In theory, the ratio between FN and FP could account for
the different sizes of PPS across body parts, but we would have to posit FN being larger for the
torso than the face, and it is not immediately clear why this would be the case. Perhaps the
most parsimonious explanation would be that the difference in PPS size simply reflects differ-
ences in body-part size. In order to test this possibility, we extend the model from 1-dimen-
sional to 3-dimensional. We only model the face and torso in this section.

To extend the model to three dimensions, we generalized 1D position and velocity to 3D
vectors and the border of a body part is generalized to a 2D rectangle enclosed in 3D space—
only the “collision plane”, not the depth of the body part is considered; see Fig 7. The details
are in Section Extension to 3D space. We approximated the face by a rectangle with size
[25¢m, 25¢m], and the torso by a rectangle with size [50cm, 50cm]. In contrast to the 1D sce-
nario, now the object can miss the body part, which decreases the probability of hit. In all

a;X;+nr; object position
top view estimation at T:
(x xp plane) - i JXT=[X%, 2,53
1X2 — O S
. -7 Xr=Dxt, xf=0,x3=0]
hit T %2 position at T
Xl ///‘/\ ( Vo Xl
_ byX1-Ty object
Fut iti ey X3-ry X4
body Future position o a; =% b, =2t
- X} X3

velocity vector at T
a,X1+0 Vr=[vi=-25,v¢=0,v#=0]
X3 2 / V-|1—=25

\ estimation Xyyar

X1 TR X7
: - RS X1
side view = TINSEEEESE o ==y
(x1x3 plane) z==777% az_&‘i-rz b &‘%A+r2
b 2 X 1~ r2 X% X-|1—
Fig 7. 3D experimental scenario. An object is looming to a body part (2D rectangle with size [2 - r1, 2 - r,] enclosed in
3D space). As the object moves along the x; axis, it has position x;. = [x},, X} = Ocm, x}. = Ocm] and velocity v, =
[vi = —25cm/s,vi. = Ocm/s,vi. = Ocm/s] at time T. As the uncertainty in position estimation is nonzero
(o, = [0l > 0,62 > 0,0 > 0]), the point position estimation X, = [%, X3, X}] does not correspond to xr. Future

position estimation X, a7 With a multivariate normal distribution is then calculated (see Section Extension to 3D space
for details). The red area of X rar corresponds to the probability estimation of hit—the body part is on the path
between X, and each point of the red area. On the contrary, the blue area corresponds to no hit of the body. (Top) Top
view. (Bottom) Side view. The silhouette’s reference frame (left) is placed to the torso.

https://doi.org/10.1371/journal.pchi.1010464.9007
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experiments, the object is moving along x; axis to the center of the body part (see Fig 7). There-
fore, if the position and velocity uncertainty in the vertical and horizontal axis are zero

(622 = 0), the probability estimation of hit is the same as in the 1D case, because missing the
body part on the left/right or over/under it is excluded. This means that the variables related to
the first dimension (e.g., x}., v}, 01) are equivalent to the variables of the 1D model (e.g., x7, v,
0,). On the other hand, if the horizontal (7 ) or vertical (47 ) uncertainty increases, there is a
corresponding stochastic estimate that the object may miss the body part and hence the esti-
mation of probability of hit and of y; , goes down.

Experiments with this model are shown in Fig 8. In the first experiment, we used baseline
parameters from the 1D case (see Table 1) and manipulated horizontal (axis x,) and vertical
(axis x3) position and velocity estimation uncertainties (first row—ag! = 20cm/s—in Fig 8).
For some settings of perceptual uncertainty, there is a difference in PPS size between the face
and torso. However, for the torso, the beginning of PPS is still much smaller compared to the
empirical value (72cm from [33]). In an effort to come close to the empirical values, we
increased the velocity uncertainty in the first dimension from the baseline value to
ol = 30cm/s, leading to a general expansion of PPS (similarly to the experiment from Fig 6).
For position and velocity uncertainties in the other dimensions, 6* = 5c¢m, 6>* = 40cm /s
(purple curve in Fig 8), the beginning of face and torso PPS roughly fit empirical estimations
(torso 72cm [33], face 52cm [14]). Thus, to fit empirical data, large horizontal and vertical
velocity uncertainty ¢>* and small horizontal and vertical position uncertainty ¢>* are neces-
sary. If the horizontal and vertical position uncertainty is further increased to ¢>* = 10cm, the
maximal value of y; ; is only 0.6 even for zero distance from the face, which would predict big-
ger reaction times in close proximity for the face than for the torso. We speculate that this is
not plausible.

