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Abstract

Next generation sequencing has now enabled a cost-effective enumeration of the full mutational complement of a tumor
genome—in particular single nucleotide variants (SNVs). Most current computational and statistical models for analyzing
next generation sequencing data, however, do not account for cancer-specific biological properties, including somatic
segmental copy number alterations (CNAs)—which require special treatment of the data. Here we present CoNAn-SNV
(Copy Number Annotated SNV): a novel algorithm for the inference of single nucleotide variants (SNVs) that overlap copy
number alterations. The method is based on modelling the notion that genomic regions of segmental duplication and
amplification induce an extended genotype space where a subset of genotypes will exhibit heavily skewed allelic
distributions in SNVs (and therefore render them undetectable by methods that assume diploidy). We introduce the
concept of modelling allelic counts from sequencing data using a panel of Binomial mixture models where the number of
mixtures for a given locus in the genome is informed by a discrete copy number state given as input. We applied CoNAn-
SNV to a previously published whole genome shotgun data set obtained from a lobular breast cancer and show that it is
able to discover 21 experimentally revalidated somatic non-synonymous mutations in a lobular breast cancer genome that
were not detected using copy number insensitive SNV detection algorithms. Importantly, ROC analysis shows that the
increased sensitivity of CoNAn-SNV does not result in disproportionate loss of specificity. This was also supported by
analysis of a recently published lymphoma genome with a relatively quiescent karyotype, where CoNAn-SNV showed similar
results to other callers except in regions of copy number gain where increased sensitivity was conferred. Our results indicate
that in genomically unstable tumors, copy number annotation for SNV detection will be critical to fully characterize the
mutational landscape of cancer genomes.
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Introduction

Recent advances in massively parallel genome short-read

sequencing methods (so-called next generation sequencing (NGS))

have placed the goal of complete delineation of cancer genome

landscapes down to single nucleotide resolution within practical

reach. New methods for the analysis of short-read sequence data are

needed, however, in particular those that are capable of coping with

the complex genomic landscapes of tumors. Cancer genomes

undergo diverse forms of somatic aberration, including single

nucleotide mutations, translocations, gene fusions, deletions,

inversions and segmental genome copy number alterations (CNAs).

Multiple types of somatic aberration have been reported to occur

together: for example, Kadota et al. [1] observed recurrent

mutations in PIK3CA in breast cancer with allele specific

amplifications of the mutant allele in the same tumors and suggested

that PIK3CA point mutations with concomitant CNA amplification

resulted in synergistic oncogenic effects. Similarly, LaFramboise et

al. [2] showed allele specific amplification of EGFR mutant alleles in

a lung cancer cell line; examples of amplification co-occurring with

somatic mutations in MYC [3], HRAS [4], and MET [5] have also

been observed. The co-occurrence of single nucleotide variants in

regions of segmental copy number amplification poses special

problems because unknown mixtures of allele abundances could

result from the process of segmental amplification and/or

subsequent selection, in some cases confounding interpretation.

This is because the mixtures of alleles at any one position may be

skewed, resulting in a departure from the theoretical frequency (0.5)

for heterozygous variants expected in diploid genomes. Figure 1
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shows an example from chromosome 19 of a lobular breast

carcinoma genome reported in Shah et al. [6] and illustrates a skew

in the allelic frequency away from heterozygosity due to an allele-

specific copy number amplification on 19q. Both B-allele frequency

analysis in the array data and allelic ratio analysis in the NGS data

support a mono-allelic amplification on 19q in this genome. We

report in this paper that this event harbours 7 co-existing somatic

mutations (see Results) in genes (annotated on the karyogram) that

are undetectable by analytical methods that assume diploidy.

Accurate and sensitive variant calling methods may therefore

require conceptual inclusion of co-existing segmental copy number

variants (somatic or germline) into the interpretation of measured

allele frequencies from NGS data. High density genotyping arrays

have allowed for quantification of allele-specific CNAs by incorpo-

rating copy number with allelic genotype. Algorithms such as

QuantiSNP [7], VanillaICE [8], Birdsuite [9], PennCNV [10] and

PICNIC [11] model allele-specific CNAs by extending the genotype

state space from the conventional three diploid genotypes: aa

(homozygous for major allele), ab (heterozygous) and bb (homozy-

gous for minor allele). For amplified regions the number possible

genotypes naturally expand, for example, a triploid chromosome or

segmental gain could have the following genotypes:

faaa,aab,abb,bbbg. Despite the insights gained through these

methods, all are ultimately limited by the resolution and scope of the

array design. Most importantly, the discovery of novel somatic point

mutations is generally not possible with array platforms. Next

generation sequencing overcomes these limitations since whole

genome shotgun sequencing (WGSS) can interrogate the entire

genome and reveal somatic mutations in loci not covered by arrays.

Moreover, the frequency of alleles in a given sample is a digital

counting exercise whose dynamic range is not restricted by

hybridization and fluorescence intensity saturation and sensitivity

constraints.

Several cancer genomes have now been deeply sequenced with

NGS and analyzed for CNAs and SNVs independently using

bioinformatic approaches followed by targeted validation to

confirm somatic alterations. These studies have revealed novel

somatic point mutations in acute myeloid leukaemia [12,13],

breast cancer [6,14], ovarian cancer [15], melanoma [16],

lymphoma [17] and lung cancer [18]. Work by Pleasance et al.

[16], Chiang et al. [19] and our own work [6] suggest that CNAs

can be inferred from sequence data, however none of these studies

have used algorithms that explicitly integrate CNAs to inform the

inference of SNVs. Here we demonstrate how the incorporation of

CNA information in SNV discovery in cancer genome sequence

data yields additional novel somatic mutations that were

undetectable using conventional SNV prediction algorithms

designed for normal diploid genomes.