Two additional observations are in order. First, interestingly, our results suggest that hori-
zontal and vertical uncertainty matters more for small body parts—something that can be
empirically tested. Second, for low values of horizontal and vertical uncertainty, the 3D model
for the torso has very similar PPS size and shape as the 1D case. Thus, a 3D model may often
not be necessary.

PPS shape modulated by prediction time step

An alternative parameter that could potentially influence the different extent of PPS is the pre-
diction time step parameter AT (in our model it was fixed to 0.5s). It may be interpreted as the
time the agent needs to perform a defensive action that will protect the body part threatened
by the impending collision. The effects of AT € {0.25, 0.5, 1}s on the 1D model are shown in S7
Fig (for the corresponding figure with FN = FP = 1 see S8 Fig). Depending on the body part
and the action, the “time constant” may differ. For example, blinking to protect the eyes will be
faster than squatting to protect the whole torso. To explore this hypothesis, we performed an
experiment with AT = 0.5s for the face and AT = 0.75s for the torso on the 3D model—see Fig
9.1t is apparent that the AT parameter is very effective in shifting the PPS boundary.

Discussion

Understanding how observers avoid collision with approaching environmental objects poten-
tially harming their bodies is of paramount importance in furthering our understanding of
self-environment interactions. It has long been postulated that neurons encoding for our PPS
may play a critical role in this computation [4, 9, 14, 45, 46]. Yet, there has been no formal,
normative demonstration. In turn, the major contribution of the current work is the
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https://doi.org/10.1371/journal.pcbi.1010464.9009

derivation of a Bayes optimal model of impact prediction that consists of impact probability
estimation and a cost function simulating the utility/penalty for the agent incurred by the
impending collision. Supporting the hypothesis that PPS encodes the prediction of future con-
tact, in a value-dependent manner, the normative model of impact prediction can recapitulate
several of the defining characteristics of PPS: (i) a graded delineation of near and far space
[37], a preference for (ii) approaching [6, 29, 30] and (iii) rapidly moving [10, 14] stimuli, (v) a
scaling of the “boundary” differentiating near and far space as a function of the valence attrib-
uted to the approaching object [31, 32], and finally (v) differing sizes for different body parts
[33]. The model also makes a set of concrete and testable hypotheses for future work. For
instance, the fact that stimuli velocity ought to impact PPS delineation differently for looming
and receding trajectories (see Fig 6), the fact that perceptual uncertainty ought to have an
impact on PPS size and boundary shape (see Fig 4A) and that perceptual uncertainty in
orthogonal directions to the looming object impacts more the characteristics of PPS for
smaller rather than larger body parts (Fig 8), and finally, the fact that “sensory” and “cognitive”
effects ought to shape PPS encoding differently (compare Fig 4A and 4B).

Interestingly, the derivation highlights two major factors (beyond the environmental, such
as the position and velocity of incoming stimuli, as well as the size of body parts) that may
largely determine the shape and size of PPS. First, aspects related to the loss function—the
value attributed to false positive vs. false negative detection of contact (see [37] for an opinion
piece proposing a value-based theory of PPS). This loss function is likely modulated by social,
emotional, motor, attentional, and even reflex-like computations that ascribe a value to, or a

danger associated with, objects and events in the environment (see [4, 5] for further discus-

sion). Second, aspects related to the precision with which an observer may estimate the posi-
tion and velocity of the approaching object and self-position. Conveniently, these two factors
affect the overall size of PPS (e.g., the central point of a sigmoidal function differentiating
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between the near and far space) and its gradient (e.g., the slope of the sigmoid) differently.
While the value-based computation may modulate the overall size of PPS, it only minimally
affects the gradient between near and far space. On the other hand, if an enlargement of PPS is
due to changes in low-level sensory uncertainty, by necessity this has to be accompanied by a
flattening of the curve differentiating between the near and far space. The differing effect
engendered by changes in the loss function vs. computing the probability of contact should
allow researchers to attribute their empirical effects to one or the other component of the nor-
mative impact prediction model. In S6 Fig, we provide 3D plots illustrating the effects of veloc-
ity uncertainty (o,), false positive cost (FN), and prediction time step (AT) on the slope of the
PPS boundary and its size.