Studies such as Ding et al. [14] and our own [6] have used ultra

deep targeted amplicon sequencing to estimate the frequency of

mutations in the population of tumor cells in order to detect sub-

dominant or rare clonal cell populations. Here we show that non-

diploid allele ratios can also arise from regions of copy number

associated disruptions of allelic abundance. We conclude that

consideration of copy number results in increased sensitivity to

detect both germline and somatic variants in non-diploid regions

of cancer genomes.

Results

The CoNAn-SNV model
To address the problem of allelic states in regions of copy

number aberration, we developed a new model, CoNAn-SNV,

designed to incorporate knowledge of copy number state at

individual positions. Depicted schematically in Figure 2A, and as a

generative probabilistic graphical model in Figure 2B, the model

uses a hierarchical Bayes [20] conditional independence frame-

work for parameter estimation and inference. CoNAn-SNV relates

to the SNVMix1 model described in Goya et al. [21], but with

important differences; namely that SNVMix1 does not encode

copy number changes commonly found in cancer genomes (such

as the 19q amplification shown in Figure 1). To overcome this

limitation, CoNAn-SNV inputs a set of allelic counts and a

discrete copy number state for each position in the data. An

example of the inputs and output is shown in Figure 2C. The

objective is to predict which, out of a fixed number of genotypes

(informed by the copy number state), would be most likely to have

given rise to the observed allelic counts at a given position. The

allelic counts are represented as the number of reads ai at each

position i[(1,2, . . . ,T) that match the reference, where T is the

total number of positions in the input. We let Ni represent the total

number of reads aligned to position i (or the depth) in the input.

We introduce Ci as the copy number state at position i, and we

assume Ci is known at run time. Theoretically, the full space of

allele states could be inferred with knowledge of absolute copy

number, however methods for determination of absolute copy

number from aCGH data remain problematic and in practice it is

unlikely that all states could be resolved even with the current

sampling depths of NGS (see Discussion). Therefore to a first

approximation, we have defined copy number state,

Ci[fLOSS,NEUT ,GAIN,AMP,HLAMPg, where LOSS corre-

sponds to a deletion, NEUT is copy number neutral, GAIN

approximates to low level duplication, AMP approximates to low-

intermediate amplification and HLAMP is a high-level copy

number amplification. Here we use the HMM-based method

described by [6]. They key intuition in the CoNAn-SNV model is

that Ci~c informs the state space of possible genotypes Gc
i ~k at

position i as follows:

Gc
i ~

faa,ab,bbg if c[fLOSS,NEUTg
faaa,aab,abb,bbbg if c~GAIN

faaaa,aaab,aabb,abbb,bbbbg if c~AMP

faaaaa,aaaab,aaabb,aabbb,abbbb,bbbbbg if c~HLAMP

8>>><
>>>:

ð1Þ

Loss segments are analysed with a neutral state-space because they

present challenges that require considerations that are separate

from amplifications and in fact may even require a complimentary

normal genome. Accounting for copy number gains is especially

important when such changes are allele specific, and when the

allele that is amplified is the reference allele. For example, consider

the case where Ci~AMP, this will induce a genotype state space

of faaaa,aaab,aabb,abbb,bbbbg. Our model is therefore theoret-

ically capable of detecting variants with allelic distributions skewed

away from heterozygosity (i.e. aaaab or abbbb). We let mc
k represent

the parameter of the Binomial distribution that encodes the

expected proportion of reads matching the reference sequence, for

a given copy number state c and genotype state k. We can

therefore express the likelihood for observing the number of

reference reads given the depth, the copy number state, the

genotype and the model parameters as follows:

p(ai DNi,G
c
i ~k,Ci~c,mc

k)~Binomial(ai Dmc
k,Ni) ð2Þ

thereby assuming that ai is distributed according to the state-

specific Binomial distribution indexed by genotype and copy

number. We also encode a copy-number specific prior over

genotypes pc, assuming that the genotypes for copy number state c

Segmental Amplifications and Mutation Discovery
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are distributed according to a Multinomial distribution with

parameter pc : p(Gc
j ~k)~Multinomial(Gc

j ~kDpc,1) for all

j[(1,2, . . . ,Tc), where Tc is the total number of positions with

copy number state c. We use Bayes’ rule to compute the posterior

probability that genotype k gave rise to the observed data with the

explicit encoding of copy number state:

p(Gc
i ~kDai,Ni,Ci~c,mc

k,pc)~
pc

kBinomial(ai Dmc
k,Ni)PKc

h~1 pc
hBinomial(ai Dmc

h,Ni)
ð3Þ

where Kc is the number of possible genotypes for copy number

state c (see Equation (1)). Given p(Gc
i ~kDai,Ni,Ci~c,mc

k,pc), we

can then choose to compute:

p(SNVi)~
X
v[V

p(Gc
i ~vDai,Ni,Ci~c,mc

v,pc) ð4Þ

where v[V represents any variant genotype state (i.e. any state that

is not aa, aaa, aaaa, etc. as the case may be) to represent a single

probability that a position encodes a SNV.

Hyperpriors and hyperparameters. We assume pc is

distributed according to a conjugate Dirichlet distribution with

parameters dc. This is a user-defined parameter. In our study we

set dc in order to favour non-variant states since most positions in

the genome will be homozygous for the reference sequence (i.e.

wild-type). We assume mc
k is distributed according to a conjugate

Beta distribution with parameters ac
k,bc

k. We set ac
k,bc

k using the

biological intuition that homozygous reference positions will be

nearly ‘pure’, with decreasing proportion towards homozygous

variant positions. All hyperparameter settings are given in Table

S1.

Model fitting and parameter estimation. Given the free

model parameters h~(mc
1:Kc

,pc), we can showed how to use

Equations (3) and (4) to infer for all i in the input data. As we

showed in [21], it is advantageous to fit the model to the data using

expectation maximization (EM) to learn h. For CoNAn-SNV, we

treat the data in each copy number state separately and run EM

Figure 1. Novel somatic variants detected in allele-specific amplification on chromosome 19q arm. A somatic high-level amplification of
the 19q arm is confirmed in NGS as well as Affymetrix SNP6.0 data. Novel somatic variants that were undetectable by samtools variant caller or
SNVMix are highlighted on the karyogram. A) and B) indicate raw log copy number and b allele intensity, respectively, for normal DNA (from the
same patient) on Affymetrix SNP 6.0 array. Blue colour indicates diploid (neutral) copy number state; the brighter the colour of red the higher the
level of amplification. The three distinct bands in (B) indicate the presence of the alleles harbouring one of the three diploid genotypes: AA,AB and
BB. C) and D) shows metastatic tumor copy number and b allele intensity respectively. The high level amplification on the 19q arm is accompanied
by B allele intensities that show an absence of the AB heterozygous (middle) band that was present in the normal. E) shows allelic counts from next
generation sequencing for the positions represented on the array as a proportion of depth; the allelic ratio is calculated by summing the total
number of reads containing a variant at each position divided by the total depth at that position. F) shows the raw copy from the NGS data
annotated with the amplification information and indicates the same sites of amplification revealed by orthogonal array platform.
doi:10.1371/journal.pone.0041551.g001
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for each set of data independently (see Methods). We describe it

briefly here. Let Ic represent the complete set of positions in the

input data annotated with copy number state c. Iterating over the

copy number states c[fLOSS,NEUT ,GAIN,AMP,HLAMPg,
the E-step consists of computing p(Gc

i ~kDai,Ni,Ci~c,ic
k,pc) using

Equation (3) for each position i[Ic, and the current estimates of

mc
k,pc. The M-step re-estimates mc

k,pc with standard conjugate

updating:

m̂mc
k~

P
i[Ic

a
I(Gc

i
~k)

i zac
k{1

P
i[Ic

N
I(Gc

i
~k)

i zac
kzbc

k{2
ð5Þ

p̂pc
k~

P
i[Ic

I(Gc
i ~k)zdc

kP
j

P
i[Ic

I(Gc
i ~j)zdc

j

ð6Þ

The algorithm continues until the complete data log posterior no

longer increases or a maximum number of iterations has been

reached.

CoNAn-SNV performance on simulated data. We simu-

lated approximately 1000 positions for each copy number state to

train the model and then evaluated performance in 100 simulated

test sets, which also featured 1000 positions per copy number state.

Positions were simulated according to a binomial distribution,

where m was derived from the hyperparameters described in Table

S1, with depth simulated from a Poisson distribution. The

distribution of genotypes in each of the simulated copy number

states were randomly sampled according to p (also calculated from

the hyperparameters). The average AUC and 95% confidence

intervals, along with the sensitivity at three different false positive

rate values (0.01,0.05, and 0.1) were calculated for each CNA-state

and are shown in Table S2. CoNAn-SNV and SNVMix had

nearly identical performance in the different copy number states,

however CoNAn-SNV had improved sensitivity in the highest CN

state. For CN state 5, at false positive rate values of 0.01, 0.05 and

0.1, CoNAn had a mean sensitivity of 0.77, 0.84 and 0.88 whereas

SNVMix had sensitivity of 0.72, 0.78 and 0.82. These results were

not statistically significant, but they establish marginal improve-

ment of CoNAn-SNV over SNVMix without any loss of

specificity.

Experimental validation of the CoNAn-SNV model
To determine the sensitivity and specificity of CoNAn-SNV on

real tumour data, we applied the model to the metastatic lobular

carcinoma previously published in [6] and subsequently re-

sequenced all the novel predictions made by the model to establish

its accuracy. The genome was segmented into discrete CNA

segments using a hidden Markov model as described in [6] and

exhibited a variable CNA landscape. As reported previously,

30.2% of the genome was predicted as loss/neutral, 44.5% was

gain, 19.1% amplification and 4.2% high-level amplification (see

Table S3). The copy number profile was consistent with the data

from that derived from the Affymetrix Snp6 genotyping array

(Figure 1) confirming that predicted regions of copy number

variations were not induced by the Illumina sequencing platform.

Figure 1 shows chromosome 19 and highlights an example of a

somatic high level amplification on the 19q arm that also

demonstrates a skew in the allelic frequency, away from

heterozygosity, due to an allele-specific copy number amplifica-

tion. Both B-allele frequency analysis in the array data and allelic

ratio analysis in the NGS data support a mono-allelic amplification

on 19q in this genome. A re-analysis of the genome with CoNAn-

SNV made a total of 61,643 SNV calls in exonic regions of the

genome (NCBI build 36.1, Ensembl v51 annotations); compared

Figure 2. Overview of CoNAn-SNV model, inputs and outputs. A) CoNAn-SNV genotype state-space expansion shown schematically. As
higher levels of amplification are encountered, a larger genotype state-space is required to accommodate the different events that could arise due to
amplifications (examples in Figure S1). B) CoNAn-SNV generative probabilistic graphical model. Circles represent random variables, and rounded
squares represent fixed constants. Shaded nodes indicate observed data, such as allelic counts, while white nodes indicate quantities that are inferred
during training though expectation maximisation. Ci[NEUT ,GAIN,AMP,HLAMP represents the CNA states of a segment (defined by the HMM
describe in Shah et al. [6]) that spans position i; Gc

i represents the genotype, which varies depending on CNA state; Ni[0,1,:: is the number of reads
and ai[0,1, . . . ,Ni is the number of reference reads; pc is prior existing over the genotypes and extends to accommodate CNA states; and mc