Manipulations intended to affect the loss function are commonplace in PPS research [31,
32]—even if not necessarily conceived as such. For instance, researchers have presented
observers with sights or sounds of objects approaching with either a positive, neutral, or nega-
tive valence. Examining this literature under the current framework suggests that while eco-
logical stimuli may in fact affect solely the loss function (i.e., changes in the false negative
parameter, modulating only PPS size but not the shape of the boundary), artificial stimuli may
affect both value-based computation, as well as the precision of sensory representations (see
PPS encoding and object value).

More notoriously, the current framework points to a large empirical void. That is, while a
critical element of the current model, there is a lack of studies examining how sensory uncer-
tainty—Dby e.g., varying size, contrast, adding observation noise, or making the approach tra-
jectory variable—may affect PPS (but see Huijsmans et al. [7] for a recent exception). The
normative model of impact prediction would hypothesize that more uncertain stimuli should
lead to a larger PPS, depending on how the size of PPS is operationalized—cf. Section A graded
PPS “boundary”—Effect of sensory uncertainty and cost of false negative prediction. To the
best of our knowledge, this has not been explicitly tested. However, Schlack et al. [47], did
record from single cells in the ventral intra-parietal area—an area known to house PPS neu-
rons (see e.g., [6])—while presenting auditory or visual stimuli (the former being more impre-
cisely localized in space, [48]). The authors reported larger auditory than visual receptive fields
in this area, suggesting that audio-tactile PPS may be wider than visuo-tactile PPS, as the nor-
mative model of impact prediction would conjecture.

On the modeling front, PPS is commonly associated with not only defensive [6], but also
with approaching behaviors [34]. Thus, in the future we may develop a full choice model,
where an agent does not only predict if impact will occur or not, but could also take either
avoiding or approaching actions. In this line, Roncone et al. [19] made a robot move toward or
away from objects by connecting artificial “PPS neurons” to a controller. In our case, now
equipped with a normative model of impact prediction, we could trigger actions based on a
specific value of y; ;. Two aspects of the current work are worth highlighting in this action-ori-

ented setting. First, here we either used a loss function where FN > FP or an unbiased one (FN
= FP). However, this need not always be the case. In particular when approaching objects, the
cost associated with “miss” may be higher than that associated with a “false positive”. Namely,
a striking difference between “PPS for defensive behavior” and “PPS for action” may be that in
the former FN > FP while in the latter FN < FP. Second, we ought to highlight that in order to
qualitatively match empirical estimates of PPS sizes across different body parts, varying the AT
parameter was more effective than the FN/FP ratio. For defensive PPS, this parameter may be
mainly motivated by the time needed to trigger and execute a protective action. This may differ
for body parts—protecting the torso by moving it requires whole-body action, while hand or
head could be protected relatively more easily—or even for the same body parts depending on
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context, such as the character of a potential threat. For example, protecting the eyes against fly-
ing sand by blinking is more rapid than a squatting action or moving the arms in front of the
face when the threat is different. Similarly, in invasive single cell recordings a striking feature
of PPS neurons is their vast heterogeneity in receptive field sizes. Our current results suggest
that perhaps akin to what is observed in other spatial codes (e.g., place or grid cells) this hetero-
geneity bears from different intrinsic time-scales of each neuron.

It is also worth noting that the our model predicts complete curves relating impact predic-
tion and distance of the object from the body. It generates empirical predictions about how dif-
ferent parameters such as perceptual uncertainty or object valence modify this curve—by
offsets along the distance axis, change in its slope, or their combination. To test the model pre-
dictions in real experiments, complete distance-dependent curves are desired, as opposed to
simplifications defining PPS boundaries as either the farthest distance with an effect on a mea-
sured variable or as a midpoint of a fitted sigmoidal curve. Reducing the response curve to a
single distance may blur the impact of the different factors.