k is the
genotype-specific Binomial parameter for genotype k in CNA state Ci. C) Example of CoNAn-SNV input and output. CoNAn-SNV takes allelic counts
and as well is CNA segment data as input, while SNVMix requires only allelic counts. The same positions and counts are provided to both algorithms,
with different results. In some cases CoNAn-SNV will call a variant with an aaaab or aaab genotype, which would otherwise be missed by SNVMix;
also, however, CoNAn-SNV will also genotype a positions with abbbb rather than bb (as SNVMix [21] would), which allows for better interpretation of
events.
doi:10.1371/journal.pone.0041551.g002
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against 58,518 predictions by SNVMix [21] and 51,085 with the

samtools mpileup variant caller [22]. Figure 3 shows overlap

between CoNAn-SNV, samtools and SNVMix predictions. A total

of 49,966 predictions were common to all three methods

suggesting reasonable overall agreement. However, 2,857 predic-

tions were CoNAn-specific. In contrast, only 781 positions were

specific to samtools and 64 were specific to SNVMix. Figure 3A

shows the overlaps between CoNAn-SNV, samtools and SNVMix.

Neutral regions harboured 191 CoNAn-specific predictions while

Gain, Amplification and High Level Amplifications harboured

977, 589 and 1100 CoNAn-specific predictions respectively.

Interestingly, CoNAn-SNV called more SNVs in the neutral

states compared with SNVMix despite sharing a common

framework. We propose that explicit consideration of CNAs in

training procedures allows for better estimation of parameters

which would otherwise be influenced by allelic skew in amplified

regions (see Methods). SNVs in regions of AMP of HLAMP called

by SNVMix and not by CoNAn-SNV had low depths. These low

depth sequences in regions of AMP and HLAMP may reflect

limits the resolution of the copy number algorithm. At such low

depth the binomial likelihoods, for the larger number of allele-

specific copy number genotypes, overlap thereby placing more

emphasis on the prior to call the final genotype (which biased

towards homozygous reference genotype).

Figure 3A shows there was a substantial enrichment of CoNAn-

specific SNVs in CNA amplification states. From the complete list

of 2,857 CoNAn-specific predictions, we filtered out any positions

that were present in dbSNP v130 and subsequently identified a set

of 140 protein coding, non-synonymous substitution SNVs

candidates for validation by targeted, ultra deep amplicon

sequencing (shown schematically in Figure 4) in the metastatic

and primary (from nine years earlier) tumor genome DNA as well

as the normal buffy coat genome DNA from the same patient. A

total of 52 SNVs could not be resolved due to PCR amplicon

failure during validation, leaving 88 remaining for further analysis.

Table 1 shows 21/125 (23.9%) novel, coding, non-synonymous

somatic mutations that were validated by deep amplicon

sequencing. For all of these somatic variants, their predicted

genotypes were highly skewed towards the reference allele and had

a most probable genotype of aab, aaab or aaaab (Table 1). These

amplicons generated an average of 17:38+8:6% reads represent-

ing the mutant allele in the metastatic genome (with a mean depth

of coverage of 96,669) whereas the normal genome for the

amplicons had an average mutant allele frequency of 0:63+0:95%
and a mean depth of coverage of 71,963. Note that only one

somatic mutation, K187M in ZNF607, a zinc finger protein

putatively involved in transcriptional regulation, was also con-

firmed in the primary tumor. This supports the conclusion from

[6] that only few mutations present in the metastatic tumor were

present in the primary at diagnosis, and thus were candidate

drivers of tumorigenesis. Additionally, we identified 42 (47.7%)

germline variants, where the SNV was present in both the normal

and metastatic DNA. Finally, 20 (22.7%) positions failed to

validate as SNVs and were considered false positive predictions.

Five positions (5.68%) were inconclusive because the disparity in

depth of coverage between the normal and metastatic tumor

validation data was too large to draw conclusions. A full summary

of all 140 positions is available in Table S4. The potential

functional impact of each of the 21 somatic mutations was assessed

using MutationAssessor (http://mutationassessor.org), and is

presented in the supplemental material.

Sub-heterozygous allele abundance could result from sub-

dominant populations of cells or unequal allele amplification in

regions of copy number aberration. For example, preferential copy

number associated amplification of a wildtype allele would result

in less than heterozygous ratios of a somatic mutant allele.

Notably, the mean abundance of the novel somatic SNVs from the

validation experiments above, was 17:38+8:6% with four

mutations (affecting genes NCF2, IPO9, ZNF480 and ZSCAN22)

exhibiting a proportion of less than 10%. Without consideration of

the copy number status, the probability of a non-reference event

would be down-weighted, leading to loss of sensitivity. Further-

more, germline allelic ratios could help confirm whether the copy

number segment involved is predominantly mono-allelic. We

examined the allelic ratios for all informative positions in the CNA

segments analysed. We found seventeen of the 42 validated

germline variants also exhibited substantial allelic skew, as

highlighted in Table 2 (see Methods). Notably, germline variants

at positions chr19: 40691038, chr19:42074256, chr19:50869860

and chr19:59415177 within the high level amplicon on chr19 had

allelic distributions in the tumour that were skewed significantly

away from their normal distribution (Chi Sq test, qv0:01). These

germline SNPs are proximal to the somatic mutations K187M in

ZNF607, E24* in PRR19, Q311* in ALDH16A1, E16Q in ZNF480,

V328M in LILRA2, and G348E in ZSCAN22. The most

parsimonious explanation for these findings is that the somatic

mutations were a later event, however it is not known if they occur

on one of the amplified chromosomes or the residual unamplified

sister chromosome. A different validation procedure would be

required to make this inference. This is supported by an additional

424 SNVs within the 19q high level amplicon (chr19: 24301089–

63793263 see Table S5) that were predicted to be either aaaab or

abbbb by CoNAn-SNV but were not sent for revalidation. The

enrichment of skewed germline alleles in regions of significant copy

number change renders the possible explanation of allelic skewing

of somatic variants in the same regions due to tumour-normal

admixture extremely unlikely. Finally, the OncoSNP http://

groups.google.co.uk/group/quantisnp/web/downloads-oncosnp

algorithm predicted an unbalanced amplification spanning

chr19:32439833–63789666 (Figure S1) in the corresponding

Affymetrix SNP 6.0 data. This segment was predicted by

OncoSNP to contain 638 aaaaab variants, and 591 abbbbb
variants, supporting the conclusion of an allele-specific amplifica-

tion in 19q. Interestingly, the allelic frequency of K187M in

ZNF607, the only somatic variant found in the primary tumor

(16.67%) was consistent in the metastatic tumor (15.25%),

suggesting that the other 19q mutations occurred later in the

tumor evolution.

CoNAn-SNV retrieves more true positives without

compromising overall accuracy. We assessed performance

by evaluating the area under receiver operator characteristic curve

(AUC) for CoNAn-SNV and SNVMix. The positions used as the

ground truth were obtained from an Affymetrix SNP 6.0 positions

genotyped using CRLMM [23] and additionally with OncoSNP

(see Methods). Although high confidence CRLMM calls had

served as sufficient benchmark for SNVMix in [21], it is important

to note that CRLMM assumes diploidy and its calls will therefore

be enriched for heterozygous positions that approach expected

allelic distributions for diploid genomes. OncoSNP, conversely,

extends its state-space to accommodate genotypes induced by

CNA events and can therefore capture allele-specific amplifica-

tions. As previously noted, OncoSNP calls were concordant with

the NGS data and supported that notion that chromosome 1 and

19 have allele-specific amplifications (Table S6 and Figure S1).

The ROC results for OncoSNP suggest that CoNAn-SNV and

SNVMix perform similarly, except in regions of high-level

amplifications (see Figure 5). The AUCs for SNVs in regions of

GAIN was 0.998 for SNVMix and 0.999 for CoNAn-SNV. For

Segmental Amplifications and Mutation Discovery
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Figure 3. Venn diagram of predictions made by samtools, SNVMix, CoNAn-SNV. Separating by CNA state shows an enrichment of CoNAn-
SNV specific predictions in the GAIN, AMP and HLAMP segments of the genome.
doi:10.1371/journal.pone.0041551.g003

Figure 4. Discovery Flow Diagram.
doi:10.1371/journal.pone.0041551.g004
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amplification and high-level amplification, the AUCs were (0.998,

0.999) and (0.991, 0.998) respectively. Examination of the

breakdown of the calls (Table S7) we determine that CoNAn-

SNV calls more true positives overall, compared with SNVMi1,

which was also observed in the simulation data set, but is also

subject to calling more false positives. The proximity of the AUC

measurements suggests that the false positives introduced by

CoNAn-SNV do not outweigh the additional true positives

retrieved. The ROC for HLAMP is very different from the

others, due to SNPs harboured in the allele-specific CNA regions

of chromosome 1 and 19 that could not be detected by SNVMix.

CRLMM results are a benchmark for variants that are easy to

detect by SNVMix. Area under ROC curve calculations indicated

that CoNAn-SNV performs similarly to SNVMix for these

positions (Figure S2). The AUC for SNVs in regions of GAIN

was 0.979 for SNVMix and 0.975 for CoNAn-SNV. For

amplification and high-level amplification, the AUCs were

(0.991, 0.990) and (0.911, 0.928) respectively. This suggests that

the increased sensitivity gained by CoNAn-SNV does not

compromise its overall accuracy compared to SNVMix, which

was also demonstrated using OncoSNP to assess performance.
CoNAn-SNV performance on a quiescent tumor. The

genomic landscape of a tumor varies across different cancer types.

CoNAn-SNV is applicable to tumours with quiescent genome

architectures as well as those with more disrupted karyotypes; to

demonstrate this we evaluated CoNAn-SNV’s performance in a

lymphoma tumor originally published in Morin et al [24] where

71.9% of the genome was predicted as loss/neutral, 22.1% was

gain, 4.30% amplification and 1.67% high-level amplification (see

methods). We used CoNAn-SNV, SNVMix as well as the samtools

to profile the mutational landscape of the lymphoma tumor

genome; each method found 62,162, 61,352 and 47,164 variants

respectively(Figure 3B). For this tumour, an approximate 306

coverage WGSS dataset of the matched normal DNA was

available, thereby permitting the ascertainment of somatic

mutations directly from the data itself. A total of 782 variants

were unique to CoNAn-SNV, otherwise there was high agreement

between all three methods (Figure S4). We used the mutationSeq

software to determine the presence of somatic variants (see

Methods). This yielded 392, 365 and 228 somatic mutations for

CoNAn-SNV, SNVMix and samtools (Table S8). Of the 228

somatic predictions from samtools, 221 were also found by

CoNAn-SNV; and all 365 somatic predictions from SNVMix were

found by CoNAn-SNV (Figure S4). The presence of unique

somatic variants to CoNAn were nearly exclusively in regions of

copy number GAIN (19/22). CoNAn-SNV produced nearly

identical results to the diploid methods in diploid/loss regions of

the genome,which suggests strongly that modelling copy number

confers a sensitivity advantage without loss of specificity, even in

relatively diploid karyotypes and that the CoNAn-SNV model

should generalise well to tumours with normal karyotypes.

Discussion

In this study we showed that the explicit integration of CNA

information with SNV discovery is an essential step towards the

goal of comprehensive mutational profiling by next generation

sequencing of cancer genomes. Unbalanced segmental copy

number alterations are very frequent in tumor genomes and the

presence of an unbalanced amplification or deletion of DNA

would result in altered allelic ratios in randomly sampled

sequence. Without incorporating this copy number information,

probabilistic models of SNV detection cannot adjust their

sensitivity accordingly. CoNAn-SNV incorporates copy number

information into a Bayesian mixture model framework, using a

reduced copy number space with 6 states. The number of possible

Table 2. Effect of copy number amplifications on germline alleles.