In conclusion, we derived a normative model of impact prediction, and demonstrated that
this model accounted for a number of characteristics of PPS. Further, this exercise highlighted
that beyond characteristics of the environment itself, the two main factors influencing PPS size
and shape are (i) the ability to represent the external environment precisely, and (ii) the value
attributed to false positive and negatives. Conveniently, these factors express differently (either
affecting both size and shape of PPS, or solely size), and thus researchers ought to be able to
attribute their effects to one or the other. Further, our formal approach has highlighted aspects
of empirical work that are still missing, most notoriously the ability to index biases and vari-
ance in PPS on the individual subject level. We hope novel methods to index PPS are devel-
oped (e.g., estimation tasks), which will allow for further joint theory—experiment
examination of impact prediction and PPS encoding.

Materials and methods
Derivation of the normative impact prediction model

In line with the probabilistic (e.g., [21]) framework to perception, we propose an estimation
procedure of computing the probability of future impact on the body (see Fig 1 for a schema
with an example). Following the estimation procedure, Bayesian Decision Theory (e.g., [25]) is
employed for impact prediction calculation.

An external object is moving on a straight line toward or away from the body. At time T, a
stimulus has position x € R (distance from the body) and moves with velocity v; € R (nega-
tive values for a looming object). We followed [21] (among others) and supposed that sensory
estimations of the position X, and velocity 7, are corrupted by Gaussian noise with variances
o2 and o2, respectively. To simulate the effect of noise, x, and ¥, were obtained as samples
from normal distributions N(y = xr, 0 = 0,) and N(y = vy, 0 = 0,). If the object position sample
is within the body (x, < 0), it is set to X, = 0.1crm—immediately in front of the body. Notice
that the higher values (e.g., auditory localization as opposed to visual localization) of the stan-
dard deviations o,, 0, are related to less precise estimations.

The brain does not only encode point estimates, but also their uncertainties [21, 23, 24, 49].
Hence, we did not use only the point estimates X, ¥, of the position and velocity, but also
included the uncertainty caused by the observation noise—the estimates of the position and
velocity are encoded as normal distributions N(u = x,,6 = 0¢,),N(u = v,,0 = a,),
respectively.

Next, we compute an estimate of object displacement during AT. The displacement is
encoded as N(it = AT - ¥,,06 = AT - ¢,). Note that this estimation, based on the equation
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displacement = AT - velocity, is precise only if the velocity does not change during AT (as
assumed in the current simulations and in all empirical studies of PPS with approaching
objects).

Given the estimate of the initial position and displacement of the object, we can estimate its
future position, X, ,,. This position is calculated as position, s1 = positiony + displacement.
In case of Gaussian random variables, this means

Xpopr ~ N =%, + AT - 9,,6 = \/a2 + (AT - 5,)*). Notice that the calculation of the over-

all estimation uncertainty ¢ = /62 + (AT - ¢,)” shows that manipulations of o, (used in

some simulations) is interchangeable with manipulations of o, (only AT has to be taken into
account). Therefore, the qualitative effects engendered by manipulating velocity uncertainty o,
in the main text can be generalized to position uncertainty o,. The model restricts mean of
position estimation to only the space in front of the body.

We can estimate the probability of impact, P(Y|(%;,0,), (V;,0,)), where Y € {0, 1} repre-
sents whether the object hits the body (y = 1) or not (y = 0). As the prediction is calculated
before the object hits (or not) the body, the actual future impact value y is not known during
the calculation. Therefore, the calculation takes into account the estimated probability
Py|(x;,0,), (¥;,0,)) for both possible values of y. It is estimated as
P(y = 1|(%;,0,), (¥1,0,)) = P(X;.or < 0). That is, this is the estimation that the object will
be on the surface of the body or farther in space (see Fig 1) at time T + AT. Namely, contact of
the object with the body can occur at any time between time T'and T + AT. The probability
estimation that the body will not be hit is
P(y =0|(x,,0,),(v;,0,) =1 —P(y =1|(%;,0,), (V4,0,)). Given the above, according to
Bayesian Decision Theory [25, 26], the optimal decision—in our case the impact prediction
Vyrea € [0, 1]—is calculated as

ypred = arg min L((xT’ ax) (f}T7 Jv)7ypred) (5)