Normal Metastatic Transcriptome

ChromPos AA mutation Gene Depth Freq. Nref Depth Freq. Nref Ref. Ref. Count Nref. Nref. Count
Chi sq.
q-value

1:144932587 F218C AL139152.7 17928 0.3169 18017 0.2164 T 55 G 3 1.27E-102

1:149999951 I213V MRPL9 5387 0.2046 8770 0.0409 T 154 C 28 4.29E-211

1:150543396 R3530S FLG 61790 0.6191 78410 0.3981 N 0 N 0 0

8:146033676 A76V ZNF7 92012 0.4499 147007 0.2683 C 2 N 0 0

9:33375641 C?F AQP7 24722 0.2781 22104 0.1985 N 0 N 0 1.12E-89

10:29823914 M1259T SVIL 128591 0.3867 110884 0.4808 A 6 N 0 0

11:390124 N477K PKP3 37172 0.4601 57560 0.2907 C 11 N 0 0

11:17499485 R357Q USH1C 101208 0.5595 58749 0.1548 N 0 N 0 0

11:65860057 A79T RIN1 75400 0.4044 97848 0.1738 N 0 N 0 0

11:116569101 R710C SIDT2 260320 0.5342 237372 0.1390 C 51 T 19 0

11:124827464 E358Q FEZ1 249388 0.5259 171924 0.1372 C 0 G 2 0

12:122455439 R279P STED8 208542 0.3071 175257 0.4182 G 17 N 0 0

17:36549887 S?P KRTAP4-15 1774 0.3207 4409 0.1851 N 0 N 0 1.51E-30

19:40691038 R?Q DMKN 209119 0.5478 247223 0.1696 C 5 T 2 0

19:42074256 H426R ZNF829 6402 0.4531 10867 0.1214 T 1 C 1 0

19:50869860 R190Q GIPR 70793 0.4878 90262 0.1843 G 26 A 5 0

19:59415177 R?K LILRB3 34753 0.1592 46500 0.0642 N 0 N 0 0

These variants exhibit an amplification of the reference allele and show allelic skew, and as a result suggest an unbalanced allelic amplification over the tumor
evolution.Impact refers to functional impact as determined by MutationAssessor.
doi:10.1371/journal.pone.0041551.t002
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allelic states naturally expands with increasing copy number,

however at the same time, the number of reads required to reliably

distinguish all states, will also increase. At high copy number states,

distinction between higher order states differing by one allele

would be highly impractical. A pragmatic approach is therefore to

reduce copy number to 6 states, in our case inferred by a

previously published HMM method [6]. To test the sensitivity and

specificity of CoNAn-SNV, we first analysed, in silico, the

behaviour of the model in comparison with non-CNA aware

SNV callers; using the genome of a metastatic lobular breast

cancer as ground truth, where many somatic and germline

variants have been validated by independent methods. Using the

CoNAn-SNV predictions, we validated 21 novel somatic non-

synonymous coding mutations predicted using CoNAn-SNV that

were not identified in the original analysis of this genome [6]. All

of these variants had allelic skew resulting from copy number

amplifications of the reference allele, thus their predictions in this

analysis can be directly attributed to the extension of the model to

consider CNAs in the inference of SNVs. Samtools and SNVMix

are capable of identifying allelic skew towards the non-reference

allele although would likely characterise such an event with the bb

genotype. This may be considered a loss of information, while

CoNAn-SNV may classify similar events as fabb,abbb,abbbbg
which may provide a more informative description of the genomic

landscape at that location and flag certain events as potentially

interesting for validation (Table S5). Moreover skewed allelism in

simpler models might be misconstrued as loss of heterozygosity.

CoNAn-SNV rather allows the investigator to infer skewed

heterozygosity caused by allele specific CNAs. Overall, CoNAn-

SNV is capable of calling more variants in highly amplified CNAs

compared with SNVMix and samtools. Performance metrics

indicate that the false positives introduced by CoNAn-SNV do not

outweigh the true positives gained. Upon validation of 140 high

confidence CoNAn-SNV calls, we resolved that approximately

75.9% of predicated variants (excluding inconclusive and PCR

failed results) successfully validated. Of those, there were more

predicted variants that validated from so called ‘‘high level’’ CNAs

than any others (Table S4). It is possible that this arises from

difficulty in establishing the boundaries of the CNA segments

which may be too broadly defined; some small lengths of lower

level amplifications may exist within other CNAs and the extended

state-space is applied where it is not needed and detects noise. A

high level CNA has a large enough difference from the

background, especially when surrounded by neutral regions, that

it may be easier to establish the segmentation boundaries.

Although there are still variants that fail to be present, the success

of high level amplification predictions and support from

surrounding germline variants suggests that CoNAn-SNV frame-

work accurately represents genotypes existing within these regions.

The capacity to accurately call a variant is also largely dependent

upon the ability of aligners to accurately map a read. Often true

variants existing in the data may cause ambiguous alignments

which renders reads unusable or incorrectly placed. As aligners

continue to progress, we expect the false positive rate and true

positives rates of CoNAn-SNV will improve and return more

accurate results. Since our software is samtools [22] compliant, the

emergence of new, improved aligners that use the samtools

community standards will not require any modification to our

framework.

Lastly, we applied CoNAn-SNV to a relatively quiescent

lymphoma tumor for which both tumour and normal data was

available, using mutationSeq as a post-procession tool to predict

somatic variants (see Methods). We found that CoNAn-SNV

found only an additional 782 variants in the tumor, 22 of which

were predicted somatic variants primarily in gain copy number

states. In total the CoNAn-SNV had relatively high agreement

Figure 5. Receiver operator characteristic curve for CoNAn-SNV and SNVMix broken down by amplification status.
doi:10.1371/journal.pone.0041551.g005
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with SNVMix and samtools diploid variant calling methods. Thus,

CoNAn-SNV is applicable to tumor landscapes that are have

quiescent or disrupted genomic landscapes.

Limitations and Future Work
A well known problem with the Binomial probability density

function parameterized by m is that it exhibits very narrow peaks

with increasing numbers of observations. As such, small deviations

from the expected values in regions with substantial depth can

produce extremely low likelihoods and uninformative likelihoods

for all genotypes. In such cases, the prior probability on genotypes

(p) can dominate the calculation of the posterior and over-

influence the overall SNV call. The prior probabilities are

distributed such that the majority of the probability mass is

skewed towards the homozygous reference genotypes. As a result,

some true SNVs may not be correctly classified. However, the

natural extension of the model to use a Beta-Binomial (over-

dispersed) likelihood to mitigate against this effect has thus far

proven to be no more accurate, and therefore further extensions

may be needed. Moreover, the CoNAn-SNV model is restricted to

the possible state space of genotypes provided in the input data.

Joint and simultaneous inference of copy number and genotype is

a theoretically more attractive approach, since genotype could

influence the estimation of copy number and vice versa. This

would likely improve accuracy should incorrect copy number

assignments be used as input into the CoNAn-SNV model. Joint

inference however, is substantially more complex and is beyond

the scope of this contribution.

Implications for inference of mutational heterogeneity,
tumor evolution and LOH

Our results show on a genome-wide basis how somatic point

mutations can overlap with somatic CNAs in a manner that affects

their detection and interpretation. Sub heterozygous somatic SNV

allele ratios can arise from sub-dominant populations of cells or

from masking of the somatic SNV by amplification of the wildtype

allele. To resolve this situation, comparisons of tumor genome

evolution are required, as shown by us and others [6,16]. In the

latter cases, sub dominant clonal evolution could be inferred

because subdominant alleles became prevalent in diploid regions

of the genomes or where copy number was not altered during

progression. Without the possibility of comparison over time and

evolution, skewed allelism in regions of CNA must be cautiously

interpreted. Our validation data also showed germline events in

CNAs that exhibited allelic skew, as would be expected of an allele

specific copy number aberration. Without appropriate consider-

ation of amplification status, these events may have been

misconstrued as loss of heterozygosity when in fact the data show

that the imbalance results from the amplification of the reference

allele rather than hemizygous deletion or copy-neutral LOH

events.

Conclusions
The primary objective of this study was to explore how the

consideration of CNA annotation in SNV discovery impacts the

analysis and interpretation of NGS data from genomically

unstable tumor genomes. We show that explicit integration of

copy number information into algorithms of SNV detection not

only increases sensitivity, but allows the significance of somatic

mutation frequency in diploid and non-diploid regions to be more

appropriately interpreted. The discovery of 21 new somatic

mutations in the lobular breast cancer reveals how incorporation

of CNAs into SNV analysis is essential to approaching compre-

hensive characterization of the somatic mutational landscape

tumours by next generation sequencing technology.

Methods

Short read sequences that were obtained from the Illumina

Genome Analyzer GAii were aligned and analysed using the full

analytical pipeline described in Figure S3. All raw data for this

study are available through material transfer agreement from the

European Genome-Phenome archive (http://www.ebi.ac.uk/ega)

under accession number: EGAS00000000054. Lobular breast

carcinoma WGSS and WTSS sequence reads were aligned using

BWA under default settings. Lymphoma data was aligned by

BWA as described in Morin et al. [24]. Copy number for the

lymphoma genome was determined by HMMCopy (Lai and Shah

in preparation), accounting for GC-bias and mappability-bias as

described at http://compbio.bccrc.ca/software/hmmcopy.

Single Nucleotide variants discovery and Validation
The model parameters for CoNAn-SNV were estimated by

expectation maximization using 14,649 positions with high

confidence SNP calls established as a ground truth standard in

[21]. We fit a separate model for each of loss/neutral, gain,

amplification and high level amplification sets of positions using

expectation maximization in a maximum a posteriori (MAP)

framework with hyperparameter settings shown in Table S1.

Given the model parameters, we then applied CoNAn-SNV on

the full set of WGSS lobular breast carcinoma data. To compute

the probability of the presence of a SNV, we summed the posterior

probabilities of the variant-containing genotypes (see Equation (4)).

We then filtered out any positions where p(SNV) did not exceed

the false positive rate threshold determined in [6] of

p(SNV)w0.77. We use this threshold for accurate comparison

against early SNV calls reported in [6]. Remaining positions were

filtered against samtools and SNVMix calls as well as dbSNP

positions, leaving only CoNAn-SNV specific predictions for

further analysis. The final filtration step required that the

candidate validation positions to be coding and non-synonymous.

A total of 140 positions were submitted for validation by targeted

ultra deep amplicon sequencing on the Illumina GAii sequencer in

the metastatic and primary tumor DNA as well as the normal

buffycoat DNA. Details of sample preparation, primer design,

library construction and sequencing for validation of the 140

positions are given in Methods S1. A list of the primers is available

in Table S9.

All validation sequence reads were aligned using Maq [25] to a

custom reference created from the primer coordinates used to

generate the amplicons; the reference is available as Supplemental

Data in Fasta format. A one-tailed Binomial exact test using the R

statistical package was used to evaluate target positions for

presence of the SNV against a null distribution designed to

capture the background error rate. Allelic counts for the five

positions immediately flanking the both sides of the target position

on both sides were used to establish the null distribution. Positions

that had a Benjamini-Hochberg corrected p-value ƒ0:05 were

considered to be present. This procedure was applied to the

normal, primary and metastatic data. Positions were considered

somatic mutations if they were not present in the normal data, but

existed in the tumor data; and germline SNPs if present in the

normal and metastatic data. Positions that had a large discrepancy

between the metastatic and normal depth, despite Binomial exact

test results, were considered inconclusive and were not considered.