)’prede[o 1]

where L((%,0,), (V1,0,), ¥,,.4) can be further expanded in the following manner by using a

loss function definition

L((%1,0.); (V150,), Yprea) = Py = 1|(xTa 0., (V1,0,)) - loss(y = 1, ypea) +
Ply = 0|(%1,0,), V;) - loss(y = 0,y,,,4) =
Ply =1|(%y,0,), (V,0,)) - loss(y = 1, y00) +
(1= Py =1|(%s,0,), Vy)) - loss(y = 0,7,,,) = (6)
Py =1|(%;,0,). (¥1,0,))(FPmax(0,y,,, — 1)° + FN max(0,1 — y,,.,)")+
(1 =Py =1|(&,0,), (v1,0,))) (FP max(0, y,,,; — 0)" + EN max(0,0 — y,,,)°) =
Py =1|(&;,0,), (77, 0,))EN(L = y,)” + (1 = P(y = 1|(%4,0,), (71,0,)) FPy.,
A prediction, y,.s = 1 corresponds to hit prediction, is evaluated according to a function
loss: Y X Yyreq — [0, 00) which determines the cost incurred (or penalty) when the predicted
value y,.; does not correspond to the future tactile impact value y. In other words, the loss

function reflects the difference between the predicted tactile activation and the actual future
tactile activation y at time T + AT. The loss function is expressed as

loss(y’yprzd) =FP max(()’ypred _y>r + EN maX(O,y _ypred>r (7)
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where FP, FN € [0, 0o] are respectively the false positive and false negative factors, max(0, x) is
a function which outputs x for x > 0 and 0 for x < 0. The parameter r € (0, co) shapes the loss
function. Throughout the simulations, we maintained it fixed to r = 2. If the prediction
matches the actual impact value, the loss will be 0. Instead, if y,.q > y, then the loss function
(7) is reduced to loss(y, Ypred) = FP(Vprea — y)2 and the maximal value is reached when tactile
contact is predicted (y,.q = 1) but does not happen (y = 0). Lastly, if y,,.q < y, then the loss
function (7) is equal to loss(y, Yprea) = FN(y — yp,ed)2 and the loss is maximal when contact
occurs (y = 1) without a prediction of this happening (y,,.q = 0). We suggest that the loss dur-
ing FN cases is higher than during FP cases because objects making contact with the body
without any prediction—thus no defensive action—may be more harmful than making predic-
tions of contact that do not in fact occur.

Note that the prediction is optimal in relation to the estimated probability
Py|(x;,0,), (¥;,0,)) of (no) impact given the object position and velocity estimations.
Because these sensory estimations are stochastic (pomt estimations xT, vT of x, vrare cor-
rupted by Gaussian noise), there are multiple predictions y; , for one position xr and velocity
vy and all of them are optimal in relation to the object position and velocity estimations
N(p=%x;,0,),N(u = v;,0,) of xyand v, respectively.

Extension to 3D space

The model proposed above is one-dimensional. We extended this model to three dimensions.
It means that both position and velocity are represented by 3-dimensional vectors x, =
[xL, 22, x3] and v, = [v}, 2, v3]. In our model, the movement in each dimension is treated
equivalently to the movement in the 1D model and independently on other dimensions (see
the selected reference frame in Fig 7). Therefore, position and velocity point estimates X, =
(%1, %2, %3], v, = [}, V2, V3] are sampled 1ndependently in individual dimensions depending
on the position and velocity uncertainties &, = [0}, 02, 0%], &, = [0}, 07, 0%].