Some of the germline variants were selected as indicators of allelic

skew using a chi-squared test compared the allelic counts of

Segmental Amplifications and Mutation Discovery

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e41551



metastatic tumor against the normal. Positions were considered

skewed if the Benjamini-Hochberg corrected p-values were ƒ0:05
with the additional requirement that the frequency of the non-

reference allele between the normal and the metastatic had a

disparity of at least 10%.

Performance Evaluation with OncoSNP and CRLMM
Performance evaluation was completed using an orthogonal

Affymetrix SNPChip 6.0 array of the lobular carcinoma. First, we

used a well-characterized set of 14649 CRLMM calls as described

in [21]. In addition, we analysed the SNP array using OncoSNP in

order to benchmark CoNAn-SNV against an analysis capable of

detecting allele-specific CNAs (albeit limited to arrays). OncoSNP

provided no results for 338,755 positions and these were excluded

from analysis. We moved forward with 530,567 OncoSNP calls

that were further filtered prior to being used in performance

analysis. Overall, there was also a large concordance between

CRLMM and OncoSNP genotype calls (498,984 SNP positions)

where 15,757 positions were confirmed to be a SNP by both

algorithms. A total of 11,369 genotype calls were unique to

OncoSNP and mainly represent allele-specific amplifications

where the reference allele was amplified; 4,457 were unique to

CRLMM likely due to OncoSNP calibration (see below). Since

array data reports major-minor allele genotypes and our sequence

analysis represent alleles with respect to the reference genome, all

array genotypes were adjusted to be compatible with the sequence

genotypes. To qualify for further analysis, all positions were

required to have a minimum depth of 2, with a minimum mapping

and base quality of 10 and 20 respectively. Finally, some positions

called a variant by OncoSNP, however the NGS data at the

corresponding genomic coordinate lacked evidence of any variant

reads. These positions either represented a missed call from

OncoSNP or an under-sampling of the allele in the sequence data

and thus these positions are removed from analysis so as not to

artificially bias the false negative rate. Ultimately, 12,588 positions

passed all criteria of which 4,235 were SNVs and 8,353 were not.

Application to Lymphoma
Tumour and matched normal lymphoma data were cases

A03290 and A03291, respectively, selected from [24]. The

lymphoma data was subject to the same sequencing and down-

stream filtering as the lobular carcinoma data. In place of

validating the somatic mutations in the wetlab, we used the

mutationSeq software [26] to predict the presence of somatic

variants. MutationSeq is a feature based classifier used to detect

somatic SNVs from tumour-normal paired data and is robust to

germline variants as well as strand bias, mapping quality, base

quality, homopolymer run and tail-distance to end of the read

induced artifacts [26].

Implementation and availability
Software for CoNAn-SNV is freely available at http://compbio.

bccrc.ca and is implemented in the C programming language. We

have compiled and tested the software in the Linux and Mac OSX

operating systems. The script for the simulation is also available on

the website and was implemented in R.

Supporting Information

Methods S1 Validation of SNVs in lobular breast
cancer.

(DOC)

Figure S1 Copy number annotations for all chromo-
some made by OncoSNP.
(PDF)

Figure S2 ROC for performance evaluation using
CRLMM broken down by CNA state.
(TIF)

Figure S3 Full variant discovery pipeline.
(TIF)

Figure S4 MutationSeq somatic variant results for
lymphoma. Predicted variants with a probability of 0.5 or

greater for being a somatic variants (probability assigned by

MutationSeq) are shown in a lymphoma tumor for CoNAn-SNV,

SNVMix, and the samtools variants caller. There is a high degree

of concordance between the three methods, however CoNAn-

SNV finds the most unique variants, especially in Gain states.

(TIF)

Table S1 CoNAn-SNV model parameters.
(XLS)

Table S2 SNVMix and CoNAn-SNV simulation compar-
isons. AUCs, with 95% confidence intervals (CIs), are calculated

for each copy number state over 100 simulation runs. The

sensitivity (ad 95% CIs) of SNVMix and CoNAn-SNV is also

reported at the following false positives rates: 0.01, 0.05 and 0.1.

SNVMix and CoNAn-SNV have a similar sensitivity in NORM

and GAIN CNA states, in AMP and HLAMP CoNAn has a much

higher sensitivity when compared to SNVMix.

(XLS)

Table S3 CNA segment input to CoNAn-SNV. CoNAn-SNV

takes as input CNA segments in addition to allelic counts. A line of

input indicates a chromosome number, segment start and end site,

and lastly a numerical encoding of the CNA state. The numbers are:

2(NEUT/LOSS); 3 (GAIN); 4(AMP); and 5(HLAMP). The model

can receive input from any segmentation algorithm so long as it is

provided in the same format as this table. Additionally, CoNAn-SNV

is not constrained to the state-space used in this paper, and is flexible

to other levels of amplification so long as they can be encoded

numerically. There are, however, important considerations that

should be made if choosing to extend the state-space beyond what has

been described in this manuscript. Further instruction for using the

model is available on the download page.

(XLS)

Table S4 Summary of the 140 positions submitted for
validation.
(XLS)

Table S5 Summary of the 140 positions submitted for
validation.
(XLS)

Table S6 Genomic Positions with skewed allelic geno-
types. This table indicates positions in the entire genome that

harbour the extreme allelic skews such as aaaab and abbbb.

(XLS)

Table S7 OncoSNP CNA segment predictions.
(XLS)

Table S8 Somatic Variants verified by MutationSeq for
CoNAn-SNV, SNVMix and samtools.
(XLS)

Table S9 Primer specifications for the 140 candidate
validation positions.
(XLS)
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