The three-dimensional generalization X, of the one-dimensional future position estima-

tion X, ,; ~ N(u,0) is distributed as a multivariate normal distribution with a diagonal
covariance matrix (see Fig 7)

W =xp +AT-v —\/ + (AT - 1)’

roar ~ N MQ:mAma,az:wa?) + (AT 02)’ (8)

iy = %+ AT -0, = /(69 + (AT - 03)°

The body part is represented as a rectangle with size [2 - 1y, 2 - r,] (see Fig 7). The probabil-
ity of a hit is estimated as

o + +
P()/ = 1|(XT7 o ) vT? f f;ll: :11 :;:11 :fxﬂﬂ(xhxzvx‘;) dx, dx, dx3,
0 + X+
ffoo fhalljllf:ll ;;;117:; fN(ul,al) (.X]) .fN(ltz‘O'z) (.X2) .fN(/l:j)GS)(xg) d‘x] dx? de?

where a;, a,, b, b, are the parameters of the integration boundaries (see Fig 7 for details) and f
represents the probability density function. The probability of no hit can be calculated as
P(y = 0/(xy,0,), (¥;,0,)) =1 = P(y = 1[(x;,6,), (¥;,6,)).

In our simulations, to speed up the probability calculation determined by the integral from
Eq 9 and avoid problems (for example, zero horizontal and vertical uncertainties), we used

©)
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numerical calculation. We generated 10000 samples for each future position estimation. The
probability was estimated as a rate of samples within the “hit” area to all samples (see the
code).

Simulation details

In the simulations, we mimicked the setup of empirical reports. An object was approaching or
receding from the body with constant velocity vr. In one experimental trial, for each distance
x7(e.g.0,5,10, ..., X, cm) from the body, an impact prediction Vyrea WS calculated. Notice
that the choice of the x,,,,, (beginning of the trajectory, in case of looming stimuli) did not
affect the computed values of y; ,, because the predicted values depend only on the actual posi-
tion and velocity (which is constant) and not on the previous trajectory.

Because the predictions y; , differ from trial to trial—similarly to measures in experiments
with human observers—multiple trials for every experimental condition were performed. To
summarize multiple predicted values y; , for each distance x7, means of y; , and 25th/75th
percentiles for each distance x were calculated. In simulations, the expected loss (Eq (6)) is
calculated for y,,.q € {0, 0.05, 0.1, .. ., 1} (except the experiment in Fig 2 where the granularity
is 0.001) and the one with the smallest loss is then selected as the optimal value y; . A detailed

example of y; , calculation with all details is in S1 and S2 Files (interactive version).

Supporting information

S1 File. A detailed example of an impact prediction calculation—Interactive version.
(PDF)

S2 File. A detailed example of an impact prediction calculation. For a more interactive ver-
sion see S1 File.
(PDF)

S1 Fig. A version of Fig 2 with EN=FP =1.
(EPS)

S2 Fig. A version of Fig 6 with FN=FP =1.
(EPS)

S3 Fig. A version of Fig 5 with FN = FP = 1. The vertical dashed lines correspond to the PPS
beginning estimations from [14].
(EPS)

S4 Fig. A version of Fig 8 with EN = FP = 1. The vertical dashed lines correspond to the PPS
beginning estimations from [14, 33].
(EPS)

S5 Fig. A version of Fig 9 with EN = FP = 1. The vertical dashed lines correspond to the PPS
beginning estimations from [14, 33].
(EPS)

S6 Fig. Size of PPS and slope of its boundary is modulated by FN, AT and o,. Beginning of
PPS is determined as the farthest distance xr for which the mean value of 1000 y; ,, samples
overcomes 0.01. For slope calculation, mean values of 1000 y; ., samples for each distance xr
were used. The slope was calculated around the central value (between min and max) of the
curve. Technically, the slope was negative—the values were decreasing from left to right—in
all cases. To better visualize the slope, we plotted absolute values of the slope. Except for o, AT,
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FN and o, = Ocm, the baseline parameters (see Table 1) were used. See the code for details.
(EPS)

S7 Fig. Effect of timestep AT size on PPS. Dependency between the mean of 1000 predicted
tactile activations Yored (for each distance) and distance x7 (in centimeters) of the stimuli from
the body. The symbol “+” indicates 25th and 75th percentiles which are calculated from 1000
predicted values y; , for each distance. PPS size expands with increasing size of timestep AT
(in seconds). Sharpness of the PPS boundary is decreasing with increasing size of timestep AT.
Except for AT, baseline parameters are used (Table 1).

(EPS)

S8 Fig. A version of S7 Fig with FN=FP =1.
(EPS)
